FPM Formula Sheet

William A. Bevington

Algebra

Defn 0.1.1: A function $f: X \to Y$ is called Injective: $f(x) = f(y) \Rightarrow x = y$ Surjective: $\forall y \in im(f) : \exists x \in dom(f)$ such that f(x) = y. Bijective: f is both *injective* and *surjective*

Defn 1.2.1: Group Axioms:

If $*: S \times S \to S$ is a binary operation on G, then G is a group if the following axioms are satisfied. **Closure:** $g, h \in G \Rightarrow g * h \in G$. **Associativity:** $g, h, k \in G \Rightarrow g * (h * k) = (g * h) * k$. **Identity:** $\exists e \in G$ such that $\forall g \in G : g * e = e * g = g$. **Inverses:** $\forall g \in G : \exists g^{-1}s.t.g^{-1}g = g * g^{-1} = e$.

Some examples of groups: \mathbb{Z}, \mathbb{Q} , or \mathbb{R} under addition; S_n permutations of $\{1, \ldots, n\}$; D_n symmetries of an n-gon, and GL(n, G), the group of invertible matrices with entries in $G(|GL(n, G)| = \prod_{k=0}^{n-1} (|G|^n - |G|^k))$.

Thm 2.1.3: Subgroup Test:

A group *H* is a subgroup of *G*, written $H \leq G$, if: **S1:** $H \neq \emptyset$ **S2:** $h, k \in H \Rightarrow hk \in H$. **S3:** $h \in H \Rightarrow h^{-1} \in H$.

Thm 2.2.15: If G is cyclic and $H \leq G$ then H is cyclic. **Thm 2.2.16:** $G \times H$ is cyclic $\Leftrightarrow hcf(|G|, |H|) = 1$

Thm 2.4: Lagrange's Theorem:

If $H \leq G$ the |H| divides |G|.

Thm 2.3.8: $H \leq G \Rightarrow hH = H$. If $g_1, g_2 \in G, h \in H$ then the following three are equivalent statements: • $g_1H = g_2H$;

- $\exists h \in H$ such that $g_2 = g_1 h$, and
- $g_2 \in g_1 H$.

Thm 2.4.2: $\forall g \in G : o(g)$ divides |G|, and $g^{|G|} = e$.

Thm 2.4.6: If |G| = p for p prime then G is cyclic.

Col 2.4.7: If |G| < 6 then G is abelian.

Thm 4.3.2: Cauchy's Theorem:

Let G be a group, p be a prime. If p divides |G|, then G contains an element of order p.

Def 3.1.1: Homomorphisms:

A map $\varphi: G \to H$ is a homomorphism if $\varphi(xy) = \varphi(x)\varphi(y)$. Lem 3.1.5: If φ is a homomorphism then $\varphi(e_G) = e_H$ and $\varphi(g^{-1}) = \varphi(g)^{-1}$.

Def 3.1.6: Let $\varphi : G \to H$ be a homomorphism.

 $im(\varphi) := \{h \in H : h = \varphi(g) \text{ for some } g \in G\}.$

 $ker(\varphi) := \{g \in G : \varphi(g) = e_h\} = \bigcap_{x \in X} Stab_G(x).$

Def 3.1.7: Normal Subgroup:

N is normal to G, written $N \triangleleft G$, if $\forall g \in G : gN = Ng$.

Prop 3.1.8: If $\varphi : G \to H$ is a homomorphism, then $ker(\varphi) \triangleleft G$.

Prop 3.1.9: If $\varphi : G \to H$ is a homomorphism, then $ker(\varphi) = \{e\} \Leftrightarrow \varphi$ is injective $\Rightarrow G \cong im(\varphi)$.

Def 3.3.1: Group Actions:

An action of G on a set X is a map $: G \times X \to X$ such that: $g_1 \cdot (g_2 \cdot x) = (g_1g_2) \cdot x$ for $g_1, g_2 \in G$ and $x \in X$, and where $\forall x \in X : e \cdot x = x$.

Def 4.1.1: $Stab_G(x) := \{g \in G : g \cdot x = x\}.$

Def 4.1.3: $Orb_G(x) := \{g \cdot x : g \in G\}.$

Def 4.1.7: An action is *transitive* if $\forall x, y \in X$ there exists $g \in G$ such that $g \cdot x = y$. i.e. If G is a single orbit. **Ker:** $Ker(\cdot) = \{g \in G : g \cdot x = x\}$. An action is *faithful* if $Ker(\cdot) = \{e\}$.

Thm 4.2.1: Orbit-Stabiliser Theorem

If G acts on X with $x \in X$ then $|G| = |Orb_G(x)| \times |Stab_G(x)|$. **Def 4.4.1:** $Fix(g) := \{x \in X : g \cdot x = x\}$ it's worth noting that $Stab_G(x) \leq G$ but $Fix(g) \subseteq X$. Thm 4.4.2: the number of orbits on $X = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$.

Section 5: Conjugacy:

Let (G, *) act on G with 'conjugacy' action $\cdot : G \times G \to G$, we define: Action: $h \cdot g := hgh^{-1}$. Centralizer: $C(g) := \{h \in G : gh = hg\} = Stab_G(g)$. Centre: $C(G) := \{g \in G : \forall h \in G, gh = hg\} = \cap_{g \in G} C(g) = ker(\cdot)$. Cor 5.1.6: $C(g) \leq G$, $\{e\}$ is always a conjugacy class and $C(G) \leq G$.

Thm 5.2.4: Two permutations in S_n are conjugate iff they have the same cycle type.

Thm 5.2.5: The number of elements of cycle type $1^{m_1}, 2^{m_2}, \ldots, n^{m_n}$ is $n! \div (m_1! \ldots m_n! 1^{m_1} 2^{m_2} \ldots n^{m_n})$.

Thm 5.3.3: Cayley's Theorem:

Every finite group is isomorphic to a subgroup of a symmetric group.

Analysis

Thm 1.2.3: Triangle Inequality: $|a+b| \leq |a|+|b|$, and $||a|-|b|| \leq |a-b|$

Def 1.3.2: Supremum:

A number s = supE is a supremum of a set E if $\forall a \in E : a \leq s$ and $s \leq M$ for all upper bounds M of the set E.

Thm 1.3.5: Approximation Property:

If $E \subseteq \mathbb{R}$ has a supremum supE then $\forall \varepsilon > 0$ we have that $supE - \varepsilon < a \leq supE$, for $a \in E$.

Def 2.1.1: Convergence:

A sequence (x_n) is said to converge to a if for every $\varepsilon > 0 : \exists N \in \mathbb{N}$ such that for all $n > N : |x - a| < \varepsilon$. **Thm 2.1.9:** Every convergent sequence is bounded.

Thm 2.2.1: Squeeze Theorem:

If both (x_n) and (y_n) converge to a, and $\forall n : x_n \leq w_n \leq y_n$, then w_n converges to a also.

Thm 2.2.6: Divergence:

 (x_n) is said to diverge to ∞ if for each $M \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that for all n > N we have $x_n > M$.

Def 2.3.1: Monotone:

A sequence (x_n) is monotone if it's increasing or decreasing, it's increasing if $\forall n : x_{n+1} \ge x_n$, and decreasing if $x_{n+1} \le x_n$.

Thm 2.3.2: Monotone Convergence

If (x_n) is increasing (resp. decreasing) and bounded above (resp. below) then (x_n) is convergent. (tip: set $lim(x_n) = lim(x_{n+1})$ to find limit).

Def 3.2.5: limsup:

 $\lim \sup x_n = \lim_{N \to \infty} \sup \{x_n : n > N\}.$

Def 2.3.8: Cauchy:

A sequence (x_n) is said to be *cauchy* if for all m, n we have that $|x_m - x_n| < \varepsilon$ for every $\varepsilon > 0$. Thm 2.3.10: A sequence is convergent iff it's cauchy. Thm 2.4.4: Every sequence of real numbers has a monotone subsequence.

Thm 2.4.5: Every bounded monotone sequence converges.

Thm 2.4.6: Bolzano-Weierstrass: Every bounded sequence of real numbers has a convergent subsequence. **Ross 11.3:** If the sequence (s_n) converges, then every subsequence converges to the same limit.

Convergence Tests:

Divergence test: (a_n) diverges if $a_n \to a \neq 0$. **Telescopic:** if (a_k) converges, $\sum_{k=1}^{\infty} (a_k - a_{k+1}) = a_1 - \lim_{k \to \infty} a_k$. **Geometric:** $\sum_{k=0}^{\infty} x^k$ converges iff |x| < 1.

Comparison: If $a_k \leq b_k$ for all k then (a_k) converges if (b_k) does, and (b_k) diverges if (a_k) does. **Ratio Test:** If $a_n > 0$ and $\frac{a_{n+1}}{a_n} \to L$, then (a_n) converges if L < 1 and diverges if L > 1. **Thm 3.3.2:** If $\sum a_n$ converges absolutely then it converges.

Def 4.1.1: Continuity:

A function f is continuous at x if for every sequence (x_n) that approaches x we have $\lim_{n\to\infty} f(x_n) =$ f(x).

Thm 4.1.6:

A function f is continuous at a if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|x - a| < \delta \Rightarrow$ $|f(x) - f(a)| < \varepsilon.$

Ross 17.5: If f is continuous at x_0 and g is continuous at $f(x_0)$, then the composite function $g \circ f$ is continuous at x_0 .

Thm 4.2.2: Extreme Value Thm:

If $I \subset \mathbb{R}$ and $f: I \to \mathbb{R}$ is continuous on I, then there exists points x_m, x_M such that $f(x_m) = inf\{f(x):$ $x \in I$ and $f(x_M) = \sup\{f(x) : x \in I\}.$

Thm 4.2.4: Intermediate Value Thm:

If $f: I \to \mathbb{R}$ is continuous on I with $a, b \in I$ and a < b then for every y_0 between f(a) and f(b) there exists x_0 such that $f(x_0) = y_0$.

Thm 2.4.9: If f is strictly increasing on I such that im(f) is an interval then f is continuous. **Thm 2.4.10:** If $f:[a,b] \to \mathbb{R}$ is strictly increasing and continuous then $f^{-1}:[f(a),f(b)] \to \mathbb{R}$ is too.

Def 5.1.1: Differentiability:

A function f is differentiable at a if $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists. **Thm 5.1.3:** If f is differentiable at a then it's continuous

Thm 5.3.1: Rolle's Theorem:

Suppose $a, b \in \mathbb{R}$ with a < b, and that f is continuous on [a, b] and differentiable on (a, b) with f(a) = f(b), then there exists a point c where f'(c) = 0.

Thm 5.3.3: Mean Value Theorem:

If f is cts on [a, b] and differentiable on (a, b) then there exists a point $c \in [a, b]$ such that f(b) - f(a) =f'(c)(b-a).

Thm 5.4.4: Inverse Function Theorem:

If f is surjective and continuous on I and $a \in f(I)$, and if f' exists at the point $f^{-1}(a)$ (and is non-zero), then $(f^{-1})'(a) = \left[f'(f^{-1}(a))\right]^{-1}$.

Def 5.5.1 Taylor's Polynomial:

If $f:(a,b)\to\mathbb{R}$ is differentiable n times at $x_0\in(a,b)$ then f can be approximated at the point x_0 by: $f(x_0) \simeq P_n^{f,x_0}(x) = f(x_0) + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$

Error term: The *error* of $P_n^{f,x_0}(x) \simeq f(x)$ in estimating f(c) is given by $\frac{f^{(n+1)}(x_0)}{(n+1)!}(x-c)^{n+1}$.