Statistics

Marie Biolková

Useful Properties

Always:

$$
\begin{array}{r}
\mathbb{E}(a X+b)=a \mathbb{E}(X)+b \\
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y) \\
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
\end{array}
$$

Only if independent:

$$
\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)
$$

$$
\begin{array}{r}
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \\
\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \\
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
\end{array}
$$

Sample Mean

Unbiased and consistent estimator of μ.

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Sample Variance

$S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)$

- Unbiased and consistent estimator of σ^{2}.
- Since $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}$ we have that
$\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$ so we can estimate $\operatorname{Var}(\bar{X})$ by $\frac{S^{2}}{n}$.

Sample Covariance and Correlation

$$
\begin{array}{rr}
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y) & \text { (covariance) } \\
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} & \text { (correlation) }
\end{array}
$$

Sample Covariance:

$$
\begin{aligned}
S_{x y} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} X_{i} Y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)\right]
\end{aligned}
$$

- Unbiased and consistent estimator of $\operatorname{Cov}(X, Y)$
- $S_{x x}$ and $S_{y y}$ are the sample variances for X and Y, recall $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.
Sample Correlation:

$$
R_{x y}=\frac{S_{x y}}{S_{x} S_{y}}
$$

Maximum Likelihood Estimators (MLEs)

Assuming the data are independent, the likelihood function is

$$
L\left(\theta ; x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

The log-likelihood is therefore

$$
l\left(\theta ; x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \log f\left(x_{i} ; \theta\right)
$$

- $\hat{\sigma}^{2}$ is not the sample variance S^{2}.
- In general MLEs are biased estimators.
- Consistent estimators.

Invariance Property of MLEs: Let $\hat{\theta}$ be the MLE of θ and g be any function of θ. Then the MLE of $g(\theta)$ is $g(\hat{\theta})$.

Properties of the Sample Mean and Variance for the Normal Distribution
Let $X_{1}, . ., X_{n}$ be independent $N\left(\mu, \sigma^{2}\right)$ rvs, then

- $\frac{\bar{X}-\mu}{\sqrt{\sigma^{2} / n}} \sim N(0,1)$
- $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$
- \bar{X} and S^{2} are independent.

Normal Distribution with Known Variance

Assume $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ are independent rvs, σ^{2} known Recall $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ then the linear transform

$$
Z=\frac{\bar{X}-\mu}{\sqrt{\sigma^{2} / n}}
$$

is such that $Z \sim N(0,1)$.
The $(1-\alpha) \%$ confidence interval for μ is given by

$$
\bar{x} \pm \frac{z_{\alpha / 2} \sigma}{\sqrt{n}}
$$

- To calculate $z_{\alpha / 2}$ in R use qnorm(1-alpha/2, 0,1), e.g. qnorm ($0.975,0,1$) for 95% CI.
- CI is larger for smaller sample size.
- Higher \% confidence interval results in wider interval.

Normal Distribution with Unknown Variance

Assume $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ are independent rvs, σ^{2} unknown. Consider

$$
T=\frac{\bar{X}-\mu}{\sqrt{S^{2} / n}}
$$

χ^{2} Distribution

Let $Z_{1}, . ., Z_{n}$ be independent $N(0,1)$ rvs and $X=\sum_{i=1}^{n} Z_{i}^{2}$. Then X has chi-squared distribution with n degrees of freedom, $X \sim \chi_{n}^{2}$.

- X is a continuous rv and $x \geq 0$.
- Let $Z \sim N(0,1)$ and $Y=Z^{2}$. Then $Y \sim \chi_{1}^{2}$.
- Let $X \sim \chi_{n}^{2}$ and $Y \sim \chi_{m}^{2}$, independently. Then $X+Y \sim \chi_{n+m}^{2}$.
- If $X \sim \chi_{n}^{2}$ then $\mathbb{E}(X)=n$ and $\operatorname{Var}(X)=2 n$.

t Distribution

Let X and Y be independent rvs such that $Z \sim N(0,1)$ and $Y \sim \chi_{n}^{2}$. Let $T=\frac{Z}{\sqrt{Y / n}}$, then T has a t-distribution with n degrees of freedom, i.e. $T \sim t_{n}$.

- T is a continuous $r v, t \in \mathbb{R}$.
- As $n \rightarrow \infty, t_{n} \rightarrow N(0,1)$.
- If $T \sim t_{n}$ the $\mathbb{E}(T)=0$ and $\operatorname{Var}(T)=n /(n-1)$ for $n>2$.
- Denote $t_{n ; \alpha}$ the upper α quantile, i.e. $\mathbb{P}\left(T \geq t_{n ; \alpha}\right)=\alpha$.
- Symmetrical about 0 .

$$
\frac{\bar{X}-\mu}{\sqrt{S^{2} / n}} \sim t_{n-1}
$$

The $(1-\alpha) \%$ confidence interval for μ is

$$
\bar{x} \pm t_{n-1 ; \alpha / 2} \frac{s}{\sqrt{n}}
$$

- To calculate $t_{n-1 ; \alpha / 2}$ in R use qt(1-alpha/2, $\mathrm{n}-1$).
- The CI is larger when the variance is unknown.

Hypothesis Testing

- Type I error: Reject H_{0} when it is in fact true.
- Type II error: Fail to reject H_{0} when it is false.
- Significance level α : Probability that we reject H_{0} when it is true, \mathbb{P} (Type I error) $=\alpha$.
- Power β : Probability that we reject H_{0} when it is false, $\mathbb{P}($ Type II error $)=1-\beta$.
- Power function:
$\beta(\theta)=\mathbb{P}\left(\right.$ reject $H_{0}: \theta=\theta_{0}$ when the true value is $\left.\theta\right)$.
- Test statistic: Function of the data chosen, is expected to take a different range of values when H_{0} is true than when it is false.
- Critical region C The set of values of t that lead us to reject H_{0}.
- p-value is the probability of observing a result at least as extreme as t if H_{0} is true.
- p-value small $(<\alpha)$: reject H_{0}.
- p-value large $(\geq \alpha)$: no evidence to reject H_{0}.

Increasing sample size means we are more likely to reject H_{0} if it is false.

z-test

X_{1}, \ldots, X_{n} independent $N\left(\mu, \sigma^{2}\right)$ rvs, σ^{2} known.

1. $H_{0}: \mu=\mu_{0} \quad$ vs $\quad H_{1}: \mu \neq \mu_{0}$
2. Test statistic: $T=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}$, then under H_{0},

$$
T \sim N(0,1) .
$$

3. Critical region: $|T|=\left|\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}\right| \geq z_{\alpha / 2}$.
4. p-value: $\mathbb{P}\left(|T| \geq t_{0}\right)=2 \mathbb{P}\left(T \geq t_{0}\right)=2 \mathbb{P}\left(T \leq-t_{0}\right) \sqrt{1}$

One Sample t-test

X_{1}, \ldots, X_{n} independent $N\left(\mu, \sigma^{2}\right)$ rvs, σ^{2} unknown.

1. $H_{0}: \mu=\mu_{0} \quad$ vs $H_{1}: \mu \neq \mu_{0}$
2. Test statistic: $T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}$, then under $H_{0}, T \sim t_{n-1}$.
3. Critical region: reject H_{0} if $|T| \geq t_{0}=t_{n-1 ; \alpha / 2}$.
4. p-value: $\mathbb{P}\left(|T| \geq t_{0}\right)=2 \mathbb{P}\left(T \geq t_{0}\right)=2 \mathbb{P}\left(T \leq-t_{0}\right)$

Paired t-test

Paired data $\left(X_{1}, Y_{1}\right), \ldots\left(X_{n}, Y_{n}\right)$ where the two measurements are dependent. Consider the difference such that $D_{i}=Y_{i}-X_{i}$ for $i=1, \ldots, n$.
Assume $D_{i} \stackrel{\text { iid }}{\sim} N\left(\mu, \sigma^{2}\right)$ - observed differences are independent of each other and observations are from normal distribution with mean μ and unknown variance σ^{2}.
Reduces to a one-sample t-test.

1. $H_{0}: \mu=0$ vs $H_{1}: \mu \neq 0$
2. Test statistic: $T=\frac{\bar{D}}{S / \sqrt{n}}$, then under $H_{0}, T \sim t_{n-1}$.

Two Sample t-test

Suppose we have two sets of independent rvs X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} such that $X_{i} \sim N\left(\mu_{X}, \sigma^{2}\right), Y_{i} \sim N\left(\mu_{y}, \sigma^{2}\right)$.

$$
\frac{(n-1) S_{X}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \quad \frac{(m-1) S_{Y}^{2}}{\sigma^{2}} \sim \chi_{m-1}^{2}
$$

Pooled sample variance:

$$
S_{p}^{2}=\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{m+n-2}
$$

1. $H_{0}: \mu_{X}=\mu_{Y} \quad$ vs $\quad H_{1}: \mu_{X} \neq \mu_{Y}$
2. Test statistic: $T=\frac{\bar{X}-\bar{Y}}{S_{p} \sqrt{\frac{1}{m}+\frac{1}{n}}}$, then under H_{0},

$$
T \sim t_{m+n-2}
$$

3. Critical region: reject H_{0} if $|T| \geq t_{0}=t_{m+n-2 ; \alpha / 2}$.
4. p-value: $\mathbb{P}\left(|T| \geq t_{0}\right)=2 \mathbb{P}\left(T \geq t_{0}\right)=2 \mathbb{P}\left(T \leq-t_{0}\right)$
[^0]
F-test for Equality of Variance

Suppose we have two independent normal rvs X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} with variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$.

1. $H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2}$ vs $H_{1}: \sigma_{X}^{2} \neq \sigma_{Y}^{2}$
2. Test statistic: $T=\frac{S_{X}^{2}}{S_{Y}^{2}}$, then under $H_{0}, F \sim F_{n-1, m-1}$.

F Distribution

$U \sim \chi_{m}^{2}, V \sim \chi_{n}^{2}$ independent rvs. Then $X=\frac{U / m}{V / n}$ has an F distribution with m, n degrees of freedom $\left(X \sim F_{m, n}\right)$.

- $1 / X \sim F_{n, m}$
- Upper α quantile $F_{m, n ; \alpha}$ is such that $\mathbb{P}\left(X \geq F_{m, n ; \alpha}\right)=\alpha$, lower quantile $F_{m, n ; 1-\alpha}=1 / F_{n, m ; \alpha}$.
- pf and qf commands in R

One-sided Tests

$H_{0}: \theta=\theta_{0} \quad$ vs $\quad H_{1}: \theta>\theta_{0}$
$H_{0}: \theta=\theta_{0} \quad$ vs $\quad H_{1}: \theta<\theta_{0}$

Linear Regression

$$
\mathbb{E}(Y)=\alpha+\beta x
$$

Least-Squares Estimation

Want to find $\hat{\alpha}, \hat{\beta}$ that minimise the sum of squares

$$
\begin{gathered}
S(\alpha, \beta)=\sum_{i=1}^{n}\left[y_{i}-\left(\alpha+\beta x_{i}\right)\right]^{2}=\sum_{i=1}^{n} \epsilon_{i}^{2} . \\
\hat{\alpha}=\bar{y}-\hat{\beta} \bar{x} \quad \hat{\beta}=\frac{S_{X Y}}{S_{X X}}
\end{gathered}
$$

- Requires no assumptions about the distribution.
- $\hat{\alpha}, \hat{\beta}$ are rvs, unbiased and consistent estimators of α, β.

Simple Linear Regression

Assume Y_{1}, \ldots, Y_{n} are independent, normally distributed rvs with common variance, and have a mean that is a linear function of the explanatory variable, i.e
$Y_{i} \stackrel{\text { iid }}{\sim} N\left(\alpha+\beta x_{i}, \sigma^{2}\right) \quad i=1, \ldots, n$.

$$
\begin{aligned}
\hat{\alpha} & \sim N\left(\alpha, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{X X}}\right)\right) \quad \hat{\beta} \sim N\left(\beta, \frac{\sigma^{2}}{S_{X X}}\right) \\
S^{2} & =\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-\hat{y_{i}}\right)^{2} \quad \hat{y}_{i}=\hat{\alpha}+\hat{\beta} x_{i}(\text { fitted value })
\end{aligned}
$$

- S^{2} is an unbiased estimator of σ^{2} with $\frac{(n-2) S^{2}}{\sigma^{2}} \sim \chi_{n-2}^{2}$.
- S^{2} is independent of $\hat{\alpha}, \hat{\beta}$ (but $\hat{\alpha}, \hat{\beta}$ are not independent!)
- Standard errors: s.e. $(\hat{\alpha})=\sqrt{\operatorname{Var}(\hat{\alpha})}$, s.e. $(\hat{\beta})=\sqrt{\operatorname{Var}(\hat{\beta})}$
- Confidence intervals

$$
\begin{aligned}
& \hat{\alpha} \pm t_{n-2 ; 0.025} \times \text { s.e. }(\hat{\alpha}) \\
& \hat{\beta} \pm t_{n-2 ; 0.025} \times \text { s.e. }(\hat{\beta}) .
\end{aligned}
$$

Regression using R

Command $\operatorname{lm}\left(y^{\sim} x\right)$, and $\operatorname{lm}\left(y^{\sim} x-1\right)$ for regression through the origin.

Confidence Interval for $\mathbb{E}\left(Y_{0}\right)$

$$
\hat{\alpha}+\hat{\beta} x_{0} \pm t_{n-2 ; 0.025} \sqrt{s^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{X X}}\right)}
$$

- Interval for the predicted expectation - they reflect uncertainty in our estimates of average observation.

Prediction Interval for Y_{0}

$$
\hat{\alpha}+\hat{\beta} x_{0} \pm t_{n-2 ; 0.025} \sqrt{s^{2}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{X X}}\right)}
$$

- Prediction for a single observation as a function of the explanatory variable - we would expect 95% of observations to lie within this interval.
- Prediction intervals for Y_{0} are wider than confidence intervals for $\mathbb{E}\left(Y_{0}\right)$ as they take into account uncertainty relating to the expected value and individual variability.
- Confidence and prediction intervals become wider as x_{0} moves away from \bar{x}.
- Do not extrapolate beyond the range of data as this is might be very inaccurate.

Multiple Regression

Assume $Y_{i} \sim N\left(\alpha+\beta_{1} x_{1 i}+. .+\beta_{k} x_{k i}, \sigma^{2}\right)$ for $i=1, \ldots, n$ with Y_{1}, \ldots, Y_{n} independent, i.e. the observations are independent, normally distributed, have constant variance and the expectations are linearly related to explanatory variables.

$$
\mathbb{E}(Y)=\alpha+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}
$$

The least-squares estimates $\hat{\alpha}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ are values that minimise

$$
\begin{aligned}
& S\left(\alpha, \beta_{1}, \ldots, \beta_{k}\right)=\sum_{i=1}^{n}\left[y_{i}-\left(\alpha+\beta_{1 i} x_{i}+\ldots+\beta_{k} x_{k i}\right)\right]^{2} \\
& S^{2}=\frac{1}{n-(k+1)} \sum_{i=1}^{n}\left[Y_{i}-\left(\hat{\alpha}+\hat{\beta}_{1} x_{1 i}+\ldots+\hat{\beta}_{k} x_{k i}\right)\right]^{2}
\end{aligned}
$$

Confidence intervals:

$$
\begin{array}{r}
\hat{\alpha} \pm t_{n-(k+1) ; 0.025} \times \text { s.e. }(\hat{\alpha}) \\
\hat{\beta}_{j} \pm t_{n-(k+1) ; 0.025} \times \text { s.e. }\left(\hat{\beta}_{j}\right)
\end{array}
$$

Residual sum of squares (rss): $\sum_{i=1}^{n}\left(Y_{i}-\hat{y}_{i}\right)^{2}$

F-test for Model Comparison

Used to see whether or not the full model gives a significantly better fit than a submodel.
H_{0} : the specified regression coefficients are zero
H_{1} : there is no restriction on the regression coefficients

Analysis of Variance

One-way ANOVA

Assume $Y_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right)$ for $i=1, \ldots, k$ and $j=1, \ldots, n_{i}$ independently for all $Y_{i j}$, i.e. the observations are from a normal distribution, independent, have a common variance and a mean only dependent on the group they are member of.

$$
H_{0}: \mu_{1}=\ldots=\mu_{k} \quad \text { vs } \quad H_{1}: \mu_{1}, \ldots, \mu_{k} \text { are not all equal. }
$$

Source	d.f.	SS	MS	F	p
Between	$k-1$	$S S_{B}$	$M S_{B}$	F	p
Error	$n-k$	$S S_{W}$	$M S_{W}$		
Total	$n-1$	$S S_{\text {Tot }}$			

In R, use anova ($\operatorname{lm}())$. Need to express the explanatory variable using as.factor.

$$
S S_{T o t}=S S_{B}+S S_{W}
$$

Between groups mean square:

$$
M S_{B}=\frac{S S_{B}}{k-1}
$$

Within groups mean square:

$$
M S_{W}=\frac{S S_{W}}{n-k}=s^{2} \quad(\text { residual mean square })
$$

where s is the residual standard error.
If H_{0} is true then $F=\frac{M S_{B}}{M S_{W}} \sim F_{k-1, n-k}$.

Least Significant Differences (LSD)

$$
t_{n-k ; \alpha / 2} \sqrt{s^{2}\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)} \text { or } t_{n-k ; \alpha / 2} \sqrt{\frac{2 s^{2}}{m}}
$$

if the samples are of equal size.

Two-way ANOVA

Assume $Y_{i j} \sim N\left(\mu_{i j}, \sigma^{2}\right)$ where $\mu_{i j}=\alpha_{i}+\beta_{j}$, i.e. the observations are from a normal distribution, independent, have a common variance and a mean that is a function of effect of each group.
Consider b blocks, k treatments, $n=b k$.
Test 1 (block effect):
$H_{0}: \alpha_{1}=\ldots=\alpha_{b}$ vs $H_{1}: \alpha_{1}, \ldots, \alpha_{b}$ are not all equal
Test 2 (treatment effect):

$$
H_{0}: \beta_{1}=\ldots=\beta_{k} \text { vs } H_{1}: \beta_{1}, \ldots, \beta_{k} \text { are not all equal }
$$

Source	d.f.	SS	MS	F	p
Blocks	$b-1$	$S S_{B}$	$M S_{B}$	F_{B}	p_{B}
Treatment	$k-1$	$S S_{T}$	$M S_{T}$	F_{T}	p_{T}
Error	$(b-1)(k-1)$	$S S_{W}$	$M S_{W}$		
Total	$b k-1$	$S S_{T o t}$			

$$
\begin{array}{rlrl}
S S_{T o t} & =S S_{B}+S S_{T}+S S_{W} & & \\
M S_{B} & =\frac{S S_{B}}{b-1} & M S_{T}=\frac{S S_{T}}{k-1} \\
M S_{W} & =\frac{S S_{W}}{(b-1)(k-1)} & & \\
F_{B} & =\frac{M S_{B}}{M S_{W}} & F_{T}=\frac{M S_{T}}{M S_{W}}
\end{array}
$$

LSD for two-way ANOVA

Block effect:

$$
t_{(b-1)(k-1) ; \alpha / 2} \sqrt{2 \frac{s^{2}}{k}}
$$

Treatment effect:

$$
t_{(b-1)(k-1) ; \alpha / 2} \sqrt{2 \frac{s^{2}}{b}}
$$

Two-way ANOVA with r replications

Source	d.f.	SS	MS	F	p
Blocks	$b-1$	$S S_{B}$	$M S_{B}$	F_{B}	p_{B}
Treatment	$k-1$	$S S_{T}$	$M S_{T}$	F_{T}	p_{T}
Error	$r b k-b-k+1$	$S S_{W}$	$M S_{W}$		
Total	$r b k-1$	$S S_{T o t}$			

LSD for two-way ANOVA with replications

Block effect:

$$
t_{r b k-b-k+1 ; \alpha / 2} \sqrt{2 \frac{s^{2}}{r k}}
$$

Treatment effect:

$$
t_{r b k-b-k+1 ; \alpha / 2} \sqrt{2 \frac{s^{2}}{r b}}
$$

[^0]: ${ }^{1} t_{0}$ is the upper quantile, $-t_{0}$ is the lower quantile.

