FPM Analysis

Marie Biolková and Sebastian Müksch

The Real Numbers

The Triangle Inequality

- $|a+b| \leq|a|+|b|$
- $||a|-|b| \leq|a-b|$

Approximation Property If the set $E \subset \mathbb{R}$ has a supremum then for any positive number $\varepsilon>0$ there exists $a \in E$ such that $\sup E-\varepsilon<a \leq \sup E$.
Remark: If $E \subset \mathbb{N}$ has a supremum then $\sup E \in E$.
Archimedean Principle Given positive real numbers
$a, b \in \mathbb{R}$ there is an integer $n \in \mathbb{N}$ such that $b<n a$.
The Completeness Axiom If $E \subset \mathbb{R}$ is non empty and bounded above then E has a supremum.

- Set E has a supremum iff the set $-E$ has an infinum and $\inf (-E)=-\sup E$.
- Set E has an infinum iff the set $-E$ has a supremum and $\sup (-E)=-\inf E$.
Monotone Property If $A \subset B$ are two nonempty subsets of \mathbb{R} and B is bounded above then $\sup A \leq \sup B$. If B is bounded below then $\inf A \geq \inf B$.
Bernouilli's Inequality Let $n>0, x \geq-1$, then
- $(1+x)^{n} \leq 1+n x$ if $n \in(0,1]$
- $(1+x)^{n} \geq 1+n x$ if $n \in[1, \infty]$.

Sequences

A sequence of real numbers $\left(x_{n}\right)$ is said to converge to a real number a if for every $\varepsilon>0$ there is $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|x_{n}-a\right|<\varepsilon$.

- Every convergent sequence is bounded.

The Squeeze Theorem Suppose $\left(x_{n}\right),\left(y_{n}\right),\left(w_{n}\right)$ are real sequences.

- If both $x_{n} \rightarrow a$ and $y_{n} \rightarrow a$ (same $a!$) as $n \rightarrow \infty$ and if

$$
x_{n} \leq w_{n} \leq y_{n} \text { for all } n \geq N_{0}
$$

then $w_{n} \rightarrow a$ as $n \rightarrow \infty$.

- If $x_{n} \rightarrow 0$ and $\left(y_{n}\right)$ is bounded then the product $x_{n} y_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Theorem 2.2.3 Let $E \subset \mathbb{R}$. If E has a finite supremum, i.e. E is bounded above, then there is a sequence $\left(x_{n}\right)$ with $x_{n} \in E$ such that $x_{n} \rightarrow \sup E$ as $n \rightarrow \infty$. An analogous statement holds if E has finite infinum (i.e. bounded below).
Comparision Theorem for Sequences Suppose $\left(x_{n}\right),\left(y_{n}\right)$ are real sequences. If both $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{n \rightarrow \infty} y_{n}$ exist in \mathbb{R}^{*} and if $x_{n} \leq y_{n}$ for all $n \geq \stackrel{n \rightarrow \infty}{N}$ for some $N \in \stackrel{n \rightarrow \infty}{ } \in \mathbb{N}$ then $\lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty} y_{n}$.
Monotone Convergence If $\left(x_{n}\right)$ is increasing and bounded above or if it is decreasing and bounded below, then $\left(x_{n}\right)$ is convergent (and converges to the supremum/infimum of the set $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ respectively.
- $\lim \sup x_{n}=\lim _{N \rightarrow \infty} \sup \left\{x_{n} \mid n>N\right\}$
- $\lim \inf x_{n}=\lim _{N \rightarrow \infty} \inf \left\{x_{n} \mid n>N\right\}$

Theorem 2.3.7 Let $\left(x_{n}\right)$ be a sequence of real numbers then $\lim _{n \rightarrow \infty} x_{n}$ exists as \mathbb{R}^{*} iff $\lim \sup x_{n}=\lim \inf x_{n}$ in which case $\limsup x_{n}=\liminf x_{n}=\lim _{n \rightarrow \infty} x_{n}$.

Cauchy Sequences

A sequence $\left(x_{n}\right)$ of numbers $x_{n} \in \mathbb{R}$ is said to be Cauchy if $\forall \varepsilon>0$ there is $N \in \mathbb{N}$ such that

$$
\left|x_{n}-x_{m}\right|<\varepsilon \quad \forall n, m \geq N
$$

A sequence of real numbers x_{n} is a Cauchy sequence $\Longleftrightarrow\left(x_{n}\right)$ converges.

Subsequences

Theorem 2.4.3 Let $\left(x_{n}\right)$ be a sequence of real numbers.

- There exists $t \in \mathbb{R}$ such that $\forall \varepsilon>0$ there exist infinitely many $n \in \mathbb{N}$ for which $\left|x_{n}-t\right|<\varepsilon \Longleftrightarrow$ there exists a subsequence of $\left(x_{n}\right)$ converging to t.
- The sequence is not bounded above (below) \Longleftrightarrow there exists a subsequence converging to ∞ (converging to $-\infty)$.
Theorem 2.4.4 Every sequence of real numbers has a monotone subsequence.
Theorem 2.4.5 Every bounded monotone sequence converges. Bolzano-Weierstrass Every bounded sequence of real numbers has a convergent subsequence.

Useful Limits of Sequences

- $a^{\frac{1}{n}} \rightarrow 1$ as $n \rightarrow \infty$, provided $a>0$
- $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$
- $\left(1-\frac{1}{n}\right)^{n} \rightarrow \frac{1}{e}$ as $n \rightarrow \infty$

Infinite Series

Let $S=\sum_{k=1}^{\infty} a_{k}$ be an infinite series with terms a_{k}. For each n define the partial sum by $s_{n}=\sum_{k=1}^{n} a_{k} . S$ is said to converge
\Longleftrightarrow the sequence of partial sums $\left(s_{n}\right)$ converges to some $s \in \mathbb{R}$. That is $\forall \varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ we have

$$
\left|s_{n}-s\right|=\left|\sum_{k=1}^{n} a_{k}-s\right|<\varepsilon
$$

If the sequence of partial sums diverges then S diverges. Theorem 3.2.1 Suppose $a_{k} \geq 0$ for large k. Then $\sum_{k=1}^{\infty} a_{k}$ converges $\Longleftrightarrow\left(s_{n}\right)$ is bounded. That is $\exists M>0$ such that $\left|\sum_{k=1}^{n} a_{k}\right| \leq M$ for all $n \in \mathbb{N}$.

Cauchy Criterion The infinite series $\sum_{k=1}^{\infty} a_{k}$ converges $\Longleftrightarrow \forall \varepsilon>0$ there is $N \in \mathbb{N}$ such that $\forall m \geq n \geq N$ we have $\left|\sum_{k=n}^{m} a_{k}\right|<\varepsilon$.
Harmonic Series The series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.
Divergence Test Let $\left(a_{k}\right)$ be a sequence. If a_{k} does not converge to 0 then $\sum_{k=1}^{\infty} a_{k}$ diverges.
Geometric Series Let $x \in \mathbb{R}$ and $N \in\{0,1,2, \ldots\}$. Then the series $\sum_{k=N}^{\infty} x^{k}$ converges $\Longleftrightarrow|x|<1$. In this case
$\sum_{k=N}^{\infty} x^{k}=\frac{x^{N}}{1-x}$. In particular,

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \quad|x|<1
$$

Comparison Test Suppose $0 \leq a_{k} \leq b_{k}$ for large k.

- If $\sum_{k=1}^{\infty} b_{k}<\infty$ then $\sum_{k=1}^{\infty} a_{k}<\infty$.
- If $\sum_{k=1}^{\infty} a_{k}=\infty$ then $\sum_{k=1}^{\infty} b_{k}=\infty$.

Limit Comparison Test Suppose $0 \leq a_{k}, 0<b_{k}$ for large k and $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists as an extended real number.

- If $L \in(0, \infty)$ then $\sum_{k=1}^{\infty} a_{k}$ converges $\Longleftrightarrow \sum_{k=1}^{\infty} b_{k}$ converges.
- If $L=0$ and $\sum_{k=1}^{\infty} b_{k}$ converges then $\sum_{k=1}^{\infty} a_{k}$ converges.
- If $L=\infty$ and $\sum_{k=1}^{\infty} b_{k}$ diverges then $\sum_{k=1}^{\infty} a_{k}$ diverges.

Root Test Suppose that $r=\lim _{k \rightarrow \infty}\left|a_{k}\right|^{\frac{1}{k}}$ exists. If

- $r<1$ then $\sum_{k=1}^{\infty} a_{k}$ converges absolutely.
- $r>1$ then $\sum_{k=1}^{\infty} a_{k}$ diverges.

Absolute Convergence

- A series converges absolutely if $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$.
- A series S converges conditionally if S converges but $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges.
- A series converges absolutely $\Longleftrightarrow \forall \varepsilon>0$ there is $N \in \mathbb{N}$ such that $\forall m \geq n \geq N, \sum_{k=1}^{\infty}\left|a_{k}\right|<\varepsilon$.
- If a series converges absolutely then the series converges, but not conversely.

Cauchy's Condensation Test Let $\sum_{k=1}^{\infty} a_{k}$ be a series of non-negative terms and assume $\left(a_{k}\right)$ is a decreasing sequence. If $\sum_{k=1}^{\infty} 2^{n} a_{2^{n}}$ converges then $\sum_{k=1}^{\infty} a_{k}$ converges.
Telescopic Series Let $\left(b_{k}\right)$ be a convergent sequence.
Then $\sum_{k=1}^{\infty}\left(b_{k}-b_{k+1}\right)=b_{1}-\lim _{k \rightarrow \infty} b_{k}$.
Ratio Test Let $a_{k} \in \mathbb{R}$ and assume $r=\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}$ exists in \mathbb{R}^{*} :

- $r<1 \Longrightarrow \sum_{k=1}^{\infty} a_{k}$ converges absolutely.
- $r>1 \Longrightarrow \sum_{k=1}^{\infty} a_{k}$ diverges.

Integral Test $f:[1, \infty) \rightarrow \mathbb{R}$ positive and decreasing on $[1, \infty)$. Let $a_{k}=f(k)$ then

$$
\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} f(k) \text { converges } \Longleftrightarrow \int_{1}^{\infty} f(x) d x<\infty
$$

p-series Test The series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ is convergent if and only if $p>1$.
Alternating Sign Series Let $\left(a_{k}\right)$ be non-negative,
decreasing series such that $\lim _{k \rightarrow \infty} a_{k}=0$. Then $\sum_{k=1}^{\infty}(-1)^{k} a_{k}$ is convergent.

Continuity

$f: \operatorname{dom}(f) \rightarrow \mathbb{R}$ is continuous if there exists sequence $\left(x_{n}\right)$ in $\operatorname{dom}(f)$ s.t. $\lim _{n \rightarrow \infty} x_{n}=a$. We have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.
$\varepsilon-\delta$ definition: $f: \operatorname{dom}(f) \rightarrow \mathbb{R}$ continuous at $a \in \operatorname{dom}(f)$ iff

$$
\forall \varepsilon>0 \exists \delta:|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon
$$

- f continuous at $a \Longleftrightarrow \lim _{x \rightarrow a} f(x)=f(a)$.
- f continuous at $a \in \mathbb{R}$ and g continuous at $f(a)$, then $g \circ f$ continuous at a.

Extreme Value Theorem

$I \subset \mathbb{R}$ closed and bounded and f continuous on I, then $\exists x_{m}, x_{M} \in I$ such that

- $f\left(x_{m}\right)=\inf \{f(x) \mid x \in I\}$.
- $f\left(x_{M}\right)=\sup \{f(x) \mid x \in I\}$.

Lemma 4.2.4: Let I open interval and $f: I \rightarrow \mathbb{R}$ continuous at $a \in I$ and $f(a)>0$, then for some $\delta, \varepsilon>0$ we have

$$
f(x)>\varepsilon, \forall x \in(a-\delta, a+\delta)
$$

Intermediate Value Theorem

I non-degenerate interval and $f: I \rightarrow \mathbb{R}$ continuous. Let $a, b \in I, a<b$ then:

$$
\forall y_{0} \in(f(a), f(b)) \exists x_{0} \in(a, b): f\left(x_{0}\right)=y_{0}
$$

Bolzano's Theorem f continuous on $[a, b]$ s.t. $f(a) f(b)<0$, then $\exists c \in(a, b): f(c)=0$.

- $f[a, b] \rightarrow \mathbb{R}$ strictly increasing such that $\operatorname{im}(f)$ is an interval, then f continuous on $[a, b]$.
- $f[a, b] \rightarrow \mathbb{R}$ continuous strictly increasing, then

$$
f^{-1}[f(a), f(b)] \rightarrow \mathbb{R} \text { continuous strictly increasing. }
$$

Limits of Functions

$f: \operatorname{dom}(f) \rightarrow \mathbb{R}, a \in \mathbb{R}^{*}$, then $\lim _{x \rightarrow a} f(x)=L$ for $L \in \mathbb{R}^{*}$ if for every sequence $\left(x_{n}\right)$ in $\operatorname{dom}(f)$ which converges to a we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
Comparison Theorem for Functions $a \in \mathbb{R}$ and I open interval s.t. $a \in I$. If f, g are defined everywhere on $I \backslash\{a\}$ and have limits as $x \rightarrow a$ then

$$
f(x) \leqslant g(x), \forall x \in I \backslash\{a\} \Longrightarrow \lim _{x \rightarrow a} f(x) \leqslant \lim _{x \rightarrow a} g(x)
$$

Differentiability

$f: I \rightarrow \mathbb{R}$ is differentiable on $a \in \mathbb{R}$ if $a \in I$ and

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- f differentiable $\Longrightarrow f$ continuous.
- f continuously differentiable on I if f^{\prime} exists and continuous on I.
Rolle's Theorem Let $a, b \in \mathbb{R}, a<b$. If f continuous on $[a, b]$ and differentiable on (a, b) and $f(a)=f(b)$, then $\exists c \in(a, b): f^{\prime}(c)=0$.

Mean Value Theorem

Let $a, b \in \mathbb{R}, a<b$. If f continuous on $[a, b]$ and differentiable on (a, b) then $\exists c \in(a, b)$ s.t.

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Generalized Mean Value Theorem If f, g continuous on $[a, b]$ and differentiable on (a, b) then $\exists c \in(a, b)$ s.t.

$$
f^{\prime}(c)(g(b)-g(a))=g^{\prime}(c)(f(b)-f(a)) .
$$

L'Hôpital's Rule Let $a \in \mathbb{R}^{*}$ and I interval that contains a or has endpoint a. Let f, g differentiable on $I \backslash\{a\}$ and

- $\forall x \in I \backslash\{a\}: g(x) \neq 0, g^{\prime}(x) \neq 0$
- $A=\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x), A \in \mathbb{R}^{*}$
- $B=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists with $B \in \mathbb{R}^{*}$

$$
\text { then } \quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Monotone Functions

Theorem 5.4.3 Let f be injective and continuous on I, then
f is strictly monotone on I and f^{-1} is continuous and strictly monotone on $f(I)$.
Inverse Function Theorem Let f be injective and continuous on open interval I. If $a \in f(I)$ and f^{\prime} exists at $f^{-1}(a)$ and is non-zero, then f^{-1} differentiable at a and

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

Taylor's Theorem

Taylor's Polynomial Let $n \in \mathbb{N}, a, b \in \mathbb{R}^{*}, a<b$. If
$f:(a, b) \rightarrow \mathbb{R}$ differentiable n-times at $x_{0} \in(a, b)$, then Taylor's polynomial of degree n is

$$
P_{n}^{f, x_{0}}=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

Taylor's Formula Let $n \in \mathbb{N}, a, b \in \mathbb{R}^{*}, a<b$. If
$f:(a, b) \rightarrow \mathbb{R}$ and $f^{(n+1)}$ exists on (a, b) then $\forall x, x_{0} \in(a, b)$ $\exists c$ between x, x_{0} such that

$$
f(x)=P_{n}^{f, x_{0}}+\frac{f^{(n+1)}\left(x_{0}\right)}{(n+1)!}\left(x-x_{0}\right)^{(n+1)}
$$

N.B.: c depends on n, x and x_{0}.

Useful Facts

- The series

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}, \sum_{k=2}^{\infty}(-1)^{k} \frac{1}{\log k}, \sum_{k=2}^{\infty}(-1)^{k} \frac{1}{k \log k}
$$

are all convergent (Corollary 3.4.2)

- The radius of convergence of $\sum_{n=1}^{\infty} c_{n}(x-a)^{n}$ can be defined as $R=\frac{1}{\lim \sup \sqrt[n]{\left|c_{n}\right|}}$.

