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Functions
Proving functions: if x = y then f(x) = f(y).
A function f : X → Y is called

• injective if f(x1) = f(x2) implies that x1 = x2.

• surjective if for every y ∈ Y , there exists x ∈ X such
that f(x) = y.

• bijective if it is both injective and surjective.

Group Axioms
We say that a nonempty set G is group under * if

1. (Closure) * is an operation, so g ∗ h ∈ G for all g, h,∈ G.

2. (Associativity) g ∗ (h ∗ k) = (g ∗ h) ∗ k for all g, h, k ∈ G.

3. (Identity) There exists an identity element e ∈ G such
that e ∗ g = g ∗ e = g for all g ∈ G.

4. (Inverses) Every element g ∈ G has an inverse g−1 such
that g ∗ g−1 = g−1 ∗ g = e.

Subgroups
A proper subgroup is a subgroup that is not the group itself
(sometimes denoted H < G). If H ≤ G then eH = eG and the
inverse of h ∈ H equals the inverse of h in G.

Test for a Subgroup
We say H ⊆ G is a subgroup of G if and only if

1. H is not empty.

2. If h, k,∈ H then h ∗ k ∈ H.

3. If h ∈ H then h−1 ∈ H.

Note: associativity is inherited from G.
The union of subgroups is not a subgroup! The intersection is.

Lagrange & Co.
Lagrange’s Theorem Let G be a finite group and let
H ≤ G. Then |H| divides |G|.
• Let g ∈ G. Then o(g) divides |G|.
• For all g ∈ G we have g|G| = e.

• If |G| = p where p is prime then G is cyclic.

• If |G| < 6 then G is abelian.

• A left coset is a subset of G of the form gH.

• A right coset is a subset of G of the form Hg.

• If gH = Hg for all g ∈ G then we say the subgroup is
normal.

• We denote the set of left cosets of H in G by G/H.

• The index of H ≤ G is the number of distinct left cosets

of H in G and |G/H| = |G|
|H| .

Fermat’s Little Theorem If p is a prime and a ∈ Z then
ap ≡ a mod p.

Homomorphisms and Isomorphisms
Let G,H be groups. A map φ : G→ H is a group
homomorphism if

φ(xy) = φ(x)φ(y) for all x, y ∈ G.

(Product xy on the left is the group operation in G and the
product φ(x)φ(y) is formed using group operation in H.)
If the map is bijective then it is called an isomorphism.

• The image of φ is im φ = {h ∈ H|h = φ(g) for some
g ∈ G}.

• The kernel of φ is ker φ = {g ∈ G|φ(g) = eH}.

• im φ is a subgroup of H.

• ker φ is a subgroup of G.

• Kernels of homomorphisms are normal subgroups.

• If φ : G→ H is an isomorphism then so is φ−1 : H → G.

• φ : G→ H is injective iff ker φ = {e}.

• If φ : G→ H is injective then φ gives an isomorphism
G ∼= im φ.

• All cyclic groups of order n are isomorphic, in particular
every group of order 2 is isomorphic to Z2.

• Let H,K ≤ G with H ∩K = {e}. Then
φ : H ×K → HK given by φ : (h, k) 7→ hk is bijective.
If also hk = kh for all h ∈ H, k ∈ K then HK is a
subgroup of G isomorphic to H ×K via φ.

Group Actions
Let G be a group and X an non empty set. Then a left action
of G on X is a map G×X → X such that

g1 · (g2 · x) = (g1g2) · x and e · x = x

for all g1, g2 ∈ G, x ∈ X.

• The kernel of an action is the set
N = {g ∈ G|g · x = x for all x ∈ X}.

• If N = {e} (kernel is trivial) then we say the action is
faithful.

Orbit-Stabilizer
Let G act on X and let x ∈ X. The stabilizer of x is

StabG(x) = {g ∈ G|g · x = x}

and the orbit of x under G is

OrbG(x) = {g · x|g ∈ G}.

• The stabilizer is a subgroup of G.

• Orbits partition the set X.

• The kernel is the intersection of stabilizer subgroups,
i.e. ∩x∈XStabG(x).

Orbit-Stabilizer Theorem Let G be a finite group acting on
X, let x ∈ X. Then

|OrbG(x)| × |StabG(x)| = |G|.

Cauchy’s Theorem If a prime p divides |G| then G contains
an element of order p.

• An action is transitive if for all x, y ∈ X there exists
g ∈ G such that y = g · x}. Equivalently, X is a single
orbit under G.

• sendx(y) = {g ∈ G|g · x = y}

• Fix(g) = {x ∈ X|g · x = x} is the fixed point set.

• The number of orbits in X = 1
|G|

∑
g∈G |Fix(g)|.

Conjugacy Classes
Let g, h ∈ G, then h · g = hgh−1 defines an action of group G
on itself (conjugation action).

• The orbits are called conjugacy classes.

• We say g1, g2 are conjugate if there exists h ∈ G such
that g2 = hg1h−1, i.e. if they lie in the same conjugacy
class.

• If G is abelian then each element is its own conjugacy
class.

• C(g) = {h ∈ G|gh = hg} is the centralizer of g in G and
it is a subgroup of G.

• C(G) = {g ∈ G|gh = hg for all h ∈ G} is the centre of a
group G.

• If g ∈ C(G) we say g is central.

• The centre is the intersection of all centralizers and it is
a subgroup of G.

• G is abelian iff C(G) = G.

• (number of conjugates of g in G) ×|C(g)| = |G|.

• {e} is always a conjugacy class of G.

• {g} is a conjugacy class iff g ∈ C(G). Hence C(G) is the
union of all one-element conjugacy classes.

• If |G| = pk where p is prime and k ∈ N, then |C(G)| ≥ p.
Let G be a group with conjugacy classes C1, ..., Cn (C1 is
always {e}) with sizes c1, ..., cn (so c1 = 1). If g ∈ Ck then

ck =
|G|
|C(g)| . In particular, ck divides the order of the group.

Then the class equation of G is

|G| = c1 + c2 + ...+ cn.

Conjugacy in Sn

The number of elements os Sn of cycle type 1m1 , 2m2 , ..., nmn

is
n!

m1!...mn!1m12m2 ...nmn
.



Dihedral Group Dn

We call the group of symmetries of and n-gon the dihedral
group Dn.

• |Dn| = 2n.

• Dn is not abelian for n ≥ 3.

Symmetric Group Sn

The set of all symmetries (permutations) of a set X of n
objects is the symmetric group Sn.

• |Sn| = n!.

• Sn is abelian iff n = 2.

General Linear Group GL(n,R)
The set of invertible n× n matrices with entries in R is a
group under matrix multiplication.

• GL(n,R) is not abelian.

• Subgroups:
SL(n,R) = {A ∈ GL(n,R)| detA = 1},
O(n,R) = {A ∈ GL(n,R)|AT = A−1},
SO(n,R) = {A ∈ GL(n,R)| detA = 1 and AT = A−1}

• |GL(n,Zp)| = (pn − 1)(pn − p)(pn − p2)...(pn − pn−1)

Useful facts
• If a group G is cyclic then G is abelian.

• G is cyclic iff G has an element of order |G|.
• If g2 = e ∀g ∈ G then G is abelian.

• Every group of order p2 (p prime) is abelian.

• If H,K are cyclic the H ×K is cyclic iff
gcd(|H|, |K|) = 1.

• (gh)−1 = h−1g−1

• If G,H are finite subgroups that intersect trivially then
|G×H| = |G||H|.

• o(g) = o(g−1)

• If G is abelian and H ≤ G then left cosets are the same
as right cosets.

• Let o(g) = k then if k is even o(g2) = k
2

and if k is odd

then o(g2) = k.


