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Vector Spaces

Field: A set with functions

addition = + : F × F → F ; (λ, µ) 7→ λ+ µ

multiplication = . : F × F → F ; (λ, µ) 7→ λµ

such that (F,+) and (F\{0}, .) are abelian groups with

λ(µ+ ν) = λµ+ λν ∈ F

for any λ, µ, ν ∈ F . The neutral elements are called 0F , 1F . For
all λ, µ ∈ F

λ+ µ = µ+ λ, λ.µ = µ.λ, λ+ 0F = λ, λ.1F = λ ∈ F

For every λ ∈ F∃ − λ ∈ F such that:

λ+ (−λ) = 0F ∈ F

For every λ 6= 0 ∈ F∃λ−1 6= 0 ∈ F such that:

λ(λ−1) = 1F ∈ F

Vec-
tor Space: over a field F is a pair consisting of an abelian
group V = (V, +̇) and a mapping

F × V → V : (λ,~v ) 7→ λ~v

such that for all λ, µ ∈ F and ~v , ~w ∈ V the following hold:

λ(~v+̇~w) = (λ~v)+̇(λ~w)

(λ+ µ)~v = (λ~v)+̇(µ~v)

λ(µ~v) = (λµ)~v

1F~v = ~v

Basis of a Vector Space: A linearly independent generating
set in V .
Fundamental Estimate of Linear Algebra: No linearly in-
dependent subset of a given vector space has more elements than
a generating set. Thus if V is a vector space, L ⊂ V a linearly
independent subset and E ⊆ V a generating set then:

|L| ≤ |E|

Vector Subspace: A subset U of a vector space V is a vector
subspace if U contains the zero vector, and whenever u, v ∈ U
and λ ∈ F we have u+ v ∈ U and λu ∈ U .

Linear Mappings

Linear Map: Let V,W be vector spaces over a field F . A
mapping f : V → W is called linear (or a homomorphism of
F -vector spaces) if for all ~v1, ~v2 ∈ V and λ ∈ F we have:

f(~v1 + ~v2) = f(~v1) + f(~v2)

f(λ~v1) = λf(~v1)

Complementary: Two subspaces V1, V2 of a vector space V
are complementary if addition defines a bijection

V1 × V2
∼−→ V

Rank-Nullity Theorem

Image: of linear mapping f : V → W is the subset: im(f) =
f(V ) ⊆W . It is a vector subspace of W .
Kernel: or preimage of the zero vector of a linear mapping f :
V → W is denoted by ker(f) := f−1(0) = {v ∈ V : f(v) = 0}.
It is a subspace of V .
Rank-Nullity Theorem: Let f : V →W be a linear mapping
between vector spaces. Then:

dimV = dim(ker f) + dim(imf)

Dimension Theorem Let V be a vector space, and U,W ⊆ V
vector subspaces, then:

dim(U +W ) + dim(U ∩W ) = dimU + dimW

Rings

Ring Definition: A set with two operations (R,+, ·) that sat-
isfy:

• (R,+) is an abelian group

• (R, ·) is associative and that there is an identity element
1 = 1R ∈ R, with 1 · a = a · 1 = a for all a ∈ R

• The distributive laws hold (bracket multiplication)

Field: A non-zero, commutative ring F in which every non-zero
element a ∈ F has an inverse a−1 ∈ F , s.t a · a−1 = a−1 · a = 1
Proposition 3.1.11: The commutative ring Z/mZ is a field iff
m is prime.
Unit: Let R be a ring. An element a ∈ R is a unit if it is
invertible in R. R× is the group of units of R.
Integral Domain: An integral Domain is a non-zero commu-
tative ring that has no zero-devisors. So these properties hold:

• ab = 0 =⇒ a = 0 or b = 0

• a 6= 0 and b 6= 0 =⇒ ab 6= 0

Cancellation Law for Integral Domains: Let R be an in-
tegral domain and let a, b, c ∈ R. If ab = ac and a 6= 0 then
b = c.
Proposition 3.2.17: The commutative ring Z/mZ is an inte-
gral domain iff m is prime.

Polynomials

The set of all polynomials over a ring R is denoted R[X]. R[X]
is a ring called: the ring of polynomials with coefficients in R.
The zero and identity of R[X] are the zero and identity of R
respectively. Lemma 3.3.3:

• If R is a ring with no zero-divisors, then R[X] has no
zero-divisors and deg(PQ) = deg(P ) + deg(Q) for non-
zero P,Q ∈ R[X]

• If R is an integral domain then so is R[X]

Algebraically Closed: A field F is algebraically closed If each
non-constant polynomial P ∈ F [X]\F with coefficients in our
field has has a root in our field F .

Subrings, Homomorphisms

Homomorphism: Let R and S be rings. A mapping f : R→ S
is a ring homomorphism if the following hold ∀x, y ∈ R :

• f(x+ y) = f(x) + f(y)

• f(xy) = f(x)f(y)

Ideals: A subset I of a ring R is an ideal, written I E R if the
following hold:

• I 6= ∅
• I is closed under subtraction

• for all i ∈ I and r ∈ R we have ri, ir ∈ I
Def 3.4.11: Let R be a commutative ring and let T ⊂ R. Then
the ideal of R generated by T is:

R〈T 〉 = {r1t1 + ...+ rmtm : t1, ..., tm ∈ T, r1, ..., rm ∈ R}

Principal Ideal: Let R be a commutative ring. An ideal I of
R is a principal ideal if I = 〈t〉 for some t ∈ R. i.e an ideal that
is generated by a single element in R through multiplication.
Prop 3.4.18: Let R and S be rings and f : R → S a ring
homomorphism. Then ker f is an ideal of R

Example: The ideals of Z are the principal ideals mZ ⊆
Z for m > 0
Subring Test: Let R′ be a subset of a ring R. Then R′ is a
subring iff
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• R′ has a multiplicative identity

• R′ is closed under subtraction: a, b ∈ R′ → a− b ∈ R′

• R′ is closed under multiplication

Def 3.4.23: A subset R′ of R is a subring of R if R′ itself is a
ring under the operations of addition and multiplication defined
in R.

Prop 3.4.29: Let f : R→ S be a ring homomorphism.

• If R′ is a subring of R then f(R′) is a subring of S. In
particular, imf is a subring of S.

• Assume f(1R) = 1S . Then if x is a unit in R, f(x) is a
unit in S and (f(x))−1 = f(x−1)

Equivalence Relations

A relation R on a set X is a subset R ⊆ X ×X. (Writing xRy
instead of (x, y) ∈ R) R is an equivalence relation on X when
for all elements x, y, z ∈ X the following hold:

• Reflexivity: xRx

• Symmetry: xRy ⇐⇒ yRx

• Transitivity: (xRy and yRz)→ xRz

Well Defined: g : (X/ ∼) → Z is well defined if i can
find a mapping f : X → Z such that f has the property
x ∼ y → f(x) = f(y) and g = f̄ .

Factor Rings

Def 3.6.1: Let I E R be an ideal in a ring R. The set

x+ I := {x+ i : i ∈ I} ⊆ R

is a coset of I in R, or the coset of x with respect to I in R.

Def 3.6.3: Let R be a ring. Let I E R be an ideal. And let ∼
be defined by x ∼ y ⇐⇒ x− y ∈ I. Then the factor ring of
R by I or quotient of R by I, is the set (R/ ∼) of cosets of I
of R.

The Universal Property of Factor Rings: Let R be a ring
and I an ideal of R.

• The mapping can: R → R/I sending r ro r + I for all
r ∈ R is a surjective ring homomorphism with kernel I.

• If f : R → S is a ring homomorphism with f(I) = {0S},
so that I ⊆ ker f , then there is a unique ring homomor-
phism f̄ : R/I → S such that f = f̄◦ can

First Isomorphism Theorem for Rings: Let R and S be
rings. Then every ring homomorphism f : R→ S induces a ring
homomorphism

f̄ : R/ ker f
∼−→ imf

Proof: Clearly f̄ is surjective. Injective since ker f = {0}, since
the only element in the kernel of f̄ is the coset 0 + ker f , the
zero element of R/ ker f .

Modules

(Left) Module M , over a ring R (also known as an R-
module) is a pair consisting of an abelian group M = (M, +̇)
and a mapping

R×M →M

(r, a) 7→ ra

Such that for all r, s ∈ R and a, b ∈M the following holds:

• Distributive Laws

• Associativity Law

• 1Ra = a

Test for a submodule: Let R be a ring and let M be an
R-module. A subset M ′ of M is a submodule iff:

• 0M ∈M ′

• a, b ∈M ′ =⇒ a− b ∈M ′

• r ∈ R, a ∈M ′ =⇒ ra ∈M ′

Lemma 3.7.21(22): Let f : M → N be an R-homomorphism.
Then ker f is a submodule of M and imf is a submodule of N .
And f is injective iff ker f = {0M}
Module Cosets: Let R be a ring, M an R-module and N a
submodule of M . For each a ∈M the coset of a with respect to
N in M is:

a+N = {a+ b : b ∈ N}
Factor Modules: M/N is the factor of M by N , or the quo-
tient of M by N , is the set (M/ ∼) of all cosets of N in M . The
R-module M/N is the factor module of M by the submodule
N .
Addition is defined as (m1 +N) + (m2 +N) = (m1 +m2) +N
Scalar Multiplication is defined as λ(m+N) = λm+N

Universal Property of Factor Modules: Let R be a ring,
let L and M be R-modules, and N a submodule of M .

• The mapping can: M → M/N sending a to a+N for all
a ∈M is a surjective R-homomorphism with kernel N .

• If f : M → L is an R-homomorphism with f(N) = {0L},
so that N ⊆ ker f , then there is a unique homomorphism
f̄ : M/N → L such that f = f̄◦can.

Determinants

Back to Basics

Permutations: The group of all permutations of the set
{1, 2, ..., n}, also known as bijections from {1, 2, ..., n} to itself,
is denoted by Gn and is called the n-th symmetric group. It is
a group under composition and has n! elements.
Transposition: A permutation that swaps two elements of the
set and leaves all others unchanged.
Inversion: An inversion of a permutation σ ∈ Gn is a pair (i, j)
such that 1 ≤ i < j ≤ n and σ(i) > σ(j).
Length: Is the number of inversions of the permutation σ.
Written `(σ). In formula we have `(σ) = |{(i, j) : i <
j but σ(i) > σ(j)}|
Sign: The sign of σ is the parity of the number of inversions of
σ, i.e. sgn(σ) = (−1)`(σ). If the sign is +1 then it is an even
permutation, if it is −1 it is odd. Also sgn(στ) = sgn(σ)sgn(τ).
Alternating Group: For n ∈ N the set of even permutations in
Gn forms a subgroup of Gn because it is the kernel of the group
homomorphism sgn: Gn → {+1,−1}. This is the alternating
group An.

Determinants

Leibniz Determinant: Let R be a commutative ring and
n ∈ N. The determinant is a mapping det : Mat(n;R) → R
from square matrices with coefficients in R to the ring R that is
given by the following:

A 7→ det(A) =
∑
σ∈Gn

sgn(σ)a1σ(1)...anσ(n)

Bilinear Forms: Let U, V,W be F -vector spaces. A bilinear
form on U × V with values in W is a mapping H : U × V →W
which satisfies:

• H(u1 + u2, v1) = H(u1, v1) +H(u2, v1)

• H(λu1, v1) = λH(u1, v1)

• H(u1, v1 + v2) = H(u1, v1) +H(u1, v2)

• H(u1, λv1) = λH(u1, v1)

It is symmetric if U = V and H(u, v) = H(v, u) for all u, v ∈ U .
Antisymmetric/alternating if U = V and H(u, u) = 0 for all
u ∈ U .

Multilinear Forms: Let V1, ..., Vn,W be F -vector spaces. A
mapping H : V1 × V2 × ...× Vn →W is a multilinear form if for
each j the mapping Vj →W defined by vj 7→ H(v1, ..., vj , ..., vn)
with the vi ∈ Vi arbitrary fixed vectors of Vi for i 6= j, is linear.
Alternating MLF: Let V and W be F -vector spaces. A mul-
tilinear form H : V × ... × V → W is alternating if it vanishes
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on every n-tuple of elements of V that has at least two entries
equal, i.e. if

(∃i 6= j with vi = vj)→ H(v1, ..., vi, ..., vj , ..., vn) = 0

Characterisation of the Determinant: Let F be a field.
The mapping det : Mat(n;F ) → F is the unique alternating
multilinear form on n-tuples of column vectors with values in F
that takes the value 1F on the identity matrix.

Rules for Determinants

Multiplicativity of the Determinant: Let R be a commu-
tative ring and let A,B ∈ Mat(n;R). Then

det(AB) = det(A)det(B)

Determinantal Criterion for Invertibility: The determi-
nant of a square matrix with entries in a field F is non-zero iff
the matrix is invertible.
Consequences: If A is invertible then det(A−1) = det(A)−1,
and if B is a square matrix then det(A−1BA) = det(B)
Lemma 4.4.4: The determinant of a square matrix and of the
transpose of the square matrix are equal, i.e. ∀A ∈ Mat(n;R)
with R a commutative ring:

det(AT ) = det(A)

Cofactors: Let A ∈ Mat(n;R) for some commutative ring R,
and i and j be integers between 1 and n. Then the (i, j) cofactor
of A is Cij = (−1)i+j det(A〈i, j〉) where A〈i, j〉 is the matrix
obtained from A by deleting the i-th row and j-th column.

Laplace’s Expansion of the Determinant: For a fixed i the
i-th row expansion of the determinant is:

det(A) =

n∑
j=1

aijCij

and for a fixed j the j-th column expansion of the determinant
is:

det(A) =

n∑
i=1

aijCij

Adjugate Matrix: Let A ∈ Mat(n;R) for a commutative ring
R. The adjugate matrix adj(A) is the (n × n)-matrix whose
entries are adj(A)ij = Cji.
Cramer’s Rule: Let A be an (n× n)-matrix with entries in a
commutative ring R. Then:

A · adj(A) = (detA)In

Invertibility of Matrices: A square matrix with entries in a
commutative ring R is invertible iff its determinant is a unit in
R. i.e. A ∈ Mat(n;R) is invertible iff det(A) ∈ R×
Eigenspace: For any λ ∈ F , the eigenspace of f with eigen-
value λ is:

E(λ, f) = {~v ∈ V : f(~v ) = λ~v }

Eigenvalues and Eigenvectors

Eigenval/vec: Let f : V → V be an endomorphism of an
F -vector space V . A scalar λ ∈ F is an eigenvalue of f iff there
exists a non-zero vector ~v ∈ V such that f(~v ) = λ~v where ~v is
the eigenvector.

Eigenspace: of f with eigenvalue λ is:

E(λ, f) = {~v ∈ V : f(~v ) = λ~v }

Existence of Eigenvalues: Each endomorphism of a non-zero
finite dimensional vector space over an algebraically closed field
has an eigenvalue.
Characteristic Polynomial: Let R be a commutative ring
and let A ∈ Mat(n;R) be a square matrix with entries in R.
The polynomial det(A− xIn) ∈ R[x] is called the characteristic
polynomial, denoted by:

χA(x) := det (A− xIn)

Characteristic Poly and Eigenvalues: Let F be a field and
A ∈ Mat(n;F ) a square matrix with entries in F . The eigenval-
ues of the linear mapping A : Fn → Fn are exactly the roots of
the characteristic polynomial χA

Special Matrices

Triangularisable: Let f : V → V be an endomorphism of a
finite dimensional F -vector space V . When the characteristic
polynomial χf (x) of f decomposes into linear factors in F [x].
Diagonalisable: An endomorphism f : V → V of an F -vector
space V is diagonalisable iff there exists a basis of V consisting
of eigenvectors of f .
Cayley-Hamilton Theorem: Let A ∈ Mat(n;R) be a square
matrix with entries in a commutative ring R. Then evaluating
its characteristic polynomial χA(x) ∈ R[x] at the matrix A gives
zero.

Google

Markov Matrix: (or a stochastic matrix) is a matrix M whose
entries are non-negative and such that the sum of the entries of

each column equals 1.
Perron: if M ∈ Mat(n; R) is a Markov matrix with positive en-
tries, then the eigenspace E(1,M) is one dimensional. i.e there
exists a unique basis vector ~v ∈ E(1,M) all of whose entries are
positive real numbers, vi > 0 for all i, and such that the sum of
it’s entries are 1.

Inner Product Spaces

Inner Product: Let V be a vector space over R. An inner
product on V is a mapping

(−,−) : V × V → R

That satisfies the following for all ~x , ~y , ~z ∈ V and λ, µ ∈ R:

• (λ~x + µ~y , ~z ) = λ(~x , ~z ) + µ(~y , ~z )

• (~x , ~y ) = (~y , ~x )

• (~x , ~x ) ≥ 0, with equality iff ~x = ~0

Inner Product: Let V be a vector space over C. An inner
product on V is a mapping

(−,−) : V × V → C

That satisfies the following for all ~x , ~y , ~z ∈ V and λ, µ ∈ C:

• (λ~x + µ~y , ~z ) = λ(~x , ~z ) + µ(~y , ~z )

• (~x , ~y ) = (~y , ~x )

• (~x , ~x ) ≥ 0, with equality iff ~x = ~0

Length: In a real or complex inner product space the length or
inner product norm ||~v || ∈ R of a vector is:

||~v || =
√

(~v ,~v )

Orthogonal: Two vectors ~v , ~w are orthogonal written ~v ⊥ ~w ,
iff (~v , ~w ) = 0.
Orthonomal Family: A family (~vi)i∈I for vectors from an in-
ner product space is an orthonormal family if all vectors ~vi have
length 1 and if they are pairwise orthogonal to each other, which
means:

(~vi, ~vj) = δij

An orthonormal family that is a basis is an orthonormal basis.

3



Orthogonal Complements and Projections

Orthorgonality: Let V be an inner product space and let
T ⊆ V be an arbitrary subset. Define:

T⊥ = {~v ∈ V : ~v ⊥ ~t ∀ ~t ∈ T}

Calling this set the orthogonal to T .
Proposition 5.2.2: Let V be an inner product space and let
U be a finite dimensional subspace of V . Then U and U⊥ are
complementary, i.e.

V = U ⊕ U⊥

Definition 5.2.3: Let U be a finite dimensional subspace of an
inner product space V . The space U⊥ is the orthogonal com-
plement to U . The orthogonal projection from V onto U is the
mapping πU : V → V that sends v = p+ r to p.
Cauchy-Schwarz inequality: Let ~v , ~w be vectors in an inner
product space. Then

|(~v , ~w )| ≤ ||~v ||||~w ||

With equality iff they are linearly dependent.
Proof: If y = 0, then it’s true, so assume otherwise.
Let z = x− (x,y)

(y,y)
y. Then (z, y) = 0. So ||x||2 = ||z+ (x,y)

(y,y)
y||2 =

||z||2 + (x,y)2

(y,y)2
||y||2 = ||z||2 + (x,y)2

||y||2 ≥
(x,y)2

||y||2

x1y1 + · · ·+ xnyn 6
√
x21 + · · ·+ x2n

√
y21 + · · · y2n

The Norm: Satisfies:

• ||~v || ≥ 0 with equality iff ~v = ~0

• ||λ~v || = |λ|||~v ||
• ||~v + ~w || ≤ ||~v ||+ ||~w ||, the triangle inequality

Gram-Schmidt Process: The Gram-Schmidt Formulae are:

~w1 =
~v1
‖~v1‖

, ~w2 =
~v2 − (~v2, ~w1) ~w1

‖~v2 − (~v2, ~w1) ~w1‖

Projection operator:

proju(v) =
(u,v)

(u,u)
u

Gram-schmidt Process:

u1 = v1, e1 =
u1

‖u1‖

u2 = v2 − proju1
(v2) , e2 =

u2

‖u2‖
u3 = v3 − proju1

(v3)− proju2
(v3)

e3 =
u3

‖u3‖

Adjoints and Self-Adjoints

Adjoint: Let V be an inner product space. Then two endo-
morphisms T, S : V → V are adjoint if for all ~v , ~w ∈ V :

(T~v , ~w ) = (~v , S ~w )

In this case S = T ∗ and we call S the adjoint of T . Self-
Adjoint: An endomorphism of an inner product space T : V →
V is self-adjoint if it equals its own adjoint, i.e if T ∗ = T .
Theorem: T ∗T is self adjoint.
Proof: ((T ∗T )x, y) = (y, T ∗Tx) = (Ty, Tx) = (Tx, Ty) =
(x, T ∗Ty)∀x, y ∈ V so (T ∗T )∗ = T ∗T
Theorem: ker(T ∗) = (imT )⊥

Proof: x ∈ (imT )⊥ ⇐⇒ ∀y ∈ imT (y, x) = 0
⇐⇒ ∀v ∈ V (Tv, x) = 0
⇐⇒ ∀v ∈ V (v, T ∗x) = 0
⇐⇒ T ∗x = 0 ⇐⇒ x ∈ kerT ∗

Definition 5.3.7: Let T : V → V be a self-adjoint linear map-
ping on an inner product space V . Then: (1) Every eigenvalue
of T is real. (relevant for F = C
(2) If λ and µ are distinct eigenvalues of T with eigenvectors
v, w, then (v, w) = 0
(3) T has an eigenvalue. (relevant for F = R)

Spectral Theorem for Self-Adjoint Endomorphisms: Let
V be a finite dimensional inner product space and let T : V → V
be a self-adjoint linear mapping. Then V has an orthonormal
basis consisting of eigenvectors of T .

Spectral Theorem for Real Symmetric Matrices: Let A
be a real (n × n)-symmetric matrix. Then there is an (n × n)-
orthogonal matrix P such that:

PTAP = P−1AP = diag(λ1, ..., λn)

Where λ1, ..., λn are the (necessarily real) eigenvalues of A, re-
peated according to their multiplicity.

Spectral Theorem for Hermitian Matrices:Let A be a real
(n×n)-hermitian matrix. Then there is an (n×n)-unitary ma-
trix P such that:

P̄TAP = P−1AP = diag(λ1, ..., λn)

Where λ1, ..., λn are the (necessarily real) eigenvalues of A, re-
peated according to their multiplicity.

Hermitian Matrix: A complex square matrix such that A =
ĀT

Jordan Normal Form

Nilpotent Jordan Block of size r: Define an (r × r)-matrix
J(r), by the rule J(r)ij = 1 for j = i+ 1 and J(r)ij = 0 other-
wise. If r = 1 then we get a (1× 1) zero matrix.
Jordan Block of size r and eigenvalue of λ: with λ ∈ F ,
with the rule

J(r, λ) = λIr + J(r) = D +N

such that DN = ND
Theorem 6.2.2: Let F be an algebraically closed field. Let V
be a finite dimensional vector space and let φ : V → V be an
endomorphism of V with characteristic polynomial:

χφ(x) = (λ1 − x)a1 (λ2 − x)a2 . . . (λs − x)as

∈ F [x]

(
ai > 1,

s∑
i=1

ai = n

)
For distinct λ1, λ2, ..., λs ∈ F . Then there exists an ordered ba-
sis B of V such that the matrix of φ wrt the basis B is block
diagonal with Jordan blocks on the diagonal.

B[φ]B = diag
(
J (r11, λ1) , . . . , J

(
r1m1

, λ1

)
, J (r21, λ2) , . . . , J

(
rsms , λs

))

With r21, ..., r1m1 , r21, ..., rsms ≥ 1 such that:

ai = ri1 + ri2 + · · ·+ rimi(1 6 i 6 s)

Lemma 6.3.1: There exists polynomials Qj(x) ∈ F [x] such
that:

s∑
j=1

Pj(x)Qj(x) = 1

Definitions

Row Echelon Form:
-Leading entry in each row = 1
-Each leading entry is in a column to the right of the leading
entry in the previous row
-Rows with all zeros below others
Reduced Row Echelon:
-Same as REF
-The leading entry in each row is the only non zero entry in it’s
column
Associative: (a× b)× c = a× (b× c)
Commutative: a× b = b× a
Distributive Law: a× (b+ c) = a× b+ a× c
Monic Polynomial: When it’s leading coefficient is 1
Monoid: Associative, closed and has an identity
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Tranposition: A permutation that swaps two elements of the set
and leaves all the others unchanged

Kronecker Delta: δi,j =

{
1 i = j

0 otherwise
Injective: ∀x, x′ ∈

X, f(x) = f (x′)⇒ x = x′

Surjective: ∀y ∈ Y, ∃x ∈ X such that y = f(x)
Idempotent: If f = f2

Counterclockwise Rotation Matrix:

(
cosφ − sinφ
sinφ cosφ

)
Notation: let a ∈ R\0 then let[a] ∈ {+1,−1} be the sign of a.
Endomorphism: A morphism from something to itself. Uni-
tary Matrix: Let P ∈ Mat(m,C). P is uniatary if P̄TP =
identity. i.e P−1 = P̄T

Examples

• Trace: If two matrices have different traces, then
they cannot represent the same endomorphism. Since
the trace of a linear mapping is well defined, because
tr
(
P−1MP

)
= tr(M) for any matrix M and invertible

matrix P (i.e. a change of basis matrix P ).

• Symmetric bilinear form: dot product on R2

• Alternating bilinear form: cross product on R3

• Alternating MLF on V × V... n times: determinant of
a real n× n matrix.

• f is injective iff ker = {0}

• Non zero polynomial with more roots than degrees:
2(X2 +X) ∈ Z/4Z

• Ring where not every ideal is a principal ideal: Z[X]

• An ideal in a ring that is not principal: Z[X] < 2, X >

• Commutative ring that is not an integral domain: Z/4Z

• Basis for C: (1, i).

• Inner Product on C: ((z1, w1), (z2, w2)) = z1z2 + w1w2

• Inner Product on C2: ((z1, w1), z2, w2)) = z1z̄2 + w1w̄2

• Inner Product on C3:
∑3
i=1 xiȳi

• A self-adjoint operator on C3 with respect to the inner
product above: identity

• A non self-adjoint operator on C3 with respect to the inner

product above:

 0 1 0
0 0 0
0 0 0


• Inner Product on R[X]:

(P,Q) =

∫ b

a

P (X)Q(X)dX

• A non-zero symmetric bilinear form which is not an inner
product: ((x1, y1), (x2, y2)) = x1x2

• A non symmetric bilinear form on R2:
((x1, y1), (x2, y2)) = x1y2 − x2y1

• Non-invertible matrix whose determinant is not zero: 2 ∈
Mat(1,Z)

• Diagonalisable Matrix:

[
0 1
0 1

]
• Non-Diagonalisable Matrix:

[
0 1
0 0

]
• A matrix with entries in C which is a Jordan block of size

3 and eigenvalue not equal to 0 or 1:

 λ 1 0
0 λ 1
0 0 λ


• Invertible with trace=0:

 2 0 0
0 −1 0
0 0 −1


• No Eigenvalue Matrix:

[
0 1
−1 0

]
• A (3 × 3)-matrix all of whose entries are positive and

real and that has exactly one eigenvalue equal to 1:

1
3

 1 1 1
1 1 1
1 1 1


• For a finite dimensional inner product space (V, (−,−))

and a subspace U ⊆ V the orthogonal subspace to U ⊆ V
is:

U⊥ = {~v ∈ V |(~u,~v) = 0 for all ~u ∈ U} ⊆ V

The dimensions are:

dim
(
U ∩ U⊥

)
= 0,dim(U) + dim

(
U⊥
)

= dim(V )
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