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Useful Properties

Always:

E(aX + b) = aE(X) + b

E(X + Y ) = E(X) + E(Y )

Var(aX + b) = a2Var(X)

Only if independent :

E(XY ) = E(X)E(Y )

Var(X + Y ) = Var(X) + Var(Y )

Var(X − Y ) = Var(X) + Var(Y )

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi)

Sample Mean
Unbiased and consistent estimator of µ.

X̄ =
1

n

n∑
i=1

Xi

Sample Variance

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

 n∑
i=1

X2
i −

1

n

(
n∑
i=1

Xi

)2


• Unbiased and consistent estimator of σ2.

• Since Var(X) = E(X2)− (E(X))2 we have that

Var(X̄) = σ2

n
so we can estimate Var(X̄) by S2

n
.

Sample Covariance and Correlation

Cov(X,Y ) = E(XY )− E(X)E(Y ) (covariance)

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
(correlation)

Sample Covariance:

Sxy =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

=
1

n− 1

[
n∑
i=1

XiYi −
1

n

(
n∑
i=1

Xi

)(
n∑
i=1

Yi

)]

• Unbiased and consistent estimator of Cov(X,Y )

• Sxx and Syy are the sample variances for X and Y ,
recall Cov(X,X) = Var(X).

Sample Correlation:

Rxy =
Sxy

SxSy

Maximum Likelihood Estimators (MLEs)

Assuming the data are independent, the likelihood function is

L(θ;x1, ..., xn) =
n∏
i=1

f(xi; θ).

The log-likelihood is therefore

l(θ;x1, ..., xn) =
n∑
i=1

log f(xi; θ).

• σ̂2 is not the sample variance S2.

• In general MLEs are biased estimators.

• Consistent estimators.

Invariance Property of MLEs: Let θ̂ be the MLE of θ and
g be any function of θ. Then the MLE of g(θ) is g(θ̂).

Properties of the Sample Mean and Variance for
the Normal Distribution

Let X1, .., Xn be independent N(µ, σ2) rvs, then

•
X̄ − µ√
σ2/n

∼ N(0, 1)

•
(n− 1)S2

σ2
∼ χ2

n−1

• X̄ and S2 are independent.

Normal Distribution with Known Variance

Assume X1, ..., Xn ∼ N(µ, σ2) are independent rvs, σ2 known.

Recall X̄ ∼ N(µ, σ
2

n
) then the linear transform

Z =
X̄ − µ√
σ2/n

is such that Z ∼ N(0, 1).

The (1− α)% confidence interval for µ is given by

x̄±
zα/2σ√

n
.

• To calculate zα/2 in R use qnorm(1-alpha/2, 0,1), e.g.
qnorm(0.975, 0,1) for 95% CI.

• CI is larger for smaller sample size.

• Higher % confidence interval results in wider interval.

Normal Distribution with Unknown Variance

Assume X1, ..., Xn ∼ N(µ, σ2) are independent rvs, σ2

unknown. Consider

T =
X̄ − µ√
S2/n

.

χ2 Distribution

Let Z1, .., Zn be independent N(0, 1) rvs and X =
∑n
i=1 Z

2
i .

Then X has chi-squared distribution with n degrees of
freedom, X ∼ χ2

n.

• X is a continuous rv and x ≥ 0.

• Let Z ∼ N(0, 1) and Y = Z2. Then Y ∼ χ2
1.

• Let X ∼ χ2
n and Y ∼ χ2

m, independently. Then
X + Y ∼ χ2

n+m.

• If X ∼ χ2
n then E(X) = n and Var(X) = 2n.

t Distribution

Let X and Y be independent rvs such that Z ∼ N(0, 1) and
Y ∼ χ2

n. Let T = Z√
Y/n

, then T has a t-distribution with n

degrees of freedom, i.e. T ∼ tn.

• T is a continuous rv, t ∈ R.

• As n→∞, tn → N(0, 1).

• If T ∼ tn the E(T ) = 0 and Var(T ) = n/(n− 1) for
n > 2.

• Denote tn;α the upper α quantile, i.e. P(T ≥ tn;α) = α.

• Symmetrical about 0.

X̄ − µ√
S2/n

∼ tn−1

The (1− α)% confidence interval for µ is

x̄± tn−1;α/2
s
√
n
.

• To calculate tn−1;α/2 in R use qt(1-alpha/2, n-1).

• The CI is larger when the variance is unknown.

Hypothesis Testing
• Type I error : Reject H0 when it is in fact true.

• Type II error : Fail to reject H0 when it is false.

• Significance level α: Probability that we reject H0 when
it is true, P(Type I error) = α.

• Power β: Probability that we reject H0 when it is false,
P(Type II error) = 1− β.

• Power function:
β(θ) = P(reject H0 : θ = θ0 when the true value is θ).

• Test statistic: Function of the data chosen, is expected
to take a different range of values when H0 is true than
when it is false.

• Critical region C The set of values of t that lead us to
reject H0.

• p-value is the probability of observing a result at least
as extreme as t if H0 is true.
– p-value small (< α): reject H0.
– p-value large (≥ α): no evidence to reject H0.

Increasing sample size means we are more likely to reject H0 if
it is false.



z-test
X1, ..., Xn independent N(µ, σ2) rvs, σ2 known.

1. H0 : µ = µ0 vs H1 : µ 6= µ0

2. Test statistic: T =
X̄ − µ0
σ/
√
n

, then under H0,

T ∼ N(0, 1).

3. Critical region: |T | =
∣∣∣∣ X̄ − µ0σ/
√
n

∣∣∣∣ ≥ zα/2.

4. p-value: P(|T | ≥ t0) = 2P(T ≥ t0) = 2P(T ≤ −t0)1.

One Sample t-test
X1, ..., Xn independent N(µ, σ2) rvs, σ2 unknown.

1. H0 : µ = µ0 vs H1 : µ 6= µ0

2. Test statistic: T =
X̄ − µ0
S/
√
n

, then under H0, T ∼ tn−1.

3. Critical region: reject H0 if |T | ≥ t0 = tn−1;α/2.

4. p-value: P(|T | ≥ t0) = 2P(T ≥ t0) = 2P(T ≤ −t0)

Paired t-test
Paired data (X1, Y1), ...(Xn, Yn) where the two measurements
are dependent. Consider the difference such that Di = Yi −Xi
for i = 1, ..., n.

Assume Di
iid∼ N(µ, σ2) - observed differences are independent

of each other and observations are from normal distribution
with mean µ and unknown variance σ2.
Reduces to a one-sample t-test.

1. H0 : µ = 0 vs H1 : µ 6= 0

2. Test statistic: T =
D̄

S/
√
n

, then under H0, T ∼ tn−1.

Two Sample t-test
Suppose we have two sets of independent rvs X1, ..., Xn and
Y1, ..., Ym such that Xi ∼ N(µX , σ

2), Yi ∼ N(µy , σ2).

(n− 1)S2
X

σ2
∼ χ2

n−1

(m− 1)S2
Y

σ2
∼ χ2

m−1

Pooled sample variance:

S2
p =

(n− 1)S2
X + (m− 1)S2

Y

m+ n− 2

1. H0 : µX = µY vs H1 : µX 6= µY

2. Test statistic: T =
X̄ − Ȳ

Sp

√
1
m

+ 1
n

, then under H0,

T ∼ tm+n−2.

3. Critical region: reject H0 if |T | ≥ t0 = tm+n−2;α/2.

4. p-value: P(|T | ≥ t0) = 2P(T ≥ t0) = 2P(T ≤ −t0)

F -test for Equality of Variance
Suppose we have two independent normal rvs X1, ..., Xn and
Y1, ..., Ym with variances σ2

X , σ
2
Y .

1. H0 : σ2
X = σ2

Y vs H1 : σ2
X 6= σ2

Y

2. Test statistic: T =
S2
X

S2
Y

, then under H0, F ∼ Fn−1,m−1.

F Distribution

U ∼ χ2
m, V ∼ χ2

n independent rvs. Then X =
U/m

V/n
has an F

distribution with m,n degrees of freedom (X ∼ Fm,n).

• 1/X ∼ Fn,m
• Upper α quantile Fm,n;α is such that

P(X ≥ Fm,n;α) = α, lower quantile
Fm,n;1−α = 1/Fn,m;α.

• pf and qf commands in R

One-sided Tests

H0 : θ = θ0 vs H1 : θ > θ0
H0 : θ = θ0 vs H1 : θ < θ0

Linear Regression
E(Y ) = α+ βx

Least-Squares Estimation

Want to find α̂, β̂ that minimise the sum of squares

S(α, β) =
n∑
i=1

[yi − (α+ βxi)]
2 =

n∑
i=1

ε2i .

α̂ = ȳ − β̂x̄ β̂ =
SXY

SXX

• Requires no assumptions about the distribution.

• α̂, β̂ are rvs, unbiased and consistent estimators of α, β.

Simple Linear Regression
Assume Y1, ..., Yn are independent, normally distributed rvs
with common variance, and have a mean that is a linear
function of the explanatory variable, i.e

Yi
iid∼ N(α+ βxi, σ

2) i = 1, ..., n.

α̂ ∼ N
(
α, σ2

(
1

n
+

x̄2

SXX

))
β̂ ∼ N

(
β,

σ2

SXX

)
S2 =

1

n− 2

n∑
i=1

(Yi − ŷi)2 ŷi = α̂+ β̂xi (fitted value)

• S2 is an unbiased estimator of σ2 with
(n−2)S2

σ2 ∼ χ2
n−2.

• S2 is independent of α̂, β̂ (but α̂, β̂ are not
independent!)

• Standard errors: s.e.(α̂) =
√

Var(α̂), s.e.(β̂) =

√
Var(β̂)

• Confidence intervals:

α̂± tn−2;0.025 × s.e.(α̂)

β̂ ± tn−2;0.025 × s.e.(β̂).

Regression using R

Command lm(y~x), and lm(y~x - 1) for regression through
the origin.

Confidence Interval for E(Y0)

α̂+ β̂x0 ± tn−2;0.025

√
s2
(

1

n
+

(x0 − x̄)2

SXX

)
• Interval for the predicted expectation - they reflect

uncertainty in our estimates of average observation.

Prediction Interval for Y0

α̂+ β̂x0 ± tn−2;0.025

√
s2
(

1 +
1

n
+

(x0 − x̄)2

SXX

)
• Prediction for a single observation as a function of the

explanatory variable - we would expect 95% of
observations to lie within this interval.

• Prediction intervals for Y0 are wider than confidence
intervals for E(Y0) as they take into account uncertainty
relating to the expected value and individual variability.

• Confidence and prediction intervals become wider as x0
moves away from x̄.

• Do not extrapolate beyond the range of data as this is
might be very inaccurate.

Multiple Regression
Assume Yi ∼ N(α+ β1x1i + ..+ βkxki, σ

2) for i = 1, ..., n with
Y1, ..., Yn independent, i.e. the observations are independent,
normally distributed, have constant variance and the
expectations are linearly related to explanatory variables.

E(Y ) = α+ β1x1 + ...+ βkxk

The least-squares estimates α̂, β̂1, ..., β̂k are values that
minimise

S(α, β1, ..., βk) =
n∑
i=1

[yi − (α+ β1ixi + ...+ βkxki)]
2.

S2 =
1

n− (k + 1)

n∑
i=1

[Yi − (α̂+ β̂1x1i + ...+ β̂kxki)]
2

Confidence intervals:

α̂± tn−(k+1);0.025 × s.e.(α̂)

β̂j ± tn−(k+1);0.025 × s.e.(β̂j).

Residual sum of squares (rss):
n∑
i=1

(Yi − ŷi)2 .

1t0 is the upper quantile, −t0 is the lower quantile.



F -test for Model Comparison

Used to see whether or not the full model gives a significantly
better fit than a submodel.
H0 : the specified regression coefficients are zero
H1 : there is no restriction on the regression coefficients

Analysis of Variance
One-way ANOVA
Assume Yij ∼ N(µi, σ

2) for i = 1, ..., k and j = 1, ..., ni
independently for all Yij , i.e. the observations are from a
normal distribution, independent, have a common variance
and a mean only dependent on the group they are member of.

H0 : µ1 = ... = µk vs H1 : µ1, ..., µk are not all equal.

Source d.f. SS MS F p
Between k − 1 SSB MSB F p

Error n− k SSW MSW
Total n− 1 SSTot

In R, use anova(lm( )). Need to express the explanatory
variable using as.factor.

SSTot = SSB + SSW
Between groups mean square:

MSB =
SSB

k − 1

Within groups mean square:

MSW =
SSW

n− k
= s2 (residual mean square),

where s is the residual standard error.
If H0 is true then F = MSB

MSW
∼ Fk−1,n−k.

Least Significant Differences (LSD)

tn−k;α/2

√
s2
(

1

ni
+

1

nj

)
or tn−k;α/2

√
2s2

m

if the samples are of equal size.

Two-way ANOVA
Assume Yij ∼ N(µij , σ

2) where µij = αi + βj , i.e. the
observations are from a normal distribution, independent, have
a common variance and a mean that is a function of effect of
each group.
Consider b blocks, k treatments, n = bk.
Test 1 (block effect):

H0 : α1 = ... = αb vs H1 : α1, ..., αb are not all equal

Test 2 (treatment effect):

H0 : β1 = ... = βk vs H1 : β1, ..., βk are not all equal

Source d.f. SS MS F p
Blocks b− 1 SSB MSB FB pB

Treatment k − 1 SST MST FT pT
Error (b− 1)(k − 1) SSW MSW
Total bk − 1 SSTot

SSTot = SSB + SST + SSW

MSB =
SSB

b− 1
MST =

SST

k − 1

MSW =
SSW

(b− 1)(k − 1)

FB =
MSB

MSW
FT =

MST

MSW

LSD for two-way ANOVA

Block effect:

t(b−1)(k−1);α/2

√
2
s2

k

Treatment effect:

t(b−1)(k−1);α/2

√
2
s2

b

Two-way ANOVA with r replications

Source d.f. SS MS F p
Blocks b− 1 SSB MSB FB pB

Treatment k − 1 SST MST FT pT
Error rbk − b− k + 1 SSW MSW
Total rbk − 1 SSTot

LSD for two-way ANOVA with replications

Block effect:

trbk−b−k+1;α/2

√
2
s2

rk

Treatment effect:

trbk−b−k+1;α/2

√
2
s2

rb
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