William Bevington

Chapter One - Vector spaces

Definition. A field *F* is a set with functions + and \times such that $G_+ := (F, +)$ and $G_{\times} := (F \setminus \{0_F\}, \times)$ are abelian groups with $id_{G_{\times}} = 1_F$, $id_{G_+} := 0_F$ and for $\lambda, \mu, \nu \in F$ we have that $\lambda(\mu + \nu) = \lambda \mu + \lambda \nu$.

Definition. A vector space *V* over a field *F* is a pair $(V, \dot{+})$ where *V* is a set and $\dot{+}: F \times V \to V : (\lambda, \vec{v}) \mapsto \lambda \vec{v}$ is a map where for $\lambda, \mu \in F$ and $\vec{u}, \vec{v} \in V$:

•
$$\lambda(\vec{u}+\vec{v}) = \lambda\vec{u}+\lambda\vec{v},$$
 • $\lambda(\mu\vec{v}) = (\lambda\mu)\vec{v},$

• $(\lambda + \mu)\vec{v} = \lambda\vec{v} + \mu\vec{v},$ • $1_F\vec{v} = \vec{v}.$

Theorem (1.2.2). If V is a vector space and $\vec{v} \in V$, then $0\vec{v} = \vec{0}$.

Proof. $0\vec{v} = (0+0)\vec{v} = 0\vec{v} + 0\vec{v} \Rightarrow \vec{0} = 0\vec{v}.$

Definition. A subset $U \subseteq V$ of a vector space V is a vector subspace if U contains $\vec{0}$ and $\vec{u}, \vec{v} \in U, \lambda \in F \Rightarrow \vec{u} + \vec{v} \in U$ and $\lambda \vec{u} \in U$.

Theorem. Let $T \subseteq V$, then $\langle T \rangle := \{\sum_{\alpha_i \in F} \alpha_i \vec{v}_i : \vec{v}_i \in T\}$ is a subspace of *V*. If $V = \langle T \rangle$ then *T* is a generating set of *V*.

Definition. A subset *L* of a vector space *V* is **linearly independent** if for all pairwise different vectors $\vec{v}_1, \ldots, \vec{v}_r \in L$ and arbitrary scalars $\alpha_1, \ldots, \alpha_r \in F$, we have that $\alpha_1 \vec{v}_1 + \cdots + \alpha_r \vec{v}_r = \vec{0} \implies \forall i : \alpha_i = 0$.

Definition. A **basis** of a vector space V is a linearly independent generating set of V.

Theorem (1.5.11). Let V be a vector space over a field F and $\vec{v}_1, \ldots, \vec{v}_r \in V$ vectors. The family $(\vec{v}_i)_{1 \le i \le r}$ is a basis of V if and only if $\phi : F^r \to V : (\alpha_1, \ldots, \alpha_r) \mapsto \sum_{i=1}^r \alpha_i \vec{v}_i$ is a bijection.

Proof. $(\vec{v}_i)_{1 \le i \le r}$ is a generating set $\Leftrightarrow \phi$ is a surjection $F^r \to V$. $(\vec{v}_i)_{1 \le i \le r}$ is linearly independent $\Leftrightarrow \phi$ is a injection $F^r \to V$. $(\vec{v}_i)_{1 \le i \le r}$ is a basis $\Leftrightarrow \phi$ is a bijection $F^r \to V$.

Theorem (1.5.13). *Let V be a finitely generated vector space over a field F*, *then V has a basis.*

Theorem. If V is a vector space, $L \subset V$ a linearly independent subset and $E \subseteq V$ a generating set, then $|L| \leq |E|$.

Theorem (1.6.1). *The Fundamental estimate of linear algebra* gives that if *L* is a linearly-independent set of vectors in *V* and *E* is a generating set $V = \langle E \rangle$ then $|L| \leq |E|$.

Chapter Two - Linear mappings

Theorem (2.1.1). Let F be a field and $m, n \in \mathbb{N}$ then there is a bijection $\operatorname{Hom}_F(F^m, F^n) \to \operatorname{Mat}(m \times n; F) : f \to [f]$ associating a matrix to every linear mapping.

Definition. The **matrix product** is defined for $A \in Mat(m \times l; F)$, $B \in Mat(l \times n)$ as

$$(AB)_{ik} = \sum_{i=1}^{l} A_{ij} B_{jk}.$$

Theorem. *The composition of linear maps is the product of their matricies;* $[f \circ g] = [f][g]$.

Definition. A matrix $M \in Mat(n \times n; F)$ is **invertible** if there exist matricies $A, B \in Mat(n \times n; F)$ with $AM = MB = \mathbb{I}$.

Theorem. The set of invertible matricies form a group $GL(n;F) := Mat(n;F)^{\times}$.

Definition. A square matrix $M \in Mat(n; F)$ is **elementary** if it differs from the identity by at most one entry.

Theorem (Exchange Lemma). Let $M \subseteq E \subseteq V$ be such that M is linearly independent and $V = \langle E \rangle$. If $\vec{w} \in V \setminus M$ is such that $M \cup \{\vec{w}\}$ is linearly independent, then $\exists \vec{e} \in E \setminus M$ such that $V = \langle (E \setminus \{\vec{e}\}) \cup \{\vec{w}\} \rangle$. Thus any two bases for V must have the same cardinality.

Definition. The **dimension** of a vector space V is the cardinality of any basis of V (by the exchange-lemma this is independent of choice of basis).

Theorem (The Dimension Theorem). Let V be a vector space with subspaces $U, W \subseteq V$. Then $\dim(U+V) + \dim(U \cap V) = \dim(U) + \dim(V)$.

Proof. Choose a basis $\vec{s_1}, \ldots, \vec{s_d}$ of $U \cap W$ and extend it by the elements $\vec{u_1}, \ldots, \vec{u_r} \in U$ to a basis of U and then by the elements $\vec{w_1}, \ldots, \vec{w_t} \in W$ to a basis of U + W. Then show that $\{\vec{s_1}, \ldots, \vec{s_d}, zvecw_1, \ldots, \vec{w_t}\}$ is a basis of W. It's linearly independent by construction, so show that it's generating.

Definition. A mapping $f: V \to W$ between vector spaces V, W is **linear** iff $\forall \vec{u}, \vec{v} \in V : f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v})$ and $\forall \lambda \in F : f(\lambda \vec{v}) = \lambda f(\vec{v})$. If *f* is bijective then it's an **isomorphism**, if V = W then *f* is an **endomorphism** and if both of these hold then *f* is an **automorphism**.

Theorem. Let $n \in \mathbb{N}$ and V be vector space over a field F, then V is isomorphic to F^n iff dim(V) = n.

Theorem (1.7.8). Let *V*, *W* be vector spaces over *F* and let $B \subset V$ be a basis. Then Hom(*V*, *W*) $\xrightarrow{\sim}$ Maps(B, W) : $f \mapsto f|_B$.

Theorem (1.7.9). Let $f: V \to W$ be a linear map. If f is injective then it has a left inverse, if f is surjective then it has a right inverse.

Definition. Let $f: U \to V$ be linear. The **image** of f is $im(f) := f(U) = \{\vec{v} \in V : \exists \vec{u} \in U, \vec{v} = f(\vec{u})\}$. The **kernel** of f is the pre-image $ker(f) := f^{-1}(\vec{0})$. We have $im(f) \subseteq V$ and $ker(f) \subseteq U$ are subspaces.

Theorem (1.8.2). A linear mapping $f : V \to W$ is injective if and only *if its kernel is zero.*

Theorem (Rank-Nullity). Let $f: V \to W$ be a linear mapping between vector spaces. Then $\dim(V) = \dim(\ker(f)) + \dim(\operatorname{im}(f))$.

Theorem (2.2.3). *Every square matrix can be written as a product of elementary matricies.*

Definition. A matrix is in **Smith-normal form** if it has either a one or zero on the diagonal entries and zeros everywhere else. (2.2.5) every matrix *M* has invertible *P*,*Q* such that *PMQ* is in Smith-normal form.

Definition. The **column rank** (resp. **row rank**) of a matrix *M* is the dimension of the span of the coloumns (resp rows) of *A*.

Theorem (2.2.7). For any matrix, the column and row ranks are equal.

Definition. Let *F* be a field with *V*, *W* vector-spaces over *F* with ordered bases $\mathscr{A} = (\vec{v}_1, \ldots, \vec{v}_m)$ and $\mathscr{B} = (\vec{u}_1, \ldots, \vec{u}_n)$ respectively. Then the **representing matrix** $\mathscr{B}[f]_{\mathscr{A}} = [a_{ij}]$ with

$$a_{ij}=f(\vec{v}_j):=a_{1j}\vec{u}_1+\cdots+a_{nj}\vec{u}_n.$$

Theorem (2.3.4). Let *V*, *W* be vector-spaces over *F* with bases \mathscr{A}, \mathscr{B} respectively and $f \in \text{Hom}(V, W)$. Then $\mathscr{B}[f(\vec{v})] = \mathscr{B}[f]_{\mathscr{A}} \circ \mathscr{A}[\vec{v}]$.

Theorem (2.4.4). Let $f \in \text{Hom}(V, V)$ be an endomorphism and $\mathscr{A}, \mathscr{A}'$ be bases of V. Then the **change of basis** formula is $_{\mathscr{A}'}[f]_{\mathscr{A}'} = _{\mathscr{A}}[id_V]_{\mathscr{A}'}^{-1} \mathscr{A}[f]_{\mathscr{A}} \mathscr{A}[id_V]_{\mathscr{A}'}^{-1}$.

Chapter Three - Rings and modules

Definition. A ring is a set with two operations $(R, +, \cdot)$ such that

- (R, +) is an abelian group,
- (R, \cdot) is a **monoid** (associative with identity),
- · distributes over +; $a \cdot (b+c) \cdot d = a \cdot b \cdot d + a \cdot c \cdot d$.

Definition. A field is a commutative ring with inverses.

Theorem (3.1.11). *The ring* $\mathbb{Z}/m\mathbb{Z}$ *is a field iff m is prime.*

Definition. An element $a \in R$ for a ring R is a **unit** if it is invertible. We define R^{\times} as the **group of units**.

Definition. An element $a \in R$ for a ring R is a **zero-divisor** if $\exists b \in R$: $b \neq 0$ and ab = 0 or ba = 0.

Definition. An **integral domain** is a non-zero commutative ring with no zero-divisors.

Theorem. If *I* is an integral domain then $ab = 0 \implies a = 0$ or b = 0. Moreover (3.2.16), if ab = ac and $a \neq 0$ then b = c.

Theorem (3.2.18). Every finite integral domain is a field.

Definition. The **ring of polynomials** with coefficients in a ring R is denoted R[X].

Theorem (3.3.3). *If* R *is a ring with no zero-divisors then* R[X] *has no zero-divisors and* $\deg(PQ) = \deg(P) + \deg(Q)$. *If* R *is an integral domain then so is* R[X].

Theorem (3.3.4). *Let* R *be an integral domain with* $P, Q \in R[X]$ *with* Q(X) *monic (leading term has coefficient one). Then* $\exists !A, B \in R[X]$: P = AQ + B with deg $(B) < \deg(Q)$ or B = 0.

Definition. The evaluation of $P \in R[X]$ at $\lambda \in R$ is $P(\lambda)$, the image of $\varepsilon : R[X] \to \text{Maps}(R, R)$. Then λ is a **root** if $P(\lambda) = 0$.

Theorem (3.3.9). *Let* R *be a commutative ring, then* $\lambda \in R$ *is a root of* $P \in R[X]$ *iff* $(X - \lambda)$ *divides* P(X).

Theorem (3.3.10). *If* $P \in R[X]$ *then* P *has at most* deg(P) *roots in* R.

Definition. A field is **algebraically closed** if every non-constant polynomial has a root.

Theorem. The fundamental theorem of algebra is that \mathbb{C} is algebraically closed.

Theorem (3.3.14). *If* F *is an algebraically closed field then any non*zero polynomial $P(X) \in F[X]$ can be decomposed into linear factors; $P(X) = c(X - \lambda_1) \dots (X - \lambda_n).$

Definition. Let *R* and *S* be rings, then $f : R \to S$ is a **ring homomorphism** if $\forall x, y \in R : f(x+y) = f(x) + f(y)$ and f(xy) = f(x)f(y).

Theorem (3.4.5). Let $f \in \text{Hom}(R,S)$ be a ring-homomorphism. Then $f(0_R) = 0_S$, f(-x) = -f(x) and f(x-y) = f(x) - f(y).

Definition. A subset of a ring $\emptyset \neq I \subseteq R$ is an **ideal** of *R* if *I* is closed under subtraction and $\forall i \in I, r \in R : ir, ri \in I$.

Definition. The ideal generated by a subset $T \subseteq R$ is $_R\langle T \rangle := \{r_1t_1 + \ldots r_nt_n : \forall ir_i \in R \text{ and } t_i \in T\}$. It is the *smallest* ideal of *R* that contains *T* (prop 3.4.14).

Definition. An ideal *I* is a principle ideal if it's generated by one element, $I = \langle t \rangle$.

Theorem. The subring test gives that $R' \subset R$ is a subring of R iff

- *R'* has a multiplicative identity
- R' is closed under subtraction
- R' is closed under scaler multiplication

Theorem (2.4.29). If $f : \mathbb{R} \to S$ is a ring homomorphism then im(f) is a subring of S. Further, if $f(1_{\mathbb{R}}) = 1_{S}$ and x is a unit in \mathbb{R} then $f(x^{-1}) = f(x)^{-1}$, so f restricts to the group homomorphism $f^{\times} : \mathbb{R}^{\times} \to S^{\times}$.

Definition. A relation \sim is an **equivalence relation** iff

- ~ is Reflexive; $x \sim x$
- ~ is Symmetric; $x \sim y \implies y \sim x$
- ~ is transitive; $(x \sim y \text{ and } y \sim z) \implies x \sim z$.

Definition. If \sim is an equivalence relation then the **equivalence class** of *x* is $E(x) := \{y : x \sim y\}.$

Definition. The set of equivalence classes is $(X/\sim) \subseteq \mathscr{P}(X)$, with canonical map can $:X \to (X/\sim), x \mapsto E(x)$.

A map $g : (X/\sim) \to Z$ is **well-defined** if $\exists f : X \to Z$ such that $x \sim y \implies f(x) = f(y)$ and *f* restricts to *g*.

Definition. Let *I* be an ideal of *R*, then the **coset of** *I* is $x+I := \{x+i : i \in I\}$.

Definition. Let *I* be an ideal of *R* and \sim be defined by $x \sim y \Leftrightarrow x - y \in I$ then $R/I = (R/\sim)$ is the **factor/quotient ring of** *R* by *I*.

Theorem. The first isomorphism theorem is that for rings R, S we have $\forall f \in \text{Hom}(R, S) : \overline{f} : R/\ker ftoim(f)$.

Definition. A (left) module over **R** is a pair $(M, \dot{+})$ and mapping $R \times M \rightarrow M, (r, a) \rightarrow ra$ such that for $a, b \in M$ and $r, s \in R$:

- $r(a \dot{+} b) = (ra) \dot{+} (rb)$,
- $(r+s)a = (ra)\dot{+}(sa)$,
- r(sa) = (rs)a, and
- $1_R a = a$.

Theorem (3.7.8). If M is an R-module then $\forall a \in M : 0_R a = 0_M$, $\forall r \in R : r0_M = 0_M$ and (-r)a = r(-a) = -(ra).

Theorem (3.7.21). Let M, N be R-modules with $f \in \text{Hom}(M, N)$, then ker f is a sub-module of M and im(f) is a sub-module of N. Moreover (3.7.22) f is injective iff ker $f = \{0_M\}$.

Theorem (3.7.29). *The intersection of any collection of sub-modules of* M *is a sub-module of* M.

Definition. Let *N* be a sub-module of *M*. The set $a + N := \{a + b : b \in N\}$ is the **coset of** *M* by *N*, which defines the **quotient** (M/\sim) .

Theorem. Let *R* be a ring with *L*, *M* being *R*-modules and $N \subseteq M$ a sub-module of *M*. The canonical map can : $M \to M/N$ is a surjective *R*-homomorphism with kernel *N*, and if $f(N) = \{0_L\}$ (i.e. $N \subseteq \ker f$) then $\exists ! \overline{f} : M/N \to L$ such that $f = \overline{f} \circ can$.

Theorem. The **First Isomorphism Theorem**. Let R be a ring with modules M and N, then $\forall f \in \text{Hom}(M,N)$ there is an R-isomorphism

$$\overline{f}: M/\ker f \tilde{\to} imf.$$

Chapter Four - Determinants and eigenvalues

Theorem (4.4.7).

Т

n

Definition. The **permutation group** \mathfrak{S}_n is the group of all bijections $\{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.

Definition. An inversion of a permutation $\sigma \in \mathfrak{S}_n$ is a pair (i, j) with $1 \le i < j \le n : \sigma(i) > \sigma(j)$. The length of σ is

$$l(\boldsymbol{\sigma}) := |\{(i,j) : 1 \le i < j \le n, \boldsymbol{\sigma}(i) > \boldsymbol{\sigma}(j)\}|,$$

and the sign of σ is the group-homomorphism $\operatorname{sgn}(\sigma) = (-1)^{l(\sigma)}$ whose kernel is the Alternating group A_n . If $\operatorname{sgn}(\sigma) = +1$ then σ is an even permutation.

Definition. Let *R* be a commutative ring and $n \in \mathbb{N}$. The **determinant** det : Mat $(n \times n; R) \rightarrow R$ is given by

$$\det([a_{ij}]) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}.$$

Definition. Let U, V, W be *F*-vector spaces. A **bilinear form** on $U \times V$ is a mapping $H : U \times V \to W$ such that $\forall \vec{u}_1, \vec{u}_2 \in U, \vec{v}_1, \vec{v}_2 \in V, \lambda \in F$:

- $H(\vec{u}_1 + \vec{u}_2, \vec{v}_1) = H(\vec{u}_1, \vec{v}_1) + H(\vec{u}_2, \vec{v}_1),$
- $H(\lambda \vec{u}_1, \vec{v}_1) = \lambda H(\vec{u}_1, \vec{v}_1),$
- $H(\vec{u}_1, \vec{v}_1 + \vec{v}_2) = H(\vec{u}_1, \vec{v}_1) + H(\vec{u}_1, \vec{v}_2),$
- $H(\vec{u}_1, \lambda \vec{v}_1) = \lambda H(\vec{u}_1, \vec{v}_1).$

A bilinear form is symmetric if $U = V : \forall \vec{u}, \vec{v} \in U : H(\vec{u}, \vec{v}) = H(\vec{v}, \vec{u})$ and is anti-symmetric if $\forall \vec{u} \in U : H(\vec{u}, \vec{u}) = 0 \Leftrightarrow H(\vec{u}, \vec{v}) = -H(\vec{v}, \vec{u})$.

Definition. A mapping $H: V_1 \times \cdots \times V_n \to W$ is a **multilinear form** if it's linear in each entry. It's **alternating** if $H(\dots, \vec{u}, \dots, \vec{u}, \dots) = 0$.

Theorem (4.3.6). *Let* F *be a field. The mapping* det : Mat $(n; F) \rightarrow F$ which is an alternating, multilinear form on $[a_{1i}| \dots |a_{ni}]$ with det $(\mathbb{I}) = 1_F$ is unique.

Theorem (4.4.1,4.4.4).

$$det(AB) = det(A) det(B)$$
 and $det(A^T) = det(A)$.

Definition. Let $A \in Mat(n; R)$ where R is a commutative ring. The (i, j)-cofactor of A is

$$C_{ij} = (-1)^{i+j} \det(A\langle i, j \rangle),$$

where $A\langle i, j \rangle$ is the matrix A with the *i*th row and *j*th column removed.

Theorem (4.4.9). The adjugate matrix is
$$adj(A)_{ij} = C_{ji}$$
 for cofactor matrix C of A. Then Cramer's Rule is that

 $\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}.$

$$A \cdot \operatorname{adj}(A) = \det(A) \mathbb{I}_n.$$

Theorem (4.4.11). A matrix A is *invertible* iff $det(A) \neq 0$.

Definition. If *V* is an *F*-vector space then $\lambda \in V$ is an **eigenvalue** of $f \in \text{End}(V)$ if $\exists \vec{v} \in V : f(\vec{v}) = \lambda \vec{v}$.

Theorem (4.5.4). If $f \in \text{End}(V)$ for V over F which is algebraically closed, then f has eigenvalues.

Definition. Let *R* be a commutative ring, the **characteristic polynomial** of $f \in \text{End}(V)$ is

$$\chi_f(x) = \det([f] - x\mathbb{I}).$$

Theorem (4.5.1). *The roots of the characteristic polynomial of* $f \in$ End(*V*) *are exactly the eigenvalues of* f.

Theorem (4.6.1). Let $f \in \text{End}(V)$ then V has an ordered basis $\mathscr{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ with

$$f(\vec{v}_1) = a_{11}\vec{v}_1,$$

$$f(\vec{v}_1) = a_{12}\vec{v}_1 + a_{22}\vec{v}_2,$$

$$\vdots$$

$$f(\vec{v}_1) = a_{1n}\vec{v}_1 + a_{2n}\vec{v}_2 + \dots + a_{nn}\vec{v}_n$$

if and only if $\chi_f(x)$ decomposes into linear factors. We say f is triangularisable.

Definition. A mapping $f \in \text{End}(V)$ is **diagonalisable** if there exists a basis of *V* consisting of eigenvectors of *f*.

Theorem (4.6.8). If $f \in \text{End}(V)$ has dim(V) distinct eigenvalues then the corresponding eigenvectors are linearly independent.

Theorem (Perran-Frobeneous). Let $M \in Mat(n; \mathbb{R})$ be a markov matrix with positive entries, then the eigenspace E(1,M) is onedimensional with a basis vector \vec{v} such that $\sum_{i=1}^{n} v_i = 1$ (which is unique).

Chapter Five - Inner product spaces

$$|(\vec{u}, \vec{v})| \le ||\vec{u}|| \cdot ||\vec{v}||.$$

Theorem (5.2.6). *Let* V *be a normed inner-product space,* $\vec{v} \in V$ *:*

- $||\vec{v}|| \ge 0$ with equality iff $\vec{v} = \vec{0}$,
- $||\lambda \vec{v}|| = |\lambda| \cdot ||\vec{v}||,$
- $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||.$

Definition. Let *V* be an inner-product space, then $T, S \in \text{End}(V)$ are **adjoint** if for all $\vec{u}, \vec{v} \in V$:

$$(T\vec{u},\vec{v}) = (\vec{u},S\vec{v}).$$

We write $S = T^*$ and say that S is the adjoint of T.

Theorem (5.3.4). *Let* $T \in \text{End}(V)$ *, then* T *has an adjoint.*

Definition. Let $T \in \text{End}(V)$, then T is self-adjoint if $T^* = T$.

Theorem (5.3.7). Let TEnd(V) be self-adjoint, then

- Every eigenvalue of T is real,
- T has at least one eigenvalue,
- *if the eigenvalues are distinct then the eigenvectors are orthogonal.*

Theorem (Spectral). Let V be a finite-dimensional inner-product space and $T \in \text{End}(V)$ be self-adjoint, then V has an orthonormal basis consisting of eigenvectors of T.

Definition. A matrix *P* is **orthogonal** if $P^{-1} = P^T$.

Theorem (Spectral II). Let $A \in Mat(n; \mathbb{R})$ be symmetric. Then there is an orthogonal matrix $P \in Mat(n; \mathbb{R})$ such that $P^T A P$ is diagonal with entries being eigenvalues of A.

Definition. A matrix $A \in Mat(n; \mathbb{C})$ is **unitary** if $P^{-1} = \overline{P}^T$.

Theorem (Spectral III). Let $A \in Mat(n; \mathbb{C})$ be hermitian $(A = \overline{A}^T)$. Then there is a unitary matrix $P \in Mat(n; \mathbb{C})$ such that $\overline{P}^T AP$ is diagonal with entries being eigenvalues of A.

4. Start at the bottom of the diagram, filling row k with the linearly independent eigenvectors in E_{λ}^{k} which **are not in** E_{λ}^{k-1} . Each time you fill in a box with a vector \vec{v}_{k} , fill in every box above with the vectors $\vec{v}_{k+1} = (A - \mathbb{I}\lambda)^{k}\vec{v}$ until you reach the top.

- 5. Repeat steps two to four with different eigenvalues until the diagram is full. Then Q is the matrix whose columns are the topleft vector followed by the vectors below it so the Jordan-normal form is $J = Q^{-1}AQ$.
- 6. In fact you **needn't calculate** *Q*. Each column of the diagram is a Jordan block easy!

Definition. Let *V* be a vector space over
$$\mathbb{R}$$
, an **iner product** of *V* is a mapping

$$(-,-): V \times V \to \mathbb{R}$$

such that $\forall \vec{u}, \vec{v}, \vec{w} \in V$:

- $(\lambda \vec{u} + \mu \vec{v}, \vec{w}) = \lambda(\vec{u}, \vec{w}) + \mu(\vec{v}, \vec{w}),$
- $(\vec{u}, \vec{v}) = (\vec{v}, \vec{u}),$
- $(\vec{u}, \vec{u}) \ge 0$ with equality iff $\vec{u} = \vec{0}$.

Definition. Let *V* be a vector space over \mathbb{C} , an **iner product** of *V* is a mapping

$$(-,-): V \times V \to \mathbb{C}$$

such that $\forall \vec{u}, \vec{v}, \vec{w} \in V$:

- $(\lambda \vec{u} + \mu \vec{v}, \vec{w}) = \lambda(\vec{u}, \vec{w}) + \mu(\vec{v}, \vec{w}),$
- $(\vec{u}, \vec{v}) = \overline{(\vec{v}, \vec{u})},$
- $(\vec{u}, \vec{u}) \ge 0$ with equality iff $\vec{u} = \vec{0}$.

Definition. If $(\vec{u}, \vec{v}) = 0$ then we say \vec{u} and \vec{v} are **orthogonal** and write $\vec{u} \perp \vec{v}$.

Definition. Let *V* be an inner-product space, then the **length** or **norm** of a vector $\vec{v} \in V$ is

$$||\vec{v}|| = \sqrt{(\vec{v}, \vec{v})}.$$

Definition. A family of vectors $(\vec{v}_i)_{i \in I}$ is an **orthonormal family of vectors** if $(\vec{v}_i, \vec{v}_j) = \delta_{ij}$.

Theorem (5.1.10). *Every finite-dimensional inner-product space has an orthonormal basis.*

Definition. Let *V* be an inner-product space with subset $T \subseteq V$, the **orthogonal set to** *T* is $T^{\perp} = \{\vec{v} \in V : \vec{v} \perp \vec{u} \text{ for all } \vec{u} \in T\}.$

Theorem (5.2.2). *Let* U *be a subspace of* V*, then* U *and* U^{\perp} *are complementary;* $U^{\perp} = V \setminus U$ *and* $V = U \otimes U^{\perp}$.

Definition. Let U be a subspace of inner-product space V, then the **orthogonal projection from** V **onto** U is

$$\pi_U: V \to U, \vec{v} = \vec{p} + \vec{r} \mapsto \vec{p}.$$

Chapter Six - Jordan normal form

- 1. Calculate the eigenvalues $\lambda_1, \ldots, \lambda_s$ along with geometric μ_1, \ldots, μ_s and algebraic m_1, \ldots, m_s multiplicities,
- 2. Compute corresponding eigenspaces

$$E_{\lambda}^{k} = \{ \vec{v} \in V : (A - \mathbb{I}\lambda)^{k} \vec{v} = 0 \}$$

3. Compute the following, and draw the chart on the right:

$$d_{1} = \dim(E_{\lambda}^{1}) \qquad \qquad \underbrace{\square \square \square \square}_{d_{1} \text{ boxes}}$$
$$d_{2} = \dim(E_{\lambda}^{2}) - \dim(E_{\lambda}^{1}) \qquad \underbrace{\square \square \square}_{d_{2} \text{ boxes}}$$
$$\vdots \qquad \vdots$$
$$d_{k} = \dim(E_{\lambda}^{k}) - \dim(E_{\lambda}^{k-1}) \qquad \underbrace{\square \square}$$

 d_k boxes

Examples

- Integral domain that isn't a field: \mathbb{Z} .
- Commutative ring that isn't an integral domain: \mathbb{Z}_4 .
- A ring with infinitely many units: $Mat(2; \mathbb{Z})$.
- A non-diagonalizable complex matrix: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- A non-zero linear map defined for any vector space $\vec{v} \mapsto 2\vec{v}$.
- Symmetric billinear form, not an inner-product: u_1u_2 .

Matrix representation for linear maps

Let $f \in \text{Hom}(V, W)$ be a linear map and \mathscr{A}, \mathscr{B} be a bases of V and W respectively. Then:

$$\begin{bmatrix} \mathsf{id} \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} \vec{b}_1 \mid \ldots \mid \vec{b}_n \end{bmatrix} \quad \text{where each } \vec{b}_j \in \mathscr{B}$$
$$\mathscr{A} \begin{bmatrix} f \end{bmatrix} = \begin{bmatrix} f(\vec{a}_1) \mid \ldots \mid f(\vec{a}_n) \end{bmatrix} \quad \text{where each } \vec{a}_j \in \mathscr{A}.$$

- A non-symmetric bilinear form: $u_1v_2 u_2v_1$.
- An inner product on \mathbb{C} : $((z_1, w_1), (z_1, w_1) \mapsto z_1 \overline{z_2} + w_1 \overline{w_2}$. A corresponding self-adjoint operator is $id : \vec{v} \mapsto \vec{v}$ and a non self-adjoint one is $(z, w) \mapsto (iz, w)$.
- A linear mapping defined without a matrix is $\frac{d}{dx}$.
- An idempotent operator is one such that $x \cdot x = x$.
- To check if \mathscr{B} is a basis: just check whether the matrix with the elements of \mathscr{B} as its columns has non-zero determinant.
- A non-commutative ring in which all non-zero elements are invertable: Quarternions.

Useful definitions

Definition. Let X be a set and F be a field, then the set Maps(X,F) is a vector-space over F. We define the **free vector space** as the subspace $F\langle X \rangle \subseteq Maps(X,F)$ which sends all but finitely many elements of X to zero.

Definition. The **direct sum** of vector spaces V_1, \ldots, V_n, W and linear maps $f_i : V_i \to W$ is the set $V_1 \oplus V_2 \oplus \cdots \oplus V_n$ giving the linear map

$$f: V_1 \oplus \cdots \oplus V_n \to W, f(a_1 \vec{v}_1 + \cdots + a_n v_n) := a_1 f_1(v_1) + \cdots + a_n f_n(\vec{v}_n).$$