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The Real Numbers
The Triangle Inequality
• |a+ b| ≤ |a|+ |b|
• ||a| − |b| ≤ |a− b|

Approximation Property If the set E ⊂ R has a supremum
then for any positive number ε > 0 there exists a ∈ E such
that sup E − ε < a ≤ sup E.
Remark: If E ⊂ N has a supremum then sup E ∈ E.
Archimedean Principle Given positive real numbers
a, b ∈ R there is an integer n ∈ N such that b < na.
The Completeness Axiom If E ⊂ R is non empty and
bounded above then E has a supremum.

• Set E has a supremum iff the set −E has an infinum
and inf(−E) = − supE.

• Set E has an infinum iff the set −E has a supremum
and sup(−E) = − infE.

Monotone Property If A ⊂ B are two nonempty subsets of
R and B is bounded above then supA ≤ supB. If B is bounded
below then infA ≥ infB.
Bernouilli’s Inequality Let n > 0, x ≥ −1, then
• (1 + x)n ≤ 1 + nx if n ∈ (0, 1]

• (1 + x)n ≥ 1 + nx if n ∈ [1,∞].

Sequences
A sequence of real numbers (xn) is said to converge to a real
number a if for every ε > 0 there is N ∈ N such that for all
n ≥ N we have |xn − a| < ε.

• Every convergent sequence is bounded.

The Squeeze Theorem Suppose (xn), (yn), (wn) are real
sequences.

• If both xn → a and yn → a (same a!) as n→∞ and if

xn ≤ wn ≤ yn for all n ≥ N0

then wn → a as n→∞.

• If xn → 0 and (yn) is bounded then the product
xnyn → 0 as n→∞.

Theorem 2.2.3 Let E ⊂ R. If E has a finite supremum, i.e. E
is bounded above, then there is a sequence (xn) with xn ∈ E
such that xn → supE as n→∞. An analogous statement
holds if E has finite infinum (i.e. bounded below).
Comparision Theorem for Sequences Suppose (xn), (yn)
are real sequences. If both lim

n→∞
xn and lim

n→∞
yn exist in R∗

and if xn ≤ yn for all n ≥ N for some N ∈ N then
lim

n→∞
xn ≤ lim

n→∞
yn.

Monotone Convergence If (xn) is increasing and bounded
above or if it is decreasing and bounded below, then (xn) is
convergent (and converges to the supremum/infimum of the
set {xn|n ∈ N} respectively.

• lim supxn = lim
N→∞

sup{xn|n > N}

• lim inf xn = lim
N→∞

inf{xn|n > N}

Theorem 2.3.7 Let (xn) be a sequence of real numbers then
lim

n→∞
xn exists as R∗ iff lim supxn = lim inf xn in which case

lim supxn = lim inf xn = lim
n→∞

xn.

Cauchy Sequences
A sequence (xn) of numbers xn ∈ R is said to be Cauchy if
∀ε > 0 there is N ∈ N such that

|xn − xm| < ε ∀n,m ≥ N.

A sequence of real numbers xn is a Cauchy sequence
⇐⇒ (xn) converges.

Subsequences
Theorem 2.4.3 Let (xn) be a sequence of real numbers.

• There exists t ∈ R such that ∀ε > 0 there exist infinitely
many n ∈ N for which |xn − t| < ε ⇐⇒ there exists a
subsequence of (xn) converging to t.

• The sequence is not bounded above (below) ⇐⇒ there
exists a subsequence converging to ∞ (converging to
−∞).

Theorem 2.4.4 Every sequence of real numbers has a
monotone subsequence.
Theorem 2.4.5 Every bounded monotone sequence converges.
Bolzano-Weierstrass Every bounded sequence of real
numbers has a convergent subsequence.

Useful Limits of Sequences
• a

1
n → 1 as n→∞, provided a > 0

• (1 + 1
n
)n → e as n→∞

• (1− 1
n
)n → 1

e
as n→∞

Infinite Series
Let S =

∞∑
k=1

ak be an infinite series with terms ak. For each n

define the partial sum by sn =

n∑
k=1

ak. S is said to converge

⇐⇒ the sequence of partial sums (sn) converges to some
s ∈ R. That is ∀ε > 0 there exists N ∈ N such that if n ≥ N we
have

|sn − s| =

∣∣∣∣∣
n∑

k=1

ak − s

∣∣∣∣∣ < ε.

If the sequence of partial sums diverges then S diverges.

Theorem 3.2.1 Suppose ak ≥ 0 for large k. Then
∞∑

k=1

ak

converges ⇐⇒ (sn) is bounded. That is ∃M > 0 such that∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣ ≤M for all n ∈ N.

Cauchy Criterion The infinite series
∑∞

k=1 ak converges
⇐⇒ ∀ε > 0 there is N ∈ N such that ∀m ≥ n ≥ N we have∣∣∣∣∣

m∑
k=n

ak

∣∣∣∣∣ < ε.

Harmonic Series The series
∞∑

k=1

1

k
diverges.

Divergence Test Let (ak) be a sequence. If ak does not

converge to 0 then
∞∑

k=1

ak diverges.

Geometric Series Let x ∈ R and N ∈ {0, 1, 2, ...}. Then the

series
∞∑

k=N

xk converges ⇐⇒ |x| < 1. In this case

∞∑
k=N

xk =
xN

1− x
. In particular,
∞∑

k=0

xk =
1

1− x
|x| < 1.

Comparison Test Suppose 0 ≤ ak ≤ bk for large k.

• If
∞∑

k=1

bk <∞ then
∞∑

k=1

ak <∞.

• If
∞∑

k=1

ak =∞ then
∞∑

k=1

bk =∞.

Limit Comparison Test Suppose 0 ≤ ak, 0 < bk for large k
and L = limn→∞

an
bn

exists as an extended real number.

• If L ∈ (0,∞) then
∞∑

k=1

ak converges ⇐⇒
∞∑

k=1

bk

converges.

• If L = 0 and
∞∑

k=1

bk converges then
∞∑

k=1

ak converges.

• If L =∞ and
∞∑

k=1

bk diverges then
∞∑

k=1

ak diverges.

Root Test Suppose that r = limk→∞ |ak|
1
k exists. If

• r < 1 then
∞∑

k=1

ak converges absolutely.

• r > 1 then
∞∑

k=1

ak diverges.

Absolute Convergence

• A series converges absolutely if
∞∑

k=1

|ak| <∞.

• A series S converges conditionally if S converges but
∞∑

k=1

|ak| diverges.

• A series converges absolutely ⇐⇒ ∀ε > 0 there is

N ∈ N such that ∀m ≥ n ≥ N ,
∞∑

k=1

|ak| < ε.



• If a series converges absolutely then the series
converges, but not conversely.

Cauchy’s Condensation Test Let
∞∑

k=1

ak be a series of

non-negative terms and assume (ak) is a decreasing sequence.

If
∞∑

k=1

2na2n converges then
∞∑

k=1

ak converges.

Telescopic Series Let (bk) be a convergent sequence.

Then
∞∑

k=1

(bk − bk+1) = b1 − lim
k→∞

bk.

Ratio Test Let ak ∈ R and assume r = limk→∞
|ak+1|
|ak|

exists
in R∗:

• r < 1 =⇒
∞∑

k=1

ak converges absolutely.

• r > 1 =⇒
∞∑

k=1

ak diverges.

Integral Test f : [1,∞)→ R positive and decreasing on
[1,∞). Let ak = f(k) then

∞∑
k=1

ak =

∞∑
k=1

f(k) converges ⇐⇒
∫ ∞
1

f(x)dx <∞.

p-series Test The series
∞∑

k=1

1

kp
is convergent if and only if

p > 1.
Alternating Sign Series Let (ak) be non-negative,

decreasing series such that lim
k→∞

ak = 0. Then
∞∑

k=1

(−1)kak is

convergent.

Continuity
f : dom(f)→ R is continuous if there exists sequence (xn) in
dom(f) s.t. lim

n→∞
xn = a. We have lim

n→∞
f(xn) = f(a).

ε−δ definition: f : dom(f)→ R continuous at a ∈ dom(f) iff

∀ε > 0∃δ : |x− a| < δ =⇒ |f(x)− f(a)| < ε.

• f continuous at a ⇐⇒ limx→a f(x) = f(a).

• f continuous at a ∈ R and g continuous at f(a), then
g ◦ f continuous at a.

Extreme Value Theorem
I ⊂ R closed and bounded and f continuous on I, then
∃xm, xM ∈ I such that
• f(xm) = inf{f(x)|x ∈ I}.
• f(xM ) = sup{f(x)|x ∈ I}.

Lemma 4.2.4: Let I open interval and f : I → R continuous
at a ∈ I and f(a) > 0, then for some δ, ε > 0 we have

f(x) > ε, ∀x ∈ (a− δ, a+ δ).

Intermediate Value Theorem
I non-degenerate interval and f : I → R continuous. Let
a, b ∈ I, a < b then:

∀y0 ∈ (f(a), f(b)) ∃x0 ∈ (a, b) : f(x0) = y0.

Bolzano’s Theorem f continuous on [a, b] s.t. f(a)f(b) < 0,
then ∃c ∈ (a, b) : f(c) = 0.
• f [a, b]→ R strictly increasing such that im(f) is an

interval, then f continuous on [a, b].
• f [a, b]→ R continuous strictly increasing, then
f−1 [f(a), f(b)]→ R continuous strictly increasing.

Limits of Functions
f : dom(f)→ R, a ∈ R∗, then limx→a f(x) = L for L ∈ R∗ if
for every sequence (xn) in dom(f) which converges to a we
have limn→∞ f(xn) = L.
Comparison Theorem for Functions a ∈ R and I open
interval s.t. a ∈ I. If f, g are defined everywhere on I \ {a} and
have limits as x→ a then

f(x) 6 g(x), ∀x ∈ I \ {a} =⇒ lim
x→a

f(x) 6 lim
x→a

g(x).

Differentiability
f : I → R is differentiable on a ∈ R if a ∈ I and

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
h→0

f(x+ h)− f(x)
h

• f differentiable =⇒ f continuous.
• f continuously differentiable on I if f ′ exists and

continuous on I.
Rolle’s Theorem Let a, b ∈ R, a < b. If f continuous on [a, b]
and differentiable on (a, b) and f(a) = f(b), then
∃c ∈ (a, b) : f ′(c) = 0.

Mean Value Theorem
Let a, b ∈ R, a < b. If f continuous on [a, b] and differentiable
on (a, b) then ∃c ∈ (a, b) s.t.

f(b)− f(a) = f ′(c)(b− a).
Generalized Mean Value Theorem If f, g continuous on
[a, b] and differentiable on (a, b) then ∃c ∈ (a, b) s.t.

f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)).

L’Hôpital’s Rule Let a ∈ R∗ and I interval that contains a
or has endpoint a. Let f, g differentiable on I \ {a} and

• ∀x ∈ I \ {a} : g(x) 6= 0, g′(x) 6= 0

• A = lim
x→a

f(x) = lim
x→a

g(x), A ∈ R∗

• B = lim
x→a

f ′(x)

g′(x)
exists with B ∈ R∗

then lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Monotone Functions
Theorem 5.4.3 Let f be injective and continuous on I, then
f is strictly monotone on I and f−1 is continuous and strictly
monotone on f(I).
Inverse Function Theorem Let f be injective and
continuous on open interval I. If a ∈ f(I) and f ′ exists at
f−1(a) and is non-zero, then f−1 differentiable at a and(

f−1
)′

(a) =
1

f ′ (f−1(a))
.

Taylor’s Theorem
Taylor’s Polynomial Let n ∈ N, a, b ∈ R∗, a < b. If
f : (a, b)→ R differentiable n-times at x0 ∈ (a, b), then Taylor’s
polynomial of degree n is

P f,x0
n =

n∑
k=0

f (k)(x0)

k!
(x− x0)k.

Taylor’s Formula Let n ∈ N, a, b ∈ R∗, a < b. If
f : (a, b)→ R and f (n+1) exists on (a, b) then ∀x, x0 ∈ (a, b)
∃c between x, x0 such that

f(x) = P f,x0
n +

f (n+1)(x0)

(n+ 1)!
(x− x0)(n+1).

N.B.: c depends on n, x and x0.

Useful Facts
• The series

∞∑
k=1

(−1)k
1

k
,
∞∑

k=2

(−1)k
1

log k
,
∞∑

k=2

(−1)k
1

k log k

are all convergent (Corollary 3.4.2).

• The radius of convergence of
∞∑

n=1

cn(x− a)n can be

defined as R = 1

lim sup n
√
|cn|

.
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