Algebra Cheatsheet
 Owen Fuller

Vector Spaces

Field: A set with functions

$$
\begin{aligned}
& \text { addition }=+: F \times F \rightarrow F ;(\lambda, \mu) \mapsto \lambda+\mu \\
& \text { multiplication }=.: F \times F \rightarrow F ;(\lambda, \mu) \mapsto \lambda \mu
\end{aligned}
$$

such that $(F,+)$ and $(F \backslash\{0\},$.$) are abelian groups with$

$$
\lambda(\mu+\nu)=\lambda \mu+\lambda \nu \in F
$$

for any $\lambda, \mu, \nu \in F$. The neutral elements are called $0_{F}, 1_{F}$. For all $\lambda, \mu \in F$

$$
\lambda+\mu=\mu+\lambda, \quad \lambda \cdot \mu=\mu \cdot \lambda, \lambda+0_{F}=\lambda, \lambda \cdot 1_{F}=\lambda \in F
$$

For every $\lambda \in F \exists-\lambda \in F$ such that:

$$
\lambda+(-\lambda)=0_{F} \in F
$$

For every $\lambda \neq 0 \in F \exists \lambda^{-1} \neq 0 \in F$ such that:

$$
\lambda\left(\lambda^{-1}\right)=1_{F} \in F
$$

tor Space: over a field F is a pair consisting of an abelian group $V=(V, \dot{+})$ and a mapping

$$
F \times V \rightarrow V:(\lambda, \vec{v}) \mapsto \lambda \vec{v}
$$

such that for all $\lambda, \mu \in F$ and $\vec{v}, \vec{w} \in V$ the following hold:

$$
\begin{aligned}
\lambda(\vec{v} \dot{+} \vec{w}) & =(\lambda \vec{v}) \dot{+}(\lambda \vec{w}) \\
(\lambda+\mu) \vec{v} & =(\lambda \vec{v}) \dot{+}(\mu \vec{v}) \\
\lambda(\mu \vec{v}) & =(\lambda \mu) \vec{v} \\
1_{F} \vec{v} & =\vec{v}
\end{aligned}
$$

Basis of a Vector Space: A linearly independent generating set in V.
Fundamental Estimate of Linear Algebra: No linearly independent subset of a given vector space has more elements than a generating set. Thus if V is a vector space, $L \subset V$ a linearly independent subset and $E \subseteq V$ a generating set then:

$$
|L| \leq|E|
$$

Vector Subspace: A subset U of a vector space V is a vector subspace if U contains the zero vector, and whenever $u, v \in U$ and $\lambda \in F$ we have $u+v \in U$ and $\lambda u \in U$.

Linear Mappings

Linear Map: Let V, W be vector spaces over a field F. A mapping $f: V \rightarrow W$ is called linear (or a homomorphism of F-vector spaces) if for all $\vec{v}_{1}, \vec{v}_{2} \in V$ and $\lambda \in F$ we have:

$$
\begin{gathered}
f\left(\vec{v}_{1}+\vec{v}_{2}\right)=f\left(\vec{v}_{1}\right)+f\left(\vec{v}_{2}\right) \\
f\left(\lambda \vec{v}_{1}\right)=\lambda f\left(\vec{v}_{1}\right)
\end{gathered}
$$

Complementary: Two subspaces V_{1}, V_{2} of a vector space V are complementary if addition defines a bijection

$$
V_{1} \times V_{2} \xrightarrow{\sim} V
$$

Rank-Nullity Theorem

Image: of linear mapping $f: V \rightarrow W$ is the subset: $\operatorname{im}(f)=$ $f(V) \subseteq W$. It is a vector subspace of W.
Kernel: or preimage of the zero vector of a linear mapping f : $V \rightarrow W$ is denoted by $\operatorname{ker}(f):=f^{-1}(0)=\{v \in V: f(v)=0\}$. It is a subspace of V.
Rank-Nullity Theorem: Let $f: V \rightarrow W$ be a linear mapping between vector spaces. Then:

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{ker} f)+\operatorname{dim}(\operatorname{im} f)
$$

Dimension Theorem Let V be a vector space, and $U, W \subset V$ vector subspaces, then:

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim} U+\operatorname{dim} W
$$

Rings

Ring Definition: A set with two operations $(R,+, \cdot)$ that satisfy:

- $(R,+)$ is an abelian group
- (R, \cdot) is associative and that there is an identity element $1=1_{R} \in R$, with $1 \cdot a=a \cdot 1=a$ for all $a \in R$
- The distributive laws hold (bracket multiplication)

Field: A non-zero, commutative ring F in which every non-zero element $a \in F$ has an inverse $a^{-1} \in F$, s.t $a \cdot a^{-1}=a^{-1} \cdot a=1$ Proposition 3.1.11: The commutative ring $\mathbb{Z} / m \mathbb{Z}$ is a field iff m is prime.
Unit: Let R be a ring. An element $a \in R$ is a unit if it is invertible in $R . R^{\times}$is the group of units of R.
Integral Domain: An integral Domain is a non-zero commutative ring that has no zero-devisors. So these properties hold:

[^0]- $a \neq 0$ and $b \neq 0 \Longrightarrow a b \neq 0$

Cancellation Law for Integral Domains: Let R be an integral domain and let $a, b, c \in R$. If $a b=a c$ and $a \neq 0$ then $b=c$.
Proposition 3.2.17: The commutative ring $\mathbb{Z} / m \mathbb{Z}$ is an integral domain iff m is prime.

Polynomials

The set of all polynomials over a ring R is denoted $R[X] . R[X]$ is a ring called: the ring of polynomials with coefficients in R. The zero and identity of $R[X]$ are the zero and identity of R respectively. Lemma 3.3.3:

- If R is a ring with no zero-divisors, then $R[X]$ has no zero-divisors and $\operatorname{deg}(P Q)=\operatorname{deg}(P)+\operatorname{deg}(Q)$ for nonzero $P, Q \in R[X]$
- If R is an integral domain then so is $\mathrm{R}[\mathrm{X}]$

Algebraically Closed: A field F is algebraically closed If each non-constant polynomial $P \in F[X] \backslash F$ with coefficients in our field has has a root in our field F.

Subrings, Homomorphisms

Homomorphism: Let R and S be rings. A mapping $f: R \rightarrow S$ is a ring homomorphism if the following hold $\forall x, y \in R$:

- $f(x+y)=f(x)+f(y)$
- $f(x y)=f(x) f(y)$

Ideals: A subset I of a ring R is an ideal, written $I \unlhd R$ if the following hold:

- $I \neq \emptyset$
- I is closed under subtraction
- for all $i \in I$ and $r \in R$ we have $r i, i r \in I$

Def 3.4.11: Let R be a commutative ring and let $T \subset R$. Then the ideal of R generated by T is:

$$
{ }_{R}\langle T\rangle=\left\{r_{1} t_{1}+\ldots+r_{m} t_{m}: t_{1}, \ldots, t_{m} \in T, r_{1}, \ldots, r_{m} \in R\right\}
$$

Principal Ideal: Let R be a commutative ring. An ideal I of R is a principal ideal if $I=\langle t\rangle$ for some $t \in R$. i.e an ideal that is generated by a single element in R through multiplication.
Prop 3.4.18: Let R and S be rings and $f: R \rightarrow S$ a ring homomorphism. Then ker f is an ideal of R

Example: \quad The ideals of \mathbb{Z} are the principal ideals $m \mathbb{Z} \subseteq$ \mathbb{Z} for $m \geqslant 0$
Subring Test: Let R^{\prime} be a subset of a ring R. Then R^{\prime} is a subring iff

- R^{\prime} has a multiplicative identity
- R^{\prime} is closed under subtraction: $a, b \in R^{\prime} \rightarrow a-b \in R^{\prime}$
- R^{\prime} is closed under multiplication

Def 3.4.23: A subset R^{\prime} of R is a subring of R if R^{\prime} itself is a ring under the operations of addition and multiplication defined in R.

Prop 3.4.29: Let $f: R \rightarrow S$ be a ring homomorphism.

- If R^{\prime} is a subring of R then $f\left(R^{\prime}\right)$ is a subring of S. In particular, $\operatorname{im} f$ is a subring of S.
- Assume $f\left(1_{R}\right)=1_{S}$. Then if x is a unit in $R, f(x)$ is a unit in S and $(f(x))^{-1}=f\left(x^{-1}\right)$

Equivalence Relations

A relation R on a set X is a subset $R \subseteq X \times X$. (Writing $x R y$ instead of $(x, y) \in R) \mathrm{R}$ is an equivalence relation on X when for all elements $x, y, z \in X$ the following hold:

- Reflexivity: $x R x$
- Symmetry: $x R y \Longleftrightarrow y R x$
- Transitivity: $(x R y$ and $y R z) \rightarrow x R z$

Well Defined: $g:(X / \sim) \rightarrow Z$ is well defined if i can find a mapping $f: X \rightarrow Z$ such that f has the property $x \sim y \rightarrow f(x)=f(y)$ and $g=\bar{f}$.

Factor Rings

Def 3.6.1: Let $I \unlhd R$ be an ideal in a ring R. The set

$$
x+I:=\{x+i: i \in I\} \subseteq R
$$

is a coset of I in R, or the coset of x with respect to I in R. Def 3.6.3: Let R be a ring. Let $I \unlhd R$ be an ideal. And let \sim be defined by $x \sim y \Longleftrightarrow x-y \in I$. Then the factor ring of R by I or quotient of R by I, is the set (R / \sim) of cosets of I of R.
The Universal Property of Factor Rings: Let R be a ring and I an ideal of R.

- The mapping can: $R \rightarrow R / I$ sending r ro $r+I$ for all $r \in R$ is a surjective ring homomorphism with kernel I.
- If $f: R \rightarrow S$ is a ring homomorphism with $f(I)=\left\{0_{S}\right\}$, so that $I \subseteq \operatorname{ker} f$, then there is a unique ring homomorphism $\bar{f}: R / I \rightarrow S$ such that $f=\bar{f} \circ$ can

First Isomorphism Theorem for Rings: Let R and S be rings. Then every ring homomorphism $f: R \rightarrow S$ induces a ring homomorphism

$$
\bar{f}: R / \operatorname{ker} f \xrightarrow{\sim} \operatorname{im} f
$$

Proof: Clearly \bar{f} is surjective. Injective since ker $f=\{0\}$, since the only element in the kernel of \bar{f} is the coset $0+\operatorname{ker} f$, the zero element of $R / \operatorname{ker} f$.

Modules

(Left) Module M, over a ring R (also known as an R module) is a pair consisting of an abelian group $M=(M, \dot{+})$ and a mapping

$$
\begin{gathered}
R \times M \rightarrow M \\
(r, a) \mapsto r a
\end{gathered}
$$

Such that for all $r, s \in R$ and $a, b \in M$ the following holds:

- Distributive Laws
- Associativity Law
- $1_{R} a=a$

Test for a submodule: Let R be a ring and let M be an R-module. A subset M^{\prime} of M is a submodule iff:

- $0_{M} \in M^{\prime}$
- $a, b \in M^{\prime} \Longrightarrow a-b \in M^{\prime}$
- $r \in R, a \in M^{\prime} \Longrightarrow r a \in M^{\prime}$

Lemma 3.7.21(22): Let $f: M \rightarrow N$ be an R-homomorphism. Then ker f is a submodule of M and $\operatorname{im} f$ is a submodule of N And f is injective iff ker $f=\left\{0_{M}\right\}$
Module Cosets: Let R be a ring, M an R-module and N a submodule of M. For each $a \in M$ the coset of a with respect to N in M is:

$$
a+N=\{a+b: b \in N\}
$$

Factor Modules: M / N is the factor of M by N, or the quotient of M by N, is the set (M / \sim) of all cosets of N in M. The R-module M / N is the factor module of M by the submodule N.
Addition is defined as $\left(m_{1}+N\right)+\left(m_{2}+N\right)=\left(m_{1}+m_{2}\right)+N$ Scalar Multiplication is defined as $\lambda(m+N)=\lambda m+N$

Universal Property of Factor Modules: Let R be a ring, let L and M be R-modules, and N a submodule of M.

- The mapping can: $M \rightarrow M / N$ sending a to $a+N$ for all $a \in M$ is a surjective R-homomorphism with kernel N.
- If $f: M \rightarrow L$ is an R-homomorphism with $f(N)=\left\{0_{L}\right\}$, so that $N \subseteq \operatorname{ker} f$, then there is a unique homomorphism $\bar{f}: M / N \rightarrow L$ such that $f=\bar{f} \circ$ can.

Determinants

Back to Basics

Permutations: The group of all permutations of the set $\{1,2, \ldots, n\}$, also known as bijections from $\{1,2, \ldots, n\}$ to itself, is denoted by \mathcal{G}_{n} and is called the n-th symmetric group. It is a group under composition and has n ! elements.
Transposition: A permutation that swaps two elements of the set and leaves all others unchanged.
Inversion: An inversion of a permutation $\sigma \in \mathcal{G}_{n}$ is a pair (i, j) such that $1 \leq i<j \leq n$ and $\sigma(i)>\sigma(j)$.
Length: Is the number of inversions of the permutation σ. Written $\ell(\sigma)$. In formula we have $\ell(\sigma)=\mid\{(i, j): i<$ j but $\sigma(i)>\sigma(j)\} \mid$
Sign: The sign of σ is the parity of the number of inversions of σ, i.e. $\operatorname{sgn}(\sigma)=(-1)^{\ell(\sigma)}$. If the sign is +1 then it is an even permutation, if it is -1 it is odd. Also $\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$. Alternating Group: For $n \in \mathbb{N}$ the set of even permutations in \mathcal{G}_{n} forms a subgroup of \mathcal{G}_{n} because it is the kernel of the group homomorphism sgn: $\mathcal{G}_{n} \rightarrow\{+1,-1\}$. This is the alternating group A_{n}.

Determinants

Leibniz Determinant: Let R be a commutative ring and $n \in \mathbb{N}$. The determinant is a mapping det $: \operatorname{Mat}(n ; R) \rightarrow R$ from square matrices with coefficients in R to the ring R that is given by the following:

$$
A \mapsto \operatorname{det}(A)=\sum_{\sigma \in \mathcal{G}_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \ldots a_{n \sigma(n)}
$$

Bilinear Forms: Let U, V, W be F-vector spaces. A bilinear form on $U \times V$ with values in W is a mapping $H: U \times V \rightarrow W$ which satisfies:

- $H\left(u_{1}+u_{2}, v_{1}\right)=H\left(u_{1}, v_{1}\right)+H\left(u_{2}, v_{1}\right)$
- $H\left(\lambda u_{1}, v_{1}\right)=\lambda H\left(u_{1}, v_{1}\right)$
- $H\left(u_{1}, v_{1}+v_{2}\right)=H\left(u_{1}, v_{1}\right)+H\left(u_{1}, v_{2}\right)$
- $H\left(u_{1}, \lambda v_{1}\right)=\lambda H\left(u_{1}, v_{1}\right)$

It is symmetric if $U=V$ and $H(u, v)=H(v, u)$ for all $u, v \in U$. Antisymmetric/alternating if $U=V$ and $H(u, u)=0$ for all $u \in U$.

Multilinear Forms: Let V_{1}, \ldots, V_{n}, W be F-vector spaces. A mapping $H: V_{1} \times V_{2} \times \ldots \times V_{n} \rightarrow W$ is a multilinear form if for each j the mapping $V_{j} \rightarrow W$ defined by $v_{j} \mapsto H\left(v_{1}, \ldots, v_{j}, \ldots, v_{n}\right)$ with the $v_{i} \in V_{i}$ arbitrary fixed vectors of V_{i} for $i \neq j$, is linear. Alternating MLF: Let V and W be F-vector spaces. A multilinear form $H: V \times \ldots \times V \rightarrow W$ is alternating if it vanishes
on every n-tuple of elements of V that has at least two entries equal, i.e. if

$$
\left(\exists i \neq j \text { with } v_{i}=v_{j}\right) \rightarrow H\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right)=0
$$

Characterisation of the Determinant: Let F be a field The mapping det : $\operatorname{Mat}(n ; F) \rightarrow F$ is the unique alternating multilinear form on n-tuples of column vectors with values in F that takes the value 1_{F} on the identity matrix.

Rules for Determinants

Multiplicativity of the Determinant: Let R be a commutative ring and let $A, B \in \operatorname{Mat}(n ; R)$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Determinantal Criterion for Invertibility: The determinant of a square matrix with entries in a field F is non-zero iff the matrix is invertible.
Consequences: If A is invertible then $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$ and if B is a square matrix then $\operatorname{det}\left(A^{-1} B A\right)=\operatorname{det}(B)$
Lemma 4.4.4: The determinant of a square matrix and of the transpose of the square matrix are equal, i.e. $\forall A \in \operatorname{Mat}(\mathrm{n} ; \mathrm{R})$ with R a commutative ring:

$$
\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)
$$

Cofactors: Let $A \in \operatorname{Mat}(n ; R)$ for some commutative ring R, and i and j be integers between 1 and n. Then the (i, j) cofactor of A is $C_{i j}=(-1)^{i+j} \operatorname{det}(A\langle i, j\rangle)$ where $A\langle i, j\rangle$ is the matrix obtained from A by deleting the i-th row and j-th column.

Laplace's Expansion of the Determinant: For a fixed i the i-th row expansion of the determinant is:

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} C_{i j}
$$

and for a fixed j the j-th column expansion of the determinant is:

$$
\operatorname{det}(A)=\sum_{i=1}^{n} a_{i j} C_{i j}
$$

Adjugate Matrix: Let $A \in \operatorname{Mat}(n ; R)$ for a commutative ring R. The adjugate matrix $\operatorname{adj}(A)$ is the $(n \times n)$-matrix whose entries are $\operatorname{adj}(A)_{i j}=C_{j i}$.
Cramer's Rule: Let A be an $(n \times n)$-matrix with entries in a commutative ring R . Then:

$$
A \cdot \operatorname{adj}(A)=(\operatorname{det} A) I_{n}
$$

Invertibility of Matrices: A square matrix with entries in a commutative ring R is invertible iff its determinant is a unit in R. i.e. $A \in \operatorname{Mat}(n ; R)$ is invertible iff $\operatorname{det}(A) \in R^{\times}$
Eigenspace: For any $\lambda \in F$, the eigenspace of f with eigenvalue λ is:

$$
E(\lambda, f)=\{\vec{v} \in V: f(\vec{v})=\lambda \vec{v}\}
$$

Eigenvalues and Eigenvectors

Eigenval/vec: Let $f: V \rightarrow V$ be an endomorphism of an F-vector space V. A scalar $\lambda \in F$ is an eigenvalue of f iff there exists a non-zero vector $\vec{v} \in V$ such that $f(\vec{v})=\lambda \vec{v}$ where \vec{v} is the eigenvector.

Eigenspace: of f with eigenvalue λ is:

$$
E(\lambda, f)=\{\vec{v} \in V: f(\vec{v})=\lambda \vec{v}\}
$$

Existence of Eigenvalues: Each endomorphism of a non-zero finite dimensional vector space over an algebraically closed field has an eigenvalue.
Characteristic Polynomial: Let R be a commutative ring and let $A \in \operatorname{Mat}(n ; R)$ be a square matrix with entries in R The polynomial $\operatorname{det}\left(A-x I_{n}\right) \in R[x]$ is called the characteristic polynomial, denoted by:

$$
\chi_{A}(x):=\operatorname{det}\left(A-x I_{n}\right)
$$

Characteristic Poly and Eigenvalues: Let F be a field and $A \in \operatorname{Mat}(n ; F)$ a square matrix with entries in F. The eigenvalues of the linear mapping $A: F^{n} \rightarrow F^{n}$ are exactly the roots of the characteristic polynomial χ_{A}

Special Matrices

Triangularisable: Let $f: V \rightarrow V$ be an endomorphism of a finite dimensional F-vector space V. When the characteristic polynomial $\chi_{f}(x)$ of f decomposes into linear factors in $F[x]$. Diagonalisable: An endomorphism $f: V \rightarrow V$ of an F-vector space V is diagonalisable iff there exists a basis of V consisting of eigenvectors of f.
Cayley-Hamilton Theorem: Let $A \in \operatorname{Mat}(n ; R)$ be a square matrix with entries in a commutative ring R. Then evaluating its characteristic polynomial $\chi_{A}(x) \in R[x]$ at the matrix A gives zero.

Google

Markov Matrix: (or a stochastic matrix) is a matrix M whose entries are non-negative and such that the sum of the entries of
each column equals 1
Perron: if $M \in \operatorname{Mat}(n ; \mathbb{R})$ is a Markov matrix with positive entries, then the eigenspace $E(1, M)$ is one dimensional. i.e there exists a unique basis vector $\vec{v} \in E(1, M)$ all of whose entries are positive real numbers, $v_{i}>0$ for all i, and such that the sum of it's entries are 1.

Inner Product Spaces

Inner Product: Let V be a vector space over \mathbb{R}. An inner product on V is a mapping

$$
(-,-): V \times V \rightarrow \mathbb{R}
$$

That satisfies the following for all $\vec{x}, \vec{y}, \vec{z} \in V$ and $\lambda, \mu \in \mathbb{R}$:

- $(\lambda \vec{x}+\mu \vec{y}, \vec{z})=\lambda(\vec{x}, \vec{z})+\mu(\vec{y}, \vec{z})$
- $(\vec{x}, \vec{y})=(\vec{y}, \vec{x})$
- $(\vec{x}, \vec{x}) \geq 0$, with equality iff $\vec{x}=\overrightarrow{0}$

Inner Product: Let V be a vector space over \mathbb{C}. An inner product on V is a mapping

$$
(-,-): V \times V \rightarrow \mathbb{C}
$$

That satisfies the following for all $\vec{x}, \vec{y}, \vec{z} \in V$ and $\lambda, \mu \in \mathbb{C}$:

- $(\lambda \vec{x}+\mu \vec{y}, \vec{z})=\lambda(\vec{x}, \vec{z})+\mu(\vec{y}, \vec{z})$
- $(\vec{x}, \vec{y})=\overline{(\vec{y}, \vec{x})}$
- $(\vec{x}, \vec{x}) \geq 0$, with equality iff $\vec{x}=\overrightarrow{0}$

Length: In a real or complex inner product space the length or inner product norm $\|\vec{v}\| \in \mathbb{R}$ of a vector is:

$$
\|\vec{v}\|=\sqrt{(\vec{v}, \vec{v})}
$$

Orthogonal: Two vectors \vec{v}, \vec{w} are orthogonal written $\vec{v} \perp \vec{w}$, iff $(\vec{v}, \vec{w})=0$.
Orthonomal Family: A family $\left(\vec{v}_{i}\right)_{i \in I}$ for vectors from an inner product space is an orthonormal family if all vectors \vec{v}_{i} have length 1 and if they are pairwise orthogonal to each other, which means:

$$
\left(\vec{v}_{i}, \vec{v}_{j}\right)=\delta_{i j}
$$

An orthonormal family that is a basis is an orthonormal basis.

Orthogonal Complements and Projections

Orthorgonality: Let V be an inner product space and let $T \subseteq V$ be an arbitrary subset. Define:

$$
T^{\perp}=\{\vec{v} \in V: \vec{v} \perp \vec{t} \forall \vec{t} \in T\}
$$

Calling this set the orthogonal to T.
Proposition 5.2.2: Let V be an inner product space and let U be a finite dimensional subspace of V. Then U and U^{\perp} are complementary, i.e.

$$
V=U \oplus U^{\perp}
$$

Definition 5.2.3: Let U be a finite dimensional subspace of an inner product space V. The space U^{\perp} is the orthogonal complement to U. The orthogonal projection from V onto U is the mapping $\pi_{U}: V \rightarrow V$ that sends $v=p+r$ to p.
Cauchy-Schwarz inequality: Let \vec{v}, \vec{w} be vectors in an inner product space. Then

$$
|(\vec{v}, \vec{w})| \leq\|\vec{v}|\|\mid \vec{w}\|
$$

With equality iff they are linearly dependent.
Proof: If $y=0$, then it's true, so assume otherwise.
Let $z=x-\frac{(x, y)}{(y, y)} y$. Then $(z, y)=0$. So $\|x\|^{2}=\left\|z+\frac{(x, y)}{(y, y)} y\right\|^{2}=$ $\|z\|^{2}+\frac{(x, y)^{2}}{(y, y)^{2}}\|y\|^{2}=\|z\|^{2}+\frac{(x, y)^{2}}{\|y\|^{2}} \geq \frac{(x, y)^{2}}{\|y\|^{2}}$

$$
x_{1} y_{1}+\cdots+x_{n} y_{n} \leqslant \sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \sqrt{y_{1}^{2}+\cdots y_{n}^{2}}
$$

The Norm: Satisfies:

- $\|\vec{v}\| \geq 0$ with equality iff $\vec{v}=\overrightarrow{0}$
- $\|\lambda \vec{v}\|=|\lambda|\|\vec{v}\|$
- $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\|$, the triangle inequality

Gram-Schmidt Process: The Gram-Schmidt Formulae are:

$$
\vec{w}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}, \vec{w}_{2}=\frac{\vec{v}_{2}-\left(\vec{v}_{2}, \vec{w}_{1}\right) \vec{w}_{1}}{\left\|\vec{v}_{2}-\left(\vec{v}_{2}, \vec{w}_{1}\right) \vec{w}_{1}\right\|}
$$

Projection operator:

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{(\mathbf{u}, \mathbf{v})}{(\mathbf{u}, \mathbf{u})} \mathbf{u}
$$

Gram-schmidt Process:

$$
\mathbf{u}_{1}=\mathbf{v}_{1}, \quad \mathbf{e}_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}
$$

$\mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{2}\right), \quad \mathbf{e}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}$

$$
\mathbf{u}_{3}=\mathbf{v}_{3}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{3}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{3}\right)
$$

$$
\mathbf{e}_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}
$$

Adjoints and Self-Adjoints

Adjoint: Let V be an inner product space. Then two endomorphisms $T, S: V \rightarrow V$ are adjoint if for all $\vec{v}, \vec{w} \in V$:

$$
(T \vec{v}, \vec{w})=(\vec{v}, S \vec{w})
$$

In this case $S=T^{*}$ and we call S the adjoint of T. SelfAdjoint: An endomorphism of an inner product space $T: V \rightarrow$ V is self-adjoint if it equals its own adjoint, i.e if $T^{*}=T$.
Theorem: $T^{*} T$ is self adjoint.
Proof: $\quad\left(\left(T^{*} T\right) x, y\right)=\left(y, T^{*} T x\right)=(T y, T x)=(T x, T y)=$ $\left(x, T^{*} T y\right) \forall x, y \in V$ so $\left(T^{*} T\right)^{*}=T^{*} T$
Theorem: $\operatorname{ker}\left(T^{*}\right)=(\operatorname{im} T)^{\perp}$
Proof: $x \in(\operatorname{im} T)^{\perp} \Longleftrightarrow \forall y \in \operatorname{im} T \quad(y, x)=0$
$\Longleftrightarrow \forall v \in V \quad(T v, x)=0$
$\Longleftrightarrow \forall v \in V \quad\left(v, T^{*} x\right)=0$
$\Longleftrightarrow T^{*} x=0 \Longleftrightarrow x \in \operatorname{ker} T^{*}$
Definition 5.3.7: Let $T: V \rightarrow V$ be a self-adjoint linear mapping on an inner product space V. Then: (1) Every eigenvalue of T is real. (relevant for $F=\mathbb{C}$
(2) If λ and μ are distinct eigenvalues of T with eigenvectors v, w, then $(v, w)=0$
(3) T has an eigenvalue. (relevant for $F=\mathbb{R}$)

Spectral Theorem for Self-Adjoint Endomorphisms: Let V be a finite dimensional inner product space and let $T: V \rightarrow V$ be a self-adjoint linear mapping. Then V has an orthonormal basis consisting of eigenvectors of T.
Spectral Theorem for Real Symmetric Matrices: Let A be a real $(n \times n)$-symmetric matrix. Then there is an $(n \times n)$ orthogonal matrix P such that:

$$
P^{T} A P=P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Where $\lambda_{1}, \ldots, \lambda_{n}$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity.
Spectral Theorem for Hermitian Matrices:Let A be a real $(n \times n)$-hermitian matrix. Then there is an $(n \times n)$-unitary matrix P such that:

$$
\bar{P}^{T} A P=P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Where $\lambda_{1}, \ldots, \lambda_{n}$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity.
Hermitian Matrix: A complex square matrix such that $A=$

Jordan Normal Form

Nilpotent Jordan Block of size r: Define an $(r \times r)$-matrix $J(r)$, by the rule $J(r)_{i j}=1$ for $j=i+1$ and $J(r)_{i j}=0$ otherwise. If $r=1$ then we get a (1×1) zero matrix.
Jordan Block of size \mathbf{r} and eigenvalue of λ : with $\lambda \in F$, with the rule

$$
J(r, \lambda)=\lambda I_{r}+J(r)=D+N
$$

such that $D N=N D$
Theorem 6.2.2: Let F be an algebraically closed field. Let V be a finite dimensional vector space and let $\phi: V \rightarrow V$ be an endomorphism of V with characteristic polynomial:

$$
\begin{aligned}
\chi_{\phi}(x)= & \left(\lambda_{1}-x\right)^{a_{1}}\left(\lambda_{2}-x\right)^{a_{2}} \ldots\left(\lambda_{s}-x\right)^{a_{s}} \\
& \in F[x]\left(a_{i} \geqslant 1, \sum_{i=1}^{s} a_{i}=n\right)
\end{aligned}
$$

For distinct $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s} \in F$. Then there exists an ordered basis \mathcal{B} of V such that the matrix of ϕ wrt the basis \mathcal{B} is block diagonal with Jordan blocks on the diagonal.
$\mathcal{B}[\phi]_{\mathcal{B}}=\operatorname{diag}\left(J\left(r_{11}, \lambda_{1}\right), \ldots, J\left(r_{1 m_{1}}, \lambda_{1}\right), J\left(r_{21}, \lambda_{2}\right), \ldots, J\left(r_{s m_{s}}, \lambda_{s}\right)\right)$
With $r_{21}, \ldots, r_{1 m_{1}}, r_{21}, \ldots, r_{s m_{s}} \geq 1$ such that:

$$
a_{i}=r_{i 1}+r_{i 2}+\cdots+r_{i m_{i}}(1 \leqslant i \leqslant s)
$$

Lemma 6.3.1: There exists polynomials $Q_{j}(x) \in F[x]$ such that:

$$
\sum_{j=1}^{s} P_{j}(x) Q_{j}(x)=1
$$

Definitions

Row Echelon Form:
-Leading entry in each row $=1$
-Each leading entry is in a column to the right of the leading entry in the previous row
-Rows with all zeros below others

Reduced Row Echelon:

-Same as REF
-The leading entry in each row is the only non zero entry in it's column
Associative: $(a \times b) \times c=a \times(b \times c)$
Commutative: $a \times b=b \times a$
Distributive Law: $a \times(b+c)=a \times b+a \times c$
Monic Polynomial: When it's leading coefficient is 1
Monoid: Associative, closed and has an identity

Tranposition: A permutation that swaps two elements of the set and leaves all the others unchanged
Kronecker Delta: $\quad \delta_{i, j}=\left\{\begin{array}{ll}1 & i=j \\ 0 & \text { otherwise }\end{array}\right.$ Injective: $\forall x, x^{\prime} \in$
$X, f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}$ $X, f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}$
Surjective: $\forall y \in Y, \exists x \in X$ such that $y=f(x)$
Idempotent: If $f=f^{2}$
Counterclockwise Rotation Matrix: $\left(\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$
Notation: let $a \in \mathbb{R} \backslash 0$ then let $[a] \in\{+1,-1\}$ be the sign of a.
Endomorphism: A morphism from something to itself. Unitary Matrix: Let $P \in \operatorname{Mat}(m, \mathbb{C}) . P$ is uniatary if $\bar{P}^{T} P=$ identity. i.e $P^{-1}=\bar{P}^{T}$

Examples

- Trace: If two matrices have different traces, then they cannot represent the same endomorphism. Since the trace of a linear mapping is well defined, because $\operatorname{tr}\left(P^{-1} M P\right)=\operatorname{tr}(M)$ for any matrix M and invertible matrix P (i.e. a change of basis matrix P).
- Symmetric bilinear form: dot product on \mathbb{R}^{2}
- Alternating bilinear form: cross product on \mathbb{R}^{3}
- Alternating MLF on $V \times V \ldots \mathrm{n}$ times: determinant of a real $n \times n$ matrix.
- f is injective iff ker $=\{0\}$
- Non zero polynomial with more roots than degrees: $2\left(X^{2}+X\right) \in \mathbb{Z} / 4 \mathbb{Z}$
- Ring where not every ideal is a principal ideal: $\mathbb{Z}[X]$
- An ideal in a ring that is not principal: $\mathbb{Z}[X]<2, X>$
- Commutative ring that is not an integral domain: $\mathbb{Z} / 4 \mathbb{Z}$
- Basis for $\mathbb{C}:(1, i)$.
- Inner Product on $\mathbb{C}:\left(\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right)=z_{1} \bar{z}_{2}+w_{1} \bar{w}_{2}$
- Inner Product on $\left.\mathbb{C}^{2}:\left(\left(z_{1}, w_{1}\right), z_{2}, w_{2}\right)\right)=z_{1} \bar{z}_{2}+w_{1} \bar{w}_{2}$
- Inner Product on $\mathbb{C}^{3}: \sum_{i=1}^{3} x_{i} \bar{y}_{i}$
- A self-adjoint operator on \mathbb{C}^{3} with respect to the inner product above: identity
- A non self-adjoint operator on \mathbb{C}^{3} with respect to the inner product above: $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
- Inner Product on $\mathbb{R}[X]$:

$$
(P, Q)=\int_{a}^{b} P(X) Q(X) d X
$$

- A non-zero symmetric bilinear form which is not an inner product: $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} x_{2}$
- A non symmetric bilinear form on \mathbb{R}^{2} : $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} y_{2}-x_{2} y_{1}$
- Non-invertible matrix whose determinant is not zero: $2 \in$ $\operatorname{Mat}(1, \mathbb{Z})$
- Diagonalisable Matrix: $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
- Non-Diagonalisable Matrix: $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
- A matrix with entries in \mathbb{C} which is a Jordan block of size 3 and eigenvalue not equal to 0 or 1 : $\left[\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$
- Invertible with trace $=0:\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
- No Eigenvalue Matrix: $\left[\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right]$
- A (3×3)-matrix all of whose entries are positive and real and that has exactly one eigenvalue equal to 1 : $\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
- For a finite dimensional inner product space $(V,(-,-))$ and a subspace $U \subseteq V$ the orthogonal subspace to $U \subseteq V$ is:

$$
U^{\perp}=\{\vec{v} \in V \mid(\vec{u}, \vec{v})=0 \text { for all } \vec{u} \in U\} \subseteq V
$$

The dimensions are:

$$
\operatorname{dim}\left(U \cap U^{\perp}\right)=0, \operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)
$$

[^0]: - $a b=0 \Longrightarrow a=0$ or $b=0$

