FPM Formula Sheet

William A. Bevington

Algebra

Defn 0.1.1: A function $f: X \rightarrow Y$ is called
Injective: $f(x)=f(y) \Rightarrow x=y$
Surjective: $\forall y \in \operatorname{im}(f): \exists x \in \operatorname{dom}(f)$ such that $f(x)=y$.
Bijective: f is both injective and surjective

Defn 1.2.1: Group Axioms:
If $*: S \times S \rightarrow S$ is a binary operation on G, then G is a group if the following axioms are satisfied.
Closure: $g, h \in G \Rightarrow g * h \in G$.
Associativity: $g, h, k \in G \Rightarrow g *(h * k)=(g * h) * k$.
Identity: $\exists e \in G$ such that $\forall g \in G: g * e=e * g=g$.
Inverses: $\forall g \in G: \exists g^{-1}$ s.t. $g^{-1} g=g * g^{-1}=e$.
Some examples of groups: \mathbb{Z}, \mathbb{Q}, or \mathbb{R} under addition; S_{n} permutations of $\{1, \ldots, n\} ; D_{n}$ symmetries of an n-gon, and $G L(n, G)$, the group of invertible matrices with entries in $G\left(|G L(n, G)|=\prod_{k=0}^{n-1}\left(|G|^{n}-|G|^{k}\right)\right)$.

Thm 2.1.3: Subgroup Test:
A group H is a subgroup of G, written $H \leq G$, if:
S1: $H \neq \emptyset$
S2: $h, k \in H \Rightarrow h k \in H$.
S3: $h \in H \Rightarrow h^{-1} \in H$.

Thm 2.2.15: If G is cyclic and $H \leq G$ then H is cyclic.
Thm 2.2.16: $G \times H$ is cyclic $\Leftrightarrow h c f(|G|,|H|)=1$

Thm 2.4: Lagrange's Theorem:
If $H \leq G$ the $|H|$ divides $|G|$.
Thm 2.3.8: $H \leq G \Rightarrow h H=H$. If $g_{1}, g_{2} \in G, h \in H$ then the following three are equivalent statements:

- $g_{1} H=g_{2} H$;
- $\exists h \in H$ such that $g_{2}=g_{1} h$, and
- $g_{2} \in g_{1} H$.

Thm 2.4.2: $\forall g \in G: o(g)$ divides $|G|$, and $g^{|G|}=e$.
Thm 2.4.6: If $|G|=p$ for p prime then G is cyclic.
Col 2.4.7: If $|G|<6$ then G is abelian.
Thm 4.3.2: Cauchy's Theorem:
Let G be a group, p be a prime. If p divides $|G|$, then G contains an element of order p.

Def 3.1.1: Homomorphisms:
A map $\varphi: G \rightarrow H$ is a homomorphism if $\varphi(x y)=\varphi(x) \varphi(y)$.
Lem 3.1.5: If φ is a homomorphism then $\varphi\left(e_{G}\right)=e_{H}$ and $\varphi\left(g^{-1}\right)=\varphi(g)^{-1}$.

Def 3.1.6: Let $\varphi: G \rightarrow H$ be a homomorphism. $\operatorname{im}(\varphi):=\{h \in H: h=\varphi(g)$ for some $g \in G\}$. $\operatorname{ker}(\varphi):=\left\{g \in G: \varphi(g)=e_{h}\right\}=\cap_{x \in X} \operatorname{Stab}_{G}(x)$
Def 3.1.7: Normal Subgroup:
N is normal to G, written $N \triangleleft G$, if $\forall g \in G: g N=N g$.
Prop 3.1.8: If $\varphi: G \rightarrow H$ is a homomorphism, then $\operatorname{ker}(\varphi) \triangleleft G$.
Prop 3.1.9: If $\varphi: G \rightarrow H$ is a homomorphism, then $\operatorname{ker}(\varphi)=\{e\} \Leftrightarrow \varphi$ is injective $\Rightarrow G \cong i m(\varphi)$.

Def 3.3.1: Group Actions:

An action of G on a set X is a map $\cdot: G \times X \rightarrow X$ such that:
$g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} g_{2}\right) \cdot x$ for $g_{1}, g_{2} \in G$ and $x \in X$,
and where $\forall x \in X: e \cdot x=x$.
Def 4.1.1: $\operatorname{Stab}_{G}(x):=\{g \in G: g \cdot x=x\}$.
Def 4.1.3: $\operatorname{Orb}_{G}(x):=\{g \cdot x: g \in G\}$.
Def 4.1.7: An action is transitive if $\forall x, y \in X$ there exists $g \in G$ such that $g \cdot x=y$. i.e. If G is a single orbit.
Ker: $\operatorname{Ker}(\cdot)=\{g \in G: g \cdot x=x\}$. An action is faithful if $\operatorname{Ker}(\cdot)=\{e\}$.
Thm 4.2.1: Orbit-Stabiliser Theorem
If G acts on X with $x \in X$ then $|G|=\left|\operatorname{Orb}_{G}(x)\right| \times\left|\operatorname{Stab}_{G}(x)\right|$.
Def 4.4.1: $\operatorname{Fix}(g):=\{x \in X: g \cdot x=x\}$ it's worth noting that $S t a b_{G}(x) \leq G$ but $\operatorname{Fix}(g) \subseteq X$. Thm 4.4.2: the number of orbits on $X=\frac{1}{|G|} \sum_{g \in G}|F i x(g)|$.

Section 5: Conjugacy:

Let $(G, *)$ act on G with 'conjugacy' action $\cdot: G \times G \rightarrow G$, we define:
Action: $h \cdot g:=h g h^{-1}$.
Centralizer: $C(g):=\{h \in G: g h=h g\}=\operatorname{Stab}_{G}(g)$.
Centre: $C(G):=\{g \in G: \forall h \in G, g h=h g\}=\cap_{g \in G} C(g)=\operatorname{ker}(\cdot)$.
Cor 5.1.6: $C(g) \leq G,\{e\}$ is always a conjugacy class and $C(G) \leq G$.
Thm 5.2.4: Two permutations in S_{n} are conjugate iff they have the same cycle type.
Thm 5.2.5: The number of elements of cycle type $1^{m_{1}}, 2^{m_{2}}, \ldots, n^{m_{n}}$ is $n!\div\left(m_{1}!\ldots m_{n}!1^{m_{1}} 2^{m_{2}} \ldots n^{m_{n}}\right)$.
Thm 5.3.3: Cayley's Theorem:
Every finite group is isomorphic to a subgroup of a symmetric group.

Analysis

Thm 1.2.3: Triangle Inequality: $|a+b| \leq|a|+|b|$, and $||a|-|b|| \leq|a-b|$
Def 1.3.2: Supremum:
A number $s=\sup E$ is a supremum of a set E if $\forall a \in E: a \leq s$ and $s \leq M$ for all upper bounds M of the set E.
Thm 1.3.5: Approximation Property:
If $E \subseteq \mathbb{R}$ has a supremum $\sup E$ then $\forall \varepsilon>0$ we have that $\sup E-\varepsilon<a \leq \sup E$, for $a \in E$.
Def 2.1.1: Convergence:
A sequence $\left(x_{n}\right)$ is said to converge to a if for every $\varepsilon>0: \exists N \in \mathbb{N}$ such that for all $n>N:|x-a|<\varepsilon$.
Thm 2.1.9: Every convergent sequence is bounded.
Thm 2.2.1: Squeeze Theorem:
If both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converge to a, and $\forall n: x_{n} \leq w_{n} \leq y_{n}$, then w_{n} converges to a also.
Thm 2.2.6: Divergence:
$\left(x_{n}\right)$ is said to diverge to ∞ if for each $M \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that for all $n>N$ we have $x_{n}>M$.
Def 2.3.1: Monotone:
A sequence $\left(x_{n}\right)$ is monotone if it's increasing or decreasing, it's increasing if $\forall n: x_{n+1} \geq x_{n}$, and decreasing if $x_{n+1} \leq x_{n}$.
Thm 2.3.2: Monotone Convergence
If $\left(x_{n}\right)$ is increasing (resp. decreasing) and bounded above (resp. below) then $\left(x_{n}\right)$ is convergent. (tip: set $\lim \left(x_{n}\right)=\lim \left(x_{n+1}\right)$ to find limit $)$.

Def 3.2.5: limsup:
$\lim \operatorname{supx}_{n}=\lim _{N \rightarrow \infty} \sup \left\{x_{n}: n>N\right\}$.

Def 2.3.8: Cauchy:
A sequence $\left(x_{n}\right)$ is said to be cauchy if for all m, n we have that $\left|x_{m}-x_{n}\right|<\varepsilon$ for every $\varepsilon>0$.
Thm 2.3.10: A sequence is convergent iff it's cauchy.

Thm 2.4.4: Every sequence of real numbers has a monotone subsequence.
Thm 2.4.5: Every bounded monotone sequence converges.
Thm 2.4.6: Bolzano-Weierstrass: Every bounded sequence of real numbers has a convergent subsequence.
Ross 11.3: If the sequence $\left(s_{n}\right)$ converges, then every subsequence converges to the same limit.

Convergence Tests:

Divergence test: $\left(a_{n}\right)$ diverges if $a_{n} \rightarrow a \neq 0$.
Telescopic: if $\left(a_{k}\right)$ converges, $\sum_{k=1}^{\infty}\left(a_{k}-a_{k+1}\right)=a_{1}-\lim _{k \rightarrow \infty} a_{k}$.
Geometric: $\sum_{k=0}^{\infty} x^{k}$ converges iff $|x|<1$.
Comparison: If $a_{k} \leq b_{k}$ for all k then $\left(a_{k}\right)$ converges if $\left(b_{k}\right)$ does, and $\left(b_{k}\right)$ diverges if $\left(a_{k}\right)$ does.
Ratio Test: If $a_{n}>0$ and $\frac{a_{n+1}}{a_{n}} \rightarrow L$, then $\left(a_{n}\right)$ converges if $L<1$ and diverges if $L>1$.
Thm 3.3.2: If $\sum a_{n}$ converges absolutely then it converges.

Def 4.1.1: Continuity:

A function f is continuous at x if for every sequence $\left(x_{n}\right)$ that approaches x we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $f(x)$.
Thm 4.1.6:
A function f is continuous at a if for every $\varepsilon>0$ there exists a $\delta>0$ such that $|x-a|<\delta \Rightarrow$ $|f(x)-f(a)|<\varepsilon$.
Ross 17.5: If f is continuous at x_{0} and g is continuous at $f\left(x_{0}\right)$, then the composite function $g \circ f$ is continuous at x_{0}.

Thm 4.2.2: Extreme Value Thm:
If $I \subset \mathbb{R}$ and $f: I \rightarrow \mathbb{R}$ is continuous on I, then there exists points x_{m}, x_{M} such that $f\left(x_{m}\right)=\inf \{f(x)$: $x \in I\}$ and $f\left(x_{M}\right)=\sup \{f(x): x \in I\}$.
Thm 4.2.4: Intermediate Value Thm:
If $f: I \rightarrow \mathbb{R}$ is continuous on I with $a, b \in I$ and $a<b$ then for every y_{0} between $f(a)$ and $f(b)$ there exists x_{0} such that $f\left(x_{0}\right)=y_{0}$.

Thm 2.4.9: If f is strictly increasing on I such that $\operatorname{im}(f)$ is an interval then f is continuous.
Thm 2.4.10: If $f:[a, b] \rightarrow \mathbb{R}$ is strictly increasing and continuous then $f^{-1}:[f(a), f(b)] \rightarrow \mathbb{R}$ is too.
Def 5.1.1: Differentiability:
A function f is differentiable at a if $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists.
Thm 5.1.3: If f is differentiable at a then it's continuous.
Thm 5.3.1: Rolle's Theorem:
Suppose $a, b \in \mathbb{R}$ with $a<b$, and that f is continuous on $[a, b]$ and differentiable on (a, b) with $f(a)=f(b)$, then there exists a point c where $f^{\prime}(c)=0$.
Thm 5.3.3: Mean Value Theorem:
If f is cts on $[a, b]$ and differentiable on (a, b) then there exists a point $c \in[a, b]$ such that $f(b)-f(a)=$ $f^{\prime}(c)(b-a)$.
Thm 5.4.4: Inverse Function Theorem:
If f is surjective and continuous on I and $a \in f(I)$, and if f^{\prime} exists at the point $f^{-1}(a)$ (and is non-zero), then $\left(f^{-1}\right)^{\prime}(a)=\left[f^{\prime}\left(f^{-1}(a)\right)\right]^{-1}$.

Def 5.5.1 Taylor's Polynomial:
If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable n times at $x_{0} \in(a, b)$ then f can be approximated at the point x_{0} by: $f\left(x_{0}\right) \simeq P_{n}^{f, x_{0}}(x)=f\left(x_{0}\right)+\sum_{k=1}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$.
Error term: The error of $P_{n}^{f, x_{0}}(x) \simeq f(x)$ in estimating $f(c)$ is given by $\frac{f^{(n+1)}\left(x_{0}\right)}{(n+1)!}(x-c)^{n+1}$.

