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Functions
Proving functions: if x = y then f(z) = f(y).
A function f: X — Y is called
o injective if f(z1) = f(x2) implies that x1 = za.
o surjective if for every y € Y, there exists x € X such
that f(z) =y.

e bijective if it is both injective and surjective.

Group Axioms

We say that a nonempty set G is group under * if
1. (Closure) * is an operation, so g« h € G for all g, h, € G.
2. (Associativity) g* (hx k) = (g* h) * k for all g, h, k € G.

3. (Identity) There exists an identity element e € G such
that exg=g*e =g for all g € G.
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4. (Inverses) Every element g € G has an inverse g~ ! such

that gxg 1 =g lsxg=e.
Subgroups
A proper subgroup is a subgroup that is not the group itself

(sometimes denoted H < G). If H < G then ey = eg and the
inverse of h € H equals the inverse of h in G.

Test for a Subgroup

We say H C G is a subgroup of G if and only if
1. H is not empty.
2. If hyk,€ H then hxk € H.
3. If h€ H then h~! € H.

Note: associativity is inherited from G.

The union of subgroups is not a subgroup! The intersection is.

Lagrange & Co.
Lagrange’s Theorem Let G be a finite group and let
H < G. Then |H| divides |G].

e Let g € G. Then o(g) divides |G|.

e For all g € G we have glGl =e.

e If |G| = p where p is prime then G is cyclic.

e If |G| < 6 then G is abelian.

o A left coset is a subset of G of the form gH.

e A right coset is a subset of G of the form Hyg.

e If gH = Hg for all g € G then we say the subgroup is
normal.

e We denote the set of left cosets of H in G by G/H.

e The index of H < G is the number of distinct left cosets

of Hin G and |G/H| = %

Fermat’s Little Theorem If p is a prime and a € Z then
a? =a mod p.

Homomorphisms and Isomorphisms

Let G, H be groups. A map ¢ : G — H is a group
homomorphism if

$(ay) = $(x)(y) for all 2,y € G.

(Product zy on the left is the group operation in G and the
product ¢(x)¢(y) is formed using group operation in H.)
If the map is bijective then it is called an isomorphism.

e The image of ¢ is im ¢ = {h € H|h = ¢(g) for some
g € G}.

e The kernel of ¢ is ker ¢ = {g € G|¢(g9) = e }.

e im ¢ is a subgroup of H.

e ker ¢ is a subgroup of G.

e Kernels of homomorphisms are normal subgroups.

e If ¢ : G — H is an isomorphism then so is ¢~ : H — G.
e ¢: G — H is injective iff ker ¢ = {e}.

e If ¢ : G — H is injective then ¢ gives an isomorphism
G 2~ im ¢.

e All cyclic groups of order n are isomorphic, in particular
every group of order 2 is isomorphic to Zs.

e Let H, K < G with HN K = {e}. Then
¢: Hx K — HK given by ¢ : (h, k) — hk is bijective.
If also hk = kh for all h € H, k € K then HK is a
subgroup of G isomorphic to H x K via ¢.

Group Actions

Let G be a group and X an non empty set. Then a left action
of G on X is a map G X X — X such that

g1-(g92-72) =(g9192) -z and e -z =z

for all g1,92 € G,z € X.

e The kernel of an action is the set
N={geGlg-z=xforallz € X}.

o If N = {e} (kernel is trivial) then we say the action is

faithful.
Orbit-Stabilizer
Let G act on X and let x € X. The stabilizer of x is
Stabg(z) = {g € Glg -z = x}
and the orbit of x under G is
Orbg(z) = {g - z|g € G}.
e The stabilizer is a subgroup of G.

e Orbits partition the set X.

e The kernel is the intersection of stabilizer subgroups,
i.e. NyexStabg(z).

Orbit-Stabilizer Theorem Let G be a finite group acting on
X, let x € X. Then

|Orbg (2)| x [Stabg (z)| = |G|.

Cauchy’s Theorem If a prime p divides |G| then G contains
an element of order p.

e An action is transitive if for all x,y € X there exists
g € G such that y = g - z}. Equivalently, X is a single
orbit under G.

e sends(y) = {g €Glg -z =y}

e Fix(g) = {z € X|g -z = «} is the fized point set.

e The number of orbits in X = ﬁ > gec IFix(g)]-

Conjugacy Classes

Let g,h € G, then h - g = hgh™! defines an action of group G
on itself (conjugation action).

e The orbits are called conjugacy classes.

e We say g1, g2 are conjugate if there exists h € G such
that go = hg1h—1, i.e. if they lie in the same conjugacy
class.

e If G is abelian then each element is its own conjugacy
class.

o C(g) = {h € G|gh = hg} is the centralizer of g in G and
it is a subgroup of G.

o C(G) ={g € G|gh = hg for all h € G} is the centre of a
group G.

o If g € C(G) we say g is central.

e The centre is the intersection of all centralizers and it is
a subgroup of G.

e (G is abelian iff C(G) = G.

e (number of conjugates of g in G) X|C(g)| = |G|.

e {e} is always a conjugacy class of G.

e {g} is a conjugacy class iff g € C(G). Hence C(G) is the

union of all one-element conjugacy classes.

e If |G| = p* where p is prime and k € N, then |C(G)| > p.
Let G be a group with conjugacy classes C1, ...,Crn (C1 is
always {e}) with sizes c1,...,cn (so ¢c1 = 1). If g € Cf, then
cp = %. In particular, ¢; divides the order of the group.
Then the class equation of G is

|G| =c1+c2+ ...+ cn.

Conjugacy in S,
The number of elements os S, of cycle type 1™1,2™2 _  n™Mn
is

n!
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Dihedral Group D,

We call the group of symmetries of and n-gon the dihedral

group Dy,.
e |Dy|=2n.

e D, is not abelian for n > 3.

Symmetric Group 5,

The set of all symmetries (permutations) of a set X of n
objects is the symmetric group Sp,.

e |S,| =nl

e S, is abelian iff n = 2.

General Linear Group GL(n,R)

The set of invertible n X n matrices with entries in R is a
group under matrix multiplication.

e GL(n,R) is not abelian.
e Subgroups:
SL(n,R) = {A € GL(n,R)|det A =1},
O(n,R) = {A € GL(n, R)|AT = A~1},
SO(n,R) = {A € GL(n,R)|det A =1 and AT = A~}

o |GL(n,Zp)| = (p — 1)(p" — p)(p"™ — p?)...(p" — p"~ 1)

Useful facts

If a group G is cyclic then G is abelian.

G is cyclic iff G has an element of order |G|.

If g2 =e Vg € G then G is abelian.

Every group of order p? (p prime) is abelian.

If H, K are cyclic the H x K is cyclic iff

ged(|HI,|K]) = 1.

(1)~ = h1g "

If G, H are finite subgroups that intersect trivially then
|G x H| = |G H].

o(g) =o(g~")

If G is abelian and H < G then left cosets are the same
as right cosets.

Let o(g) = k then if k is even o(g?) = & and if k is odd
then o(g?) = k.



