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Algebra

Defn 0.1.1: A function f : X → Y is called
Injective: f(x) = f(y)⇒ x = y
Surjective: ∀y ∈ im(f) : ∃x ∈ dom(f) such that f(x) = y.
Bijective: f is both injective and surjective

Defn 1.2.1: Group Axioms:
If ∗ : S × S → S is a binary operation on G, then G is a group if the following axioms are satisfied.
Closure: g, h ∈ G⇒ g ∗ h ∈ G.
Associativity: g, h, k ∈ G⇒ g ∗ (h ∗ k) = (g ∗ h) ∗ k.
Identity: ∃e ∈ G such that ∀g ∈ G : g ∗ e = e ∗ g = g.
Inverses: ∀g ∈ G : ∃g−1s.t.g−1g = g ∗ g−1 = e.

Some examples of groups: Z,Q, or R under addition; Sn permutations of {1, . . . , n}; Dn symmetries of an n-gon,

and GL(n,G), the group of invertible matrices with entries in G (|GL(n,G)| =
∏n−1

k=0(|G|n − |G|k)).

Thm 2.1.3: Subgroup Test:
A group H is a subgroup of G, written H ≤ G, if:
S1: H 6= ∅
S2: h, k ∈ H ⇒ hk ∈ H.
S3: h ∈ H ⇒ h−1 ∈ H.

Thm 2.2.15: If G is cyclic and H ≤ G then H is cyclic.
Thm 2.2.16: G×H is cyclic ⇔ hcf(|G|, |H|) = 1

Thm 2.4: Lagrange’s Theorem:
If H ≤ G the |H| divides |G|.

Thm 2.3.8: H ≤ G⇒ hH = H. If g1, g2 ∈ G, h ∈ H then the following three are equivalent statements:
• g1H = g2H;
• ∃h ∈ H such that g2 = g1h, and
• g2 ∈ g1H.

Thm 2.4.2: ∀g ∈ G : o(g) divides |G|, and g|G| = e.
Thm 2.4.6: If |G| = p for p prime then G is cyclic.
Col 2.4.7: If |G| < 6 then G is abelian.
Thm 4.3.2: Cauchy’s Theorem:

Let G be a group, p be a prime. If p divides |G|, then G contains an element of order p.

Def 3.1.1: Homomorphisms:
A map ϕ : G→ H is a homomorphism if ϕ(xy) = ϕ(x)ϕ(y).

Lem 3.1.5: If ϕ is a homomorphism then ϕ(eG) = eH and ϕ(g−1) = ϕ(g)−1.

Def 3.1.6: Let ϕ : G→ H be a homomorphism.
im(ϕ) := {h ∈ H : h = ϕ(g) for some g ∈ G}.
ker(ϕ) := {g ∈ G : ϕ(g) = eh} = ∩x∈XStabG(x).

Def 3.1.7: Normal Subgroup:
N is normal to G, written N / G, if ∀g ∈ G : gN = Ng.

Prop 3.1.8: If ϕ : G→ H is a homomorphism, then ker(ϕ) / G.
Prop 3.1.9: If ϕ : G→ H is a homomorphism, then ker(ϕ) = {e} ⇔ ϕ is injective ⇒ G ∼= im(ϕ).

Def 3.3.1: Group Actions:
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An action of G on a set X is a map · : G×X → X such that:
g1 · (g2 · x) = (g1g2) · x for g1, g2 ∈ G and x ∈ X,
and where ∀x ∈ X : e · x = x.

Def 4.1.1: StabG(x) := {g ∈ G : g · x = x}.
Def 4.1.3: OrbG(x) := {g · x : g ∈ G}.
Def 4.1.7: An action is transitive if ∀x, y ∈ X there exists g ∈ G such that g · x = y. i.e. If G is a single orbit.
Ker: Ker(·) = {g ∈ G : g · x = x}. An action is faithful if Ker(·) = {e}.

Thm 4.2.1: Orbit-Stabiliser Theorem
If G acts on X with x ∈ X then |G| = |OrbG(x)| × |StabG(x)|.

Def 4.4.1: Fix(g) := {x ∈ X : g · x = x} it’s worth noting that StabG(x) ≤ G but Fix(g) ⊆ X. Thm 4.4.2:
the number of orbits on X = 1

|G|
∑

g∈G |Fix(g)|.

Section 5: Conjugacy:
Let (G, ∗) act on G with ‘conjugacy’ action · : G×G→ G, we define:
Action: h · g := hgh−1.
Centralizer: C(g) := {h ∈ G : gh = hg} = StabG(g).
Centre: C(G) := {g ∈ G : ∀h ∈ G, gh = hg} = ∩g∈GC(g) = ker(·).

Cor 5.1.6: C(g) ≤ G, {e} is always a conjugacy class and C(G) ≤ G.
Thm 5.2.4: Two permutations in Sn are conjugate iff they have the same cycle type.
Thm 5.2.5: The number of elements of cycle type 1m1 , 2m2 , . . . , nmn is n!÷ (m1! . . .mn!1m12m2 . . . nmn).

Thm 5.3.3: Cayley’s Theorem:
Every finite group is isomorphic to a subgroup of a symmetric group.

Analysis

Thm 1.2.3: Triangle Inequality: |a+ b| ≤ |a|+ |b|, and ||a| − |b|| ≤ |a− b|

Def 1.3.2: Supremum:
A number s = supE is a supremum of a set E if ∀a ∈ E : a ≤ s and s ≤ M for all upper bounds M of
the set E.

Thm 1.3.5: Approximation Property:
If E ⊆ R has a supremum supE then ∀ε > 0 we have that supE − ε < a ≤ supE, for a ∈ E.

Def 2.1.1: Convergence:
A sequence (xn) is said to converge to a if for every ε > 0 : ∃N ∈ N such that for all n > N :|x− a| < ε.

Thm 2.1.9: Every convergent sequence is bounded.

Thm 2.2.1: Squeeze Theorem:
If both (xn) and (yn) converge to a, and ∀n : xn ≤ wn ≤ yn, then wn converges to a also.

Thm 2.2.6: Divergence:
(xn) is said to diverge to ∞ if for each M ∈ R there is n ∈ N such that for all n > N we have xn > M .

Def 2.3.1: Monotone:
A sequence (xn) is monotone if it’s increasing or decreasing, it’s increasing if ∀n : xn+1 ≥ xn, and
decreasing if xn+1 ≤ xn.

Thm 2.3.2: Monotone Convergence
If (xn) is increasing (resp. decreasing) and bounded above (resp. below) then (xn) is convergent. (tip:
set lim(xn) = lim(xn+1) to find limit).

Def 3.2.5: limsup:
lim supxn = limN→∞ sup{xn : n > N}.

Def 2.3.8: Cauchy:
A sequence (xn) is said to be cauchy if for all m,n we have that |xm − xn| < ε for every ε > 0.

Thm 2.3.10: A sequence is convergent iff it’s cauchy.
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Thm 2.4.4: Every sequence of real numbers has a monotone subsequence.
Thm 2.4.5: Every bounded monotone sequence converges.
Thm 2.4.6: Bolzano-Weierstrass: Every bounded sequence of real numbers has a convergent subsequence.
Ross 11.3: If the sequence (sn) converges, then every subsequence converges to the same limit.

Convergence Tests:
Divergence test: (an) diverges if an → a 6= 0.
Telescopic: if (ak) converges,

∑∞
k=1(ak − ak+1) = a1 − limk→∞ ak.

Geometric:
∑∞

k=0 x
k converges iff |x| < 1.

Comparison: If ak ≤ bk for all k then (ak) converges if (bk) does, and (bk) diverges if (ak) does.
Ratio Test: If an > 0 and an+1

an
→ L, then (an) converges if L < 1 and diverges if L > 1.

Thm 3.3.2: If
∑
an converges absolutely then it converges.

Def 4.1.1: Continuity:
A function f is continuous at x if for every sequence (xn) that approaches x we have limn→∞ f(xn) =
f(x).

Thm 4.1.6:
A function f is continuous at a if for every ε > 0 there exists a δ > 0 such that |x − a| < δ ⇒
|f(x)− f(a)| < ε.

Ross 17.5: If f is continuous at x0 and g is continuous at f(x0), then the composite function g◦f is continuous
at x0.

Thm 4.2.2: Extreme Value Thm:
If I ⊂ R and f : I → R is continuous on I, then there exists points xm, xM such that f(xm) = inf{f(x) :
x ∈ I} and f(xM ) = sup{f(x) : x ∈ I}.

Thm 4.2.4: Intermediate Value Thm:
If f : I → R is continuous on I with a, b ∈ I and a < b then for every y0 between f(a) and f(b) there
exists x0 such that f(x0) = y0.

Thm 2.4.9: If f is strictly increasing on I such that im(f) is an interval then f is continuous.
Thm 2.4.10: If f : [a, b]→ R is strictly increasing and continuous then f−1 : [f(a), f(b)]→ R is too.

Def 5.1.1: Differentiability:

A function f is differentiable at a if f ′(a) = limx→a
f(x)− f(a)

x− a
exists.

Thm 5.1.3: If f is differentiable at a then it’s continuous.

Thm 5.3.1: Rolle’s Theorem:
Suppose a, b ∈ R with a < b, and that f is continuous on [a, b] and differentiable on (a, b) with f(a) = f(b),
then there exists a point c where f ′(c) = 0.

Thm 5.3.3: Mean Value Theorem:
If f is cts on [a, b] and differentiable on (a, b) then there exists a point c ∈ [a, b] such that f(b)− f(a) =
f ′(c)(b− a).

Thm 5.4.4: Inverse Function Theorem:
If f is surjective and continuous on I and a ∈ f(I), and if f ′ exists at the point f−1(a) (and is non-zero),

then (f−1)′(a) =
[
f ′(f−1(a))

]−1
.

Def 5.5.1 Taylor’s Polynomial:
If f : (a, b)→ R is differentiable n times at x0 ∈ (a, b) then f can be approximated at the point x0 by:

f(x0) ' P f,x0
n (x) = f(x0) +

∑n
k=1

f (k)(x0)

k!
(x− x0)k.

Error term: The error of P f,x0
n (x) ' f(x) in estimating f(c) is given by

f (n+1)(x0)

(n+ 1)!
(x− c)n+1.
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