Statistics Marie Biolková

Useful Properties

Always:

$$\mathbb{E}(aX+b) = a\mathbb{E}(X) + b$$
$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$
$$\operatorname{Var}(aX+b) = a^{2}\operatorname{Var}(X)$$

Only if *independent*:

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$
$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$
$$\operatorname{Var}(X-Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$
$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

Sample Mean

Unbiased and consistent estimator of $\mu.$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample Variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right)$$

- Unbiased and consistent estimator of σ^2 .
- Since $\operatorname{Var}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$ we have that $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$ so we can estimate $\operatorname{Var}(\bar{X})$ by $\frac{S^2}{n}$.

Sample Covariance and Correlation

$$\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \quad \text{(covariance)}$$
$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} \quad \text{(correlation)}$$

Sample Covariance:

$$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} X_i Y_i - \frac{1}{n} \left(\sum_{i=1}^{n} X_i \right) \left(\sum_{i=1}^{n} Y_i \right) \right]$$

- Unbiased and consistent estimator of Cov(X, Y)
- S_{xx} and S_{yy} are the sample variances for X and Y, recall Cov(X, X) = Var(X).

Sample Correlation:

$$R_{xy} = \frac{S_{xy}}{S_x S_y}$$

Maximum Likelihood Estimators (MLEs)

Assuming the data are independent, the *likelihood function* is

$$L(\theta; x_1, ..., x_n) = \prod_{i=1}^n f(x_i; \theta)$$

The log-likelihood is therefore

$$l(\theta; x_1, ..., x_n) = \sum_{i=1}^n \log f(x_i; \theta).$$

- $\hat{\sigma}^2$ is not the sample variance S^2 .
- In general MLEs are biased estimators.
- Consistent estimators.

Invariance Property of MLEs: Let $\hat{\theta}$ be the MLE of θ and g be any function of θ . Then the MLE of $g(\theta)$ is $g(\hat{\theta})$.

Properties of the Sample Mean and Variance for the Normal Distribution

Let $X_1, ..., X_n$ be independent $N(\mu, \sigma^2)$ rvs, then

•
$$\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

• $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

• \bar{X} and S^2 are independent.

Normal Distribution with Known Variance

Assume $X_1, ..., X_n \sim N(\mu, \sigma^2)$ are independent rvs, σ^2 known. Recall $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ then the linear transform

$$Z = \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}}$$

is such that $Z \sim N(0, 1)$. The $(1 - \alpha)\%$ confidence interval for μ is given by

$$\bar{x} \pm \frac{z_{\alpha/2}\sigma}{\sqrt{n}}.$$

- To calculate $z_{\alpha/2}$ in R use qnorm(1-alpha/2, 0,1), e.g. qnorm(0.975, 0,1) for 95% CI.
- CI is larger for smaller sample size.
- Higher % confidence interval results in wider interval.

Normal Distribution with Unknown Variance

Assume $X_1,...,X_n \sim N(\mu,\sigma^2)$ are independent rvs, σ^2 unknown. Consider

$$T = \frac{\bar{X} - \mu}{\sqrt{S^2/n}}.$$

χ^2 Distribution

Let $Z_1, ..., Z_n$ be independent N(0, 1) rvs and $X = \sum_{i=1}^n Z_i^2$. Then X has chi-squared distribution with n degrees of freedom, $X \sim \chi_n^2$.

- X is a continuous rv and $x \ge 0$.
- Let $Z \sim N(0, 1)$ and $Y = Z^2$. Then $Y \sim \chi_1^2$.
- Let $X \sim \chi_n^2$ and $Y \sim \chi_m^2$, independently. Then $X + Y \sim \chi_{n+m}^2$.
- If $X \sim \chi_n^2$ then $\mathbb{E}(X) = n$ and $\operatorname{Var}(X) = 2n$.

t Distribution

Let X and Y be independent rvs such that $Z \sim N(0,1)$ and $Y \sim \chi_n^2$. Let $T = \frac{Z}{\sqrt{Y/n}}$, then T has a t-distribution with n degrees of freedom, i.e. $T \sim t_n$.

- T is a continuous rv, $t \in \mathbb{R}$.
- As $n \to \infty, t_n \to N(0, 1)$.
- If $T \sim t_n$ the $\mathbb{E}(T) = 0$ and $\operatorname{Var}(T) = n/(n-1)$ for n > 2.
- Denote $t_{n;\alpha}$ the upper α quantile, i.e. $\mathbb{P}(T \ge t_{n;\alpha}) = \alpha$.
- Symmetrical about 0.

$$\frac{\bar{X} - \mu}{\sqrt{S^2/n}} \sim t_{n-1}$$

The $(1 - \alpha)$ % confidence interval for μ is

$$\bar{x} \pm t_{n-1;\alpha/2} \frac{s}{\sqrt{n}}$$

- To calculate $t_{n-1;\alpha/2}$ in R use qt(1-alpha/2, n-1).
- The CI is larger when the variance is unknown.

Hypothesis Testing

- Type I error: Reject H_0 when it is in fact true.
- Type II error: Fail to reject H_0 when it is false.
- Significance level α : Probability that we reject H_0 when it is true, $\mathbb{P}(\text{Type I error}) = \alpha$.
- Power β : Probability that we reject H_0 when it is false, $\mathbb{P}(\text{Type II error}) = 1 - \beta.$
- Power function: $\beta(\theta) = \mathbb{P}(\text{reject } H_0 : \theta = \theta_0 \text{ when the true value is } \theta).$
- Test statistic: Function of the data chosen, is expected to take a different range of values when H_0 is true than when it is false.
- Critical region C The set of values of t that lead us to reject H_0 .
- *p*-value is the probability of observing a result at least as extreme as t if H_0 is true.
 - *p*-value small (< α): reject H_0 .
 - *p*-value large ($\geq \alpha$): no evidence to reject H_0 .

Increasing sample size means we are more likely to reject H_0 if it is false.

z-test

 $X_1, ..., X_n$ independent $N(\mu, \sigma^2)$ rvs, σ^2 known.

1.
$$H_0: \mu = \mu_0$$
 vs $H_1: \mu \neq \mu_0$
2. Test statistic: $T = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$, then under H_0 ,
 $T \sim N(0, 1)$.

3. Critical region:
$$|T| = \left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\alpha/2}.$$

4. *p*-value:
$$\mathbb{P}(|T| \ge t_0) = 2\mathbb{P}(T \ge t_0) = 2\mathbb{P}(T \le -t_0)^1$$
.

One Sample *t*-test

 $X_1, ..., X_n$ independent $N(\mu, \sigma^2)$ rvs, σ^2 unknown.

1.
$$H_0: \mu = \mu_0$$
 vs $H_1: \mu \neq \mu_0$
2. Test statistic: $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$, then under $H_0, T \sim t_{n-1}$.

- 3. Critical region: reject H_0 if $|T| \ge t_0 = t_{n-1;\alpha/2}$.
- 4. *p*-value: $\mathbb{P}(|T| \ge t_0) = 2\mathbb{P}(T \ge t_0) = 2\mathbb{P}(T \le -t_0)$

Paired *t*-test

Paired data $(X_1, Y_1), ..., (X_n, Y_n)$ where the two measurements are dependent. Consider the difference such that $D_i = Y_i - X_i$ for i = 1, ..., n.

Assume $D_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ - observed differences are independent of each other and observations are from normal distribution with mean μ and unknown variance σ^2 . Reduces to a one-sample *t*-test.

1.
$$H_0: \mu = 0$$
 vs $H_1: \mu \neq 0$
2. Test statistic: $T = \frac{\bar{D}}{S/\sqrt{n}}$, then under $H_0, T \sim t_{n-1}$.

Two Sample *t*-test

Suppose we have two sets of independent rvs $X_1, ..., X_n$ and $Y_1, ..., Y_m$ such that $X_i \sim N(\mu_X, \sigma^2), Y_i \sim N(\mu_y, \sigma^2)$.

$$\frac{(n-1)S_X^2}{\sigma^2} \sim \chi_{n-1}^2 \quad \frac{(m-1)S_Y^2}{\sigma^2} \sim \chi_{m-1}^2$$

Pooled sample variance:

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{m+n-2}$$

1. $H_0: \mu_X = \mu_Y$ vs $H_1: \mu_X \neq \mu_Y$

2. Test statistic:
$$T = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}}$$
, then under H_0 ,
 $T \sim t_{m+n-2}$.

- 3. Critical region: reject H_0 if $|T| \ge t_0 = t_{m+n-2;\alpha/2}$.
- 4. *p*-value: $\mathbb{P}(|T| \ge t_0) = 2\mathbb{P}(T \ge t_0) = 2\mathbb{P}(T \le -t_0)$
- $^{1}t_{0}$ is the upper quantile, $-t_{0}$ is the lower quantile.

F-test for Equality of Variance

Suppose we have two independent normal rvs $X_1, ..., X_n$ and $Y_1, ..., Y_m$ with variances σ_X^2, σ_Y^2 . 1. $H_0: \sigma_X^2 = \sigma_Y^2$ vs $H_1: \sigma_X^2 \neq \sigma_Y^2$ S_2^2 .

2. Test statistic: $T = \frac{S_X^2}{S_Y^2}$, then under H_0 , $F \sim F_{n-1,m-1}$.

F Distribution

 $U \sim \chi_m^2, V \sim \chi_n^2$ independent rvs. Then $X = \frac{U/m}{V/n}$ has an F distribution with m, n degrees of freedom $(X \sim F_{m,n})$.

- $1/X \sim F_{n,m}$
- Upper α quantile $F_{m,n;\alpha}$ is such that $\mathbb{P}(X \ge F_{m,n;\alpha}) = \alpha$, lower quantile $F_{m,n;1-\alpha} = 1/F_{n,m;\alpha}$.
- pf and qf commands in R

One-sided Tests

 $\begin{array}{ll} H_0: \theta = \theta_0 & \mathrm{vs} & H_1: \theta > \theta_0 \\ H_0: \theta = \theta_0 & \mathrm{vs} & H_1: \theta < \theta_0 \end{array}$

Linear Regression

 $\mathbb{E}(Y) = \alpha + \beta x$

Least-Squares Estimation

Want to find $\hat{\alpha}, \hat{\beta}$ that minimise the sum of squares

$$S(\alpha,\beta) = \sum_{i=1}^{n} [y_i - (\alpha + \beta x_i)]^2 = \sum_{i=1}^{n} \epsilon_i^2.$$
$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \qquad \hat{\beta} = \frac{S_{XY}}{S_{XX}}$$

- Requires no assumptions about the distribution.
- $\hat{\alpha}, \hat{\beta}$ are rvs, unbiased and consistent estimators of α, β .

Simple Linear Regression

Assume $Y_1, ..., Y_n$ are independent, normally distributed rvs with common variance, and have a mean that is a linear function of the explanatory variable, i.e

$$Y_i \stackrel{\text{iid}}{\sim} N(\alpha + \beta x_i, \sigma^2) \quad i = 1, ..., n.$$

$$\begin{split} \hat{\alpha} &\sim N\left(\alpha, \sigma^2\left(\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}\right)\right) \qquad \hat{\beta} \sim N\left(\beta, \frac{\sigma^2}{S_{XX}}\right) \\ S^2 &= \frac{1}{n-2}\sum_{i=1}^n (Y_i - \hat{y_i})^2 \qquad \hat{y_i} = \hat{\alpha} + \hat{\beta}x_i \text{ (fitted value)} \end{split}$$

- S^2 is an unbiased estimator of σ^2 with $\frac{(n-2)S^2}{\sigma^2} \sim \chi^2_{n-2}$.
- S^2 is independent of $\hat{\alpha}, \hat{\beta}$ (but $\hat{\alpha}, \hat{\beta}$ are not independent!)
- Standard errors: s.e. $(\hat{\alpha}) = \sqrt{\operatorname{Var}(\hat{\alpha})}$, s.e. $(\hat{\beta}) = \sqrt{\operatorname{Var}(\hat{\beta})}$

• Confidence intervals:

$$\hat{\alpha} \pm t_{n-2;0.025} \times s.e.(\hat{\alpha})$$
$$\hat{\beta} \pm t_{n-2;0.025} \times s.e.(\hat{\beta}).$$

Regression using ${\tt R}$

Command $lm(y^x)$, and $lm(y^x - 1)$ for regression through the origin.

Confidence Interval for $\mathbb{E}(Y_0)$

$$\hat{\alpha} + \hat{\beta}x_0 \pm t_{n-2;0.025} \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$$

• Interval for the predicted expectation - they reflect uncertainty in our estimates of average observation.

Prediction Interval for Y_0

$$\hat{\alpha} + \hat{\beta}x_0 \pm t_{n-2;0.025} \sqrt{s^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$$

- Prediction for a single observation as a function of the explanatory variable we would expect 95% of observations to lie within this interval.
- Prediction intervals for Y₀ are wider than confidence intervals for E(Y₀) as they take into account uncertainty relating to the expected value and individual variability.
- Confidence and prediction intervals become wider as x_0 moves away from \bar{x} .
- Do not extrapolate beyond the range of data as this is might be very inaccurate.

Multiple Regression

Assume $Y_i \sim N(\alpha + \beta_1 x_{1i} + ... + \beta_k x_{ki}, \sigma^2)$ for i = 1, ..., n with $Y_1, ..., Y_n$ independent, i.e. the observations are independent, normally distributed, have constant variance and the expectations are linearly related to explanatory variables.

$$\mathbb{E}(Y) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

The least-squares estimates $\hat{\alpha}, \hat{\beta}_1, ..., \hat{\beta}_k$ are values that minimise

$$S(\alpha, \beta_1, ..., \beta_k) = \sum_{i=1}^{n} [y_i - (\alpha + \beta_{1i}x_i + ... + \beta_k x_{ki})]^2.$$

$$S^{2} = \frac{1}{n - (k+1)} \sum_{i=1}^{n} [Y_{i} - (\hat{\alpha} + \hat{\beta}_{1}x_{1i} + \dots + \hat{\beta}_{k}x_{ki})]^{2}$$

Confidence intervals:

$$\hat{\alpha} \pm t_{n-(k+1);0.025} \times s.e.(\hat{\alpha}) \\ \hat{\beta}_{j} \pm t_{n-(k+1);0.025} \times s.e.(\hat{\beta}_{j}).$$

Residual sum of squares (rss):
$$\sum_{i=1}^{n} (Y_i - \hat{y}_i)^2$$

F-test for Model Comparison

Used to see whether or not the full model gives a significantly better fit than a submodel.

 H_0 : the specified regression coefficients are zero

 ${\cal H}_1$: there is no restriction on the regression coefficients

Analysis of Variance One-way ANOVA

Assume $Y_{ij} \sim N(\mu_i, \sigma^2)$ for i = 1, ..., k and $j = 1, ..., n_i$ independently for all Y_{ij} , i.e. the observations are from a normal distribution, independent, have a common variance and a mean only dependent on the group they are member of.

H_0 :	$\mu_1 = \ldots = \mu$	u_k vs	$H_1:\mu_1,$	\dots, μ_k are	e not	all equal.
	Source	d.f.	\mathbf{SS}	$_{\mathrm{MS}}$	\mathbf{F}	р
	Between	k-1	SS_B	MS_B	F	p
	Error	n-k	SS_W	MS_W		
	Total	n-1	SS_{Tot}			

In R, use ${\tt anova(lm())}.$ Need to express the explanatory variable using <code>as.factor</code>.

$$SS_{Tot} = SS_B + SS_W$$

Between groups mean square:

$$MS_B = \frac{SS_B}{k-1}$$

Within groups mean square:

$$MS_W = \frac{SS_W}{n-k} = s^2 \quad \text{(residual mean square)},$$
 where s is the residual standard error.

If H_0 is true then $F = \frac{MS_B}{MS_W} \sim F_{k-1,n-k}$.

Least Significant Differences (LSD)

$$t_{n-k;\alpha/2}\sqrt{s^2\left(rac{1}{n_i}+rac{1}{n_j}
ight)} ext{ or } t_{n-k;\alpha/2}\sqrt{rac{2s^2}{m}}$$

if the samples are of equal size.

Two-way ANOVA

Assume $Y_{ij} \sim N(\mu_{ij}, \sigma^2)$ where $\mu_{ij} = \alpha_i + \beta_j$, i.e. the observations are from a normal distribution, independent, have a common variance and a mean that is a function of effect of each group.

Consider b blocks, k treatments, n = bk.

Test 1 (block effect):

$$H_0: \alpha_1 = \ldots = \alpha_b$$
 vs $H_1: \alpha_1, \ldots, \alpha_b$ are not all equal

Test 2 (treatment effect):

$$H_0: \beta_1 = \ldots = \beta_k$$
 vs $H_1: \beta_1, \ldots, \beta_k$ are not all equal

Source	d.f.	\mathbf{SS}	MS	\mathbf{F}	р
Blocks	b - 1	SS_B	MS_B	F_B	p_B
Treatment	k-1	SS_T	MS_T	F_T	p_T
Error	(b-1)(k-1)	SS_W	MS_W		
Total	bk-1	SS_{Tot}			

$$SS_{Tot} = SS_B + SS_T + SS_W$$

$$MS_B = \frac{SS_B}{b-1}$$

$$MS_W = \frac{SS_W}{(b-1)(k-1)}$$

$$F_B = \frac{MS_B}{MS_W}$$

$$F_T = -$$

LSD for two-way ANOVA

Block effect:

$$\frac{1}{k}(b-1)(k-1);\alpha/2\sqrt{2\frac{s^2}{k}}$$

Treatment effect:

$$t_{(b-1)(k-1);\alpha/2}\sqrt{2\frac{s^2}{b}}$$

Two-way ANOVA with r replications

Source	d.f.	\mathbf{SS}	MS	\mathbf{F}	р
Blocks	b - 1	SS_B	MS_B	F_B	p_B
Treatment	k-1	SS_T	MS_T	F_T	p_T
Error	rbk - b - k + 1	SS_W	MS_W		
Total	rbk-1	SS_{Tot}			

LSD for two-way ANOVA with replications

Block effect:

 $\frac{SS_T}{k-1}$

 $\frac{MS_T}{MS_W}$

$$t_{rbk-b-k+1;\alpha/2}\sqrt{2rac{s^2}{rk}}$$

Treatment effect:

$$t_{rbk-b-k+1;\alpha/2} \sqrt{2\frac{s^2}{rb}}$$