Statistics Formula Sheet

William A. Bevington

Estimation and MLEs

An estimator T of θ is **unbiased** if:

and **consistent** if:

$$Var(T) \to 0$$
 and
 $\mathbb{E}(T) \to \theta$
as $n \to \infty$

 $\mathbb{E}(T) = \theta,$

for example, $\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n\bar{X}^2 \right)$ is unbiased and consistent.

The maximum likelihood estimation $\hat{\alpha}$ is the solution to the equation

$$\frac{\partial}{\partial \alpha} L(x_1, \dots, x_n; \theta) = \frac{\partial}{\partial \alpha} \prod_{i=1}^n f(x_i; \theta) = 0$$

where $f(x_i; \theta) = \mathbb{P}(X_i = x_i)$ and

Confidence Intervals:

These are the $100(1 - \alpha)$ confidence intervals for various stuff. Define $X_1, \ldots, X_n \sim N(0, 1)$, and remember that you cannot reject ' $H_0: p = p_0$ ' if $p_0 \in (a, b)$ where (a, b) is the confidence interval.

$$\begin{split} \mu; \ \sigma \ \text{known}: \quad \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \\ \mu; \ \sigma \ \text{unknown}: \quad \bar{x} \pm t_{n-1;\alpha/2} \frac{\sigma}{\sqrt{n}} \\ \hat{\beta}: \quad \bar{\beta} \pm t_{n-2;\alpha/2} \times s.e.(\hat{\beta}) \\ \hat{\alpha}: \quad \bar{\alpha} \pm t_{n-2;\alpha/2} \times s.e.(\hat{\alpha}) \\ \hat{\mathbb{E}}(Y_0): \quad (\bar{\alpha} + \bar{\beta}x_0) \pm t_{n-2;\alpha/2} \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)} \\ \hat{Y}_0: \quad (\bar{\alpha} + \bar{\beta}x_0) \pm t_{n-2;\alpha/2} \sqrt{s^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)} \end{split}$$

Critical Regions

Remember that you **reject** H_0 if t, the observed test statistic, is **in** the critical region, ie $t = \frac{\bar{x}-65}{1.2}$ (pg.38 of the notes), reject H_0 if $t \le -1.96 = -z_{\alpha/2}$ or if $t \ge 1.96 = z_{\alpha/2}$.

Type of test	Test Statistic	reject H_0 if:	For use when:
z-test	$ T = \left \frac{X - \mu_0}{\sigma / \sqrt{n}} \right $	$ t \ge z_{\alpha/2}$	σ^2 is known.
one sample t	$ T = \left \frac{X - \mu_0}{S/\sqrt{n}}\right $	$ t \ge t_{n-1;\alpha/2}$	σ^2 is unknown.
paired t	$ T = \left \frac{D}{S/\sqrt{n}}\right $	$ t \ge t_{n-1;\alpha/2}$	data is paired as (X_i, Y_i) .
two sample t	$ T = \left \frac{\bar{X} - \bar{Y}}{S_p / \sqrt{\frac{1}{m} + \frac{1}{m}}} \right $	$ t \ge t_{m+n-2;\alpha/2}$	$\bar{X} \sim N(\mu_X, \frac{\sigma^2}{n})$ and $\bar{Y} \sim N(\mu_Y, \frac{\sigma^2}{m})$
F-test	$ T = \left \frac{rss_0 - rss_1/m}{rss_1/n} \right $	$ t \ge F_{m,n;\alpha/2}$	ANOVA Tests

and p-values are found using: p-value = $\mathbb{P}(|T| \ge t)$

Various Distributional Stuff

Chi-Squared

The chi-squared χ^2 distribution is defined by

$$\sum_{i=1}^{n} Z^{2} = \sum_{i=1}^{n} \left(\frac{Y_{i} - \mu_{i}}{\sigma} \right)^{2} \sim \chi_{n}^{2},$$

where each $Y_i \sim N(\mu_i, \sigma)$, and has the that

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

t-distribution

$$\frac{\bar{X}-\mu}{\sqrt{S^2/n}} = \frac{Z}{\sqrt{Y/(n-1)}} \sim t_{n-1}$$

where $Z = \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$ and $Y = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ are *independent* variables.

F-distribution

Let U and V be rvs with $U \sim \chi^2_{m-1}$ and $V \sim \chi^2_{n-1}$, then

$$\frac{U/m}{V/n} = \frac{(rss_0 - rss_1)/m}{rss_1/n} \sim F_{m,n}$$

where $rss_0 = SS_{Tot}$ and $rss_1 = SS_W$ are residual sums of squares (and $SS_B = rss_0 - rss_1$). Also we have that

$$\frac{S_X^2}{S_Y^2} \sim F_{m-1,n-1}$$

And lastly, if $X \sim t_n$ then $X^2 \sim F_{1,n}$.

Assumptions of linear models

When forming linear models, the assumptions are that the observations:

- are Normally distributed
- are Independent
- have constant variance
- are linearly regressed

ANOVA

When conducting ANOVA tests, the assumptions are that the observations:

- are Normally distributed
- are Independent
- have constant variance
- have expected values dependent only on their groups

What ANOVA test do I use? (WANOVATDIU?)

One-Way if testing blocks and treatments that have single entries, and **Two-Way** if you're concerned with seeing if the blocks and treatments have individual effects on a variable.

\mathbf{LSD}

Remember to ONLY USE LSD's IF YOU REJECT $H_0!$

One-Way:

$$L.S.D. = t_{n-k;\alpha/2} \sqrt{s^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

where n_i and n_j are sample sizes for samples *i* and *j*.

Two-Way: No Replications

For Blocks:

For Treatments:

$$\begin{split} L.S.D. &= t_{(b-1)(k-1);\alpha/2} \sqrt{2\frac{s^2}{k}} \\ L.S.D. &= t_{(b-1)(k-1);\alpha/2} \sqrt{2\frac{s^2}{b}} \end{split}$$

$$L.S.D. = t_{(b-1)(k-1);\alpha/2} \sqrt{}$$

Two-Way: With Replications

For Blocks:

$$L.S.D. = t_{rbk-b-k+1;\alpha/2} \sqrt{2\frac{s^2}{rk}}$$

For Treatments:

$$L.S.D. = t_{rbk-b-k+1;\alpha/2} \sqrt{2\frac{s^2}{rb}}$$

where r is the number of replications per group.