Algebra Formula Sheet

William Bevington

Chapter One - Vector spaces

Definition. A field F is a set with functions + and \times such that $G_{+}:=$ $(F,+)$ and $G_{\times}:=\left(F \backslash\left\{0_{F}\right\}, \times\right)$ are abelian groups with $\operatorname{id}_{G_{\times}}=1_{F}$, $\operatorname{id}_{G_{+}}:=0_{F}$ and for $\lambda, \mu, v \in F$ we have that $\lambda(\mu+v)=\lambda \mu+\lambda v$.
Definition. A vector space V over a field F is a pair $(V, \dot{+})$ where V is a set and $\dot{+}: F \times V \rightarrow V:(\lambda, \vec{v}) \mapsto \lambda \vec{v}$ is a map where for $\lambda, \mu \in F$ and $\vec{u}, \vec{v} \in V$:

- $\lambda(\vec{u}+\vec{v})=\lambda \vec{u}+\lambda \vec{v}$,
- $\lambda(\mu \vec{v})=(\lambda \mu) \vec{v}$,
- $(\lambda+\mu) \vec{v}=\lambda \vec{v}+\mu \vec{v}$,
- $1_{F} \vec{v}=\vec{v}$.

Theorem (1.2.2). If V is a vector space and $\vec{v} \in V$, then $0 \vec{v}=\overrightarrow{0}$.
Proof. $0 \vec{v}=(0+0) \vec{v}=0 \vec{v}+0 \vec{v} \Rightarrow \overrightarrow{0}=0 \vec{v}$.
Definition. A subset $U \subseteq V$ of a vector space V is a vector subspace if U contains $\overrightarrow{0}$ and $\vec{u}, \vec{v} \in U, \lambda \in F \Rightarrow \vec{u}+\vec{v} \in U$ and $\lambda \vec{u} \in U$.

Theorem. Let $T \subseteq V$, then $\langle T\rangle:=\left\{\sum_{\alpha_{i} \in F} \alpha_{i} \vec{v}_{i}: \vec{v}_{i} \in T\right\}$ is a subspace of V. If $V=\langle T\rangle$ then T is a generating set of V.
Definition. A subset L of a vector space V is linearly independent if for all pairwise different vectors $\vec{v}_{1}, \ldots, \vec{v}_{r} \in L$ and arbitrary scalars $\alpha_{1}, \ldots, \alpha_{r} \in F$, we have that $\alpha_{1} \vec{v}_{1}+\cdots+\alpha_{r} \vec{v}_{r}=\overrightarrow{0} \Longrightarrow \forall i: \alpha_{i}=0$.

Definition. A basis of a vector space V is a linearly independent generating set of V.
Theorem (1.5.11). Let V be a vector space over a field F and $\vec{v}_{1}, \ldots, \vec{v}_{r} \in V$ vectors. The family $\left(\vec{v}_{i}\right)_{1 \leq i \leq r}$ is a basis of V if and only if $\phi: F^{r} \rightarrow V:\left(\alpha_{1}, \ldots, \alpha_{r}\right) \mapsto \sum_{i=1}^{r} \alpha_{i} \vec{v}_{i}$ is a bijection.

Proof. $\left(\vec{v}_{i}\right)_{1 \leq i \leq r}$ is a generating set $\Leftrightarrow \phi$ is a surjection $F^{r} \rightarrow V$. $\left(\vec{v}_{i}\right)_{1 \leq i \leq r}$ is linearly independent $\Leftrightarrow \phi$ is a injection $F^{r} \rightarrow V .\left(\vec{v}_{i}\right)_{1 \leq i \leq r}$ is a basis $\Leftrightarrow \phi$ is a bijection $F^{r} \rightarrow V$.

Theorem (1.5.13). Let V be a finitely generated vector space over a field F, then V has a basis.

Theorem. If V is a vector space, $L \subset V$ a linearly independent subset and $E \subseteq V$ a generating set, then $|L| \leq|E|$.
Theorem (1.6.1). The Fundamental estimate of linear algebra gives that if L is a linearly-independent set of vectors in V and E is a generating set $V=\langle E\rangle$ then $|L| \leq|E|$.

Chapter Two - Linear mappings

Theorem (2.1.1). Let F be a field and $m, n \in \mathbb{N}$ then there is a bijection $\operatorname{Hom}_{F}\left(F^{m}, F^{n}\right) \rightarrow \operatorname{Mat}(m \times n ; F): f \rightarrow[f]$ associating a matrix to every linear mapping.
Definition. The matrix product is defined for $A \in \operatorname{Mat}(m \times l ; F), B \in$ $\operatorname{Mat}(l \times n)$ as

$$
(A B)_{i k}=\sum_{j=1}^{l} A_{i j} B_{j k}
$$

Theorem. The composition of linear maps is the product of their matricies; $[f \circ g]=[f][g]$.
Definition. A matrix $M \in \operatorname{Mat}(n \times n ; F)$ is invertible if there exist matricies $A, B \in \operatorname{Mat}(n \times n ; F)$ with $A M=M B=\mathbb{I}$.
Theorem. The set of invertible matricies form a group $G L(n ; F):=$ $\operatorname{Mat}(n ; F)^{\times}$.
Definition. A square matrix $M \in \operatorname{Mat}(n ; F)$ is elementary if it differs from the identity by at most one entry.

Theorem (Exchange Lemma). Let $M \subseteq E \subseteq V$ be such that M is linearly independent and $V=\langle E\rangle$. If $\vec{w} \in V \backslash M$ is such that $M \cup\{\vec{w}\}$ is linearly independent, then $\exists \vec{e} \in E \backslash M$ such that $V=\langle(E \backslash\{\vec{e}\}) \cup\{\vec{w}\}\rangle$. Thus any two bases for V must have the same cardinality.

Definition. The dimension of a vector space V is the cardinality of any basis of V (by the exchange-lemma this is independent of choice of basis).

Theorem (The Dimension Theorem). Let V be a vector space with subspaces $U, W \subseteq V$. Then $\operatorname{dim}(U+V)+\operatorname{dim}(U \cap V)=\operatorname{dim}(U)+$ $\operatorname{dim}(V)$.

Proof. Choose a basis $\vec{s}_{1}, \ldots, \vec{s}_{d}$ of $U \cap W$ and extend it by the elements $\vec{u}_{1}, \ldots, \vec{u}_{r} \in U$ to a basis of U and then by the elements $\vec{w}_{1}, \ldots, \vec{w}_{t} \in W$ to a basis of $U+W$. Then show that $\left\{\vec{s}_{1}, \ldots, \vec{s}_{d}, z v e c w_{1}, \ldots, \vec{w}_{t}\right\}$ is a basis of W. It's linearly independent by construction, so show that it's generating.

Definition. A mapping $f: V \rightarrow W$ between vector spaces V, W is linear iff $\forall \vec{u}, \vec{v} \in V: f(\vec{u}+\vec{v})=f(\vec{u})+f(\vec{v})$ and $\forall \lambda \in F: f(\lambda \vec{v})=\lambda f(\vec{v})$. If f is bijective then it's an isomorphism, if $V=W$ then f is an endomorphism and if both of these hold then f is an automorphism.

Theorem. Let $n \in \mathbb{N}$ and V be vector space over a field F, then V is isomorphic to F^{n} iff $\operatorname{dim}(V)=n$.

Theorem (1.7.8). Let V, W be vector spaces over F and let $B \subset V$ be a basis. Then $\operatorname{Hom}(V, W) \stackrel{\sim}{\rightarrow} \operatorname{Maps}(B, W):\left.f \mapsto f\right|_{B}$.

Theorem (1.7.9). Let $f: V \rightarrow W$ be a linear map. If f is injective then it has a left inverse, if f is surjective then it has a right inverse.

Definition. Let $f: U \rightarrow V$ be linear. The image of f is $\operatorname{im}(f):=$ $f(U)=\{\vec{v} \in V: \exists \vec{u} \in U, \vec{v}=f(\vec{u})\}$. The kernel of f is the pre-image $\operatorname{ker}(f):=f^{-1}(\overrightarrow{0})$. We have $\operatorname{im}(f) \subseteq V$ and $\operatorname{ker}(f) \subseteq U$ are subspaces.

Theorem (1.8.2). A linear mapping $f: V \rightarrow W$ is injective if and only if its kernel is zero.

Theorem (Rank-Nullity). Let $f: V \rightarrow W$ be a linear mapping between vector spaces. Then $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker}(f))+\operatorname{dim}(\operatorname{im}(f))$.

Theorem (2.2.3). Every square matrix can be written as a product of elementary matricies.

Definition. A matrix is in Smith-normal form if it has either a one or zero on the diagonal entries and zeros everywhere else. (2.2.5) every matrix M has invertible P, Q such that $P M Q$ is in Smith-normal form.
Definition. The column rank (resp. row rank) of a matrix M is the dimension of the span of the coloumns (resp rows) of A.
Theorem (2.2.7). For any matrix, the column and row ranks are equal.
Definition. Let F be a field with V, W vector-spaces over F with ordered bases $\mathscr{A}=\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$ and $\mathscr{B}=\left(\vec{u}_{1}, \ldots, \vec{u}_{n}\right)$ respectively. Then the representing matrix $\mathscr{B}[f]_{\mathscr{A}}=\left[a_{i j}\right]$ with

$$
a_{i j}=f\left(\vec{v}_{j}\right):=a_{1 j} \vec{u}_{1}+\cdots+a_{n j} \vec{u}_{n}
$$

Theorem (2.3.4). Let V, W be vector-spaces over F with bases \mathscr{A}, \mathscr{B} respectively and $f \in \operatorname{Hom}(V, W)$. Then $\mathscr{B}_{[}[f(\vec{v})]=\mathscr{B}_{B}[f]_{\mathscr{A}} \circ_{\mathscr{A}}[\vec{v}]$.
Theorem (2.4.4). Let $f \in \operatorname{Hom}(V, V)$ be an endomorphism and $\mathscr{A}, \mathscr{A}^{\prime}$ be bases of V. Then the change of basis formula is $\mathscr{A}^{\prime}[f]_{\mathscr{A}^{\prime}}=$ ${ }_{\mathscr{A}}\left[i d_{V}\right]_{\mathscr{A}^{\prime}}^{-1} \mathscr{A}[f]_{\mathscr{A}}{ }_{\mathscr{A}}\left[i d_{V}\right]_{\mathscr{A}^{\prime}}$.

Chapter Three - Rings and modules

Definition. A ring is a set with two operations $(R,+, \cdot)$ such that

- $(R,+)$ is an abelian group,
- (R, \cdot) is a monoid (associative with identity),
- \cdot distributes over $+; a \cdot(b+c) \cdot d=a \cdot b \cdot d+a \cdot c \cdot d$.

Definition. A field is a commutative ring with inverses.
Theorem (3.1.11). The ring $\mathbb{Z} / m \mathbb{Z}$ is a field iff m is prime.
Definition. An element $a \in R$ for a ring R is a unit if it is invertible. We define R^{\times}as the group of units.

Definition. An element $a \in R$ for a ring R is a zero-divisor if $\exists b \in R$: $b \neq 0$ and $a b=0$ or $b a=0$.

Definition. An integral domain is a non-zero commutative ring with no zero-divisors.

Theorem. If I is an integral domain then $a b=0 \Longrightarrow a=0$ or $b=0$. Moreover (3.2.16), if $a b=a c$ and $a \neq 0$ then $b=c$.

Theorem (3.2.18). Every finite integral domain is a field.
Definition. The ring of polynomials with coefficients in a ring R is denoted $R[X]$.

Theorem (3.3.3). If R is a ring with no zero-divisors then $R[X]$ has no zero-divisors and $\operatorname{deg}(P Q)=\operatorname{deg}(P)+\operatorname{deg}(Q)$. If R is an integral domain then so is $R[X]$.

Theorem (3.3.4). Let R be an integral domain with $P, Q \in R[X]$ with $Q(X)$ monic (leading term has coefficient one). Then $\exists!A, B \in R[X]$: $P=A Q+B$ with $\operatorname{deg}(B)<\operatorname{deg}(Q)$ or $B=0$.

Definition. The evaluation of $P \in R[X]$ at $\lambda \in R$ is $P(\lambda)$, the image of $\varepsilon: R[X] \rightarrow \operatorname{Maps}(R, R)$. Then λ is a root if $P(\lambda)=0$.

Theorem (3.3.9). Let R be a commutative ring, then $\lambda \in R$ is a root of $P \in R[X]$ iff $(X-\lambda)$ divides $P(X)$.
Theorem (3.3.10). If $P \in R[X]$ then P has at most $\operatorname{deg}(P)$ roots in R.
Definition. A field is algebraically closed if every non-constant polynomial has a root.

Theorem. The fundamental theorem of algebra is that \mathbb{C} is algebraically closed.

Theorem (3.3.14). If F is an algebraically closed field then any nonzero polynomial $P(X) \in F[X]$ can be decomposed into linear factors; $P(X)=c\left(X-\lambda_{1}\right) \ldots\left(X-\lambda_{n}\right)$.

Definition. Let R and S be rings, then $f: R \rightarrow S$ is a ring homomorphism if $\forall x, y \in R: f(x+y)=f(x)+f(y)$ and $f(x y)=f(x) f(y)$.

Theorem (3.4.5). Let $f \in \operatorname{Hom}(R, S)$ be a ring-homomorphism. Then $f\left(0_{R}\right)=0_{S}, f(-x)=-f(x)$ and $f(x-y)=f(x)-f(y)$.
Definition. A subset of a ring $\emptyset \neq I \subseteq R$ is an ideal of R if I is closed under subtraction and $\forall i \in I, r \in R: i r, r i \in I$.

Definition. The ideal generated by a subset $T \subseteq R$ is ${ }_{R}\langle T\rangle:=$ $\left\{r_{1} t_{1}+\ldots r_{n} t_{n}: \forall i r_{i} \in R\right.$ and $\left.t_{i} \in T\right\}$. It is the smallest ideal of R that contains T (prop 3.4.14).

Definition. An ideal I is a principle ideal if it's generated by one element, $I=\langle t\rangle$.

Theorem. The subring test gives that $R^{\prime} \subset R$ is a subring of R iff

- R^{\prime} has a multiplicative identity
- R^{\prime} is closed under subtraction
- R^{\prime} is closed under scaler multiplication

Theorem (2.4.29). If $f: R \rightarrow S$ is a ring homomorphism then im (f) is a subring of S. Further, if $f\left(1_{R}\right)=1_{S}$ and x is a unit in R then $f\left(x^{-1}\right)=$ $f(x)^{-1}$, so f restricts to the group homomorphism $f^{\times}: R^{\times} \rightarrow S^{\times}$.

Definition. A relation \sim is an equivalence relation iff

- \sim is Reflexive; $x \sim x$
- \sim is Symmetric; $x \sim y \Longrightarrow y \sim x$
- \sim is transitive; $(x \sim y$ and $y \sim z) \Longrightarrow x \sim z$.

Definition. If \sim is an equivalence relation then the equivalence class of x is $E(x):=\{y: x \sim y\}$.

Definition. The set of equivalence classes is $(X / \sim) \subseteq \mathscr{P}(X)$, with canonical map can $: X \rightarrow(X / \sim), x \mapsto E(x)$.

A map $g:(X / \sim) \rightarrow Z$ is well-defined if $\exists f: X \rightarrow Z$ such that $x \sim y \Longrightarrow f(x)=f(y)$ and f restricts to g.

Definition. Let I be an ideal of R, then the coset of I is $x+I:=\{x+i$: $i \in I\}$.

Definition. Let I be an ideal of R and \sim be defined by $x \sim y \Leftrightarrow x-y \in I$ then $R / I=(R / \sim)$ is the factor/quotient ring of R by I.

Theorem. The first isomorphism theorem is that for rings R, S we have $\forall f \in \operatorname{Hom}(R, S): \bar{f}: R / \operatorname{ker}$ ffoim (f).

Definition. A (left) module over \mathbf{R} is a pair $(M, \dot{+})$ and mapping $R \times M \rightarrow M,(r, a) \rightarrow r a$ such that for $a, b \in M$ and $r, s \in R$:

- $r(a \dot{+} b)=(r a) \dot{+}(r b)$,
- $(r+s) a=(r a) \dot{+}(s a)$,
- $r(s a)=(r s) a$, and
- $1_{R} a=a$.

Theorem (3.7.8). If M is an R-module then $\forall a \in M: 0_{R} a=0_{M}$, $\forall r \in R: r 0_{M}=0_{M}$ and $(-r) a=r(-a)=-(r a)$.
Theorem (3.7.21). Let M, N be R-modules with $f \in \operatorname{Hom}(M, N)$, then $\operatorname{ker} f$ is a sub-module of M and $\operatorname{im}(f)$ is a sub-module of N. Moreover (3.7.22) f is injective iff $\operatorname{ker} f=\left\{0_{M}\right\}$.

Theorem (3.7.29). The intersection of any collection of sub-modules of M is a sub-module of M.
Definition. Let N be a sub-module of M. The set $a+N:=\{a+b$: $b \in N\}$ is the coset of M by N, which defines the quotient (M / \sim).

Theorem. Let R be a ring with L, M being R-modules and $N \subseteq M a$ sub-module of M. The canonical map can : $M \rightarrow M / N$ is a surjective R-homomorphism with kernel N, and if $f(N)=\left\{0_{L}\right\}$ (i.e. $N \subseteq \operatorname{ker} f$) then $\exists!\bar{f}: M / N \rightarrow L$ such that $f=\bar{f} \circ$ can.

Theorem. The First Isomorphism Theorem. Let R be a ring with modules M and N, then $\forall f \in \operatorname{Hom}(M, N)$ there is an R-isomorphism

$$
\bar{f}: M / \operatorname{ker} f \tilde{\rightarrow} \operatorname{imf} .
$$

Chapter Four - Determinants and eigenvalues

Definition. The permutation group \mathfrak{S}_{n} is the group of all bijections $\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$.
Definition. An inversion of a permutation $\sigma \in \mathfrak{S}_{n}$ is a pair (i, j) with $1 \leq i<j \leq n: \sigma(i)>\sigma(j)$. The length of σ is

$$
l(\sigma):=|\{(i, j): 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}|,
$$

and the sign of σ is the group-homomorphism $\operatorname{sgn}(\sigma)=(-1)^{l(\sigma)}$ whose kernel is the Alternating group A_{n}. If $\operatorname{sgn}(\sigma)=+1$ then σ is an even permutation.

Definition. Let R be a commutative ring and $n \in \mathbb{N}$. The determinant det : $\operatorname{Mat}(n \times n ; R) \rightarrow R$ is given by

$$
\operatorname{det}\left(\left[a_{i j}\right]\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \ldots a_{n \sigma(n)}
$$

Definition. Let U, V, W be F-vector spaces. A bilinear form on $U \times V$ is a mapping $H: U \times V \rightarrow W$ such that $\forall \vec{u}_{1}, \vec{u}_{2} \in U, \vec{v}_{1}, \vec{v}_{2} \in V, \lambda \in F$:

- $H\left(\vec{u}_{1}+\vec{u}_{2}, \vec{v}_{1}\right)=H\left(\vec{u}_{1}, \vec{v}_{1}\right)+H\left(\vec{u}_{2}, \vec{v}_{1}\right)$,
- $H\left(\lambda \vec{u}_{1}, \vec{v}_{1}\right)=\lambda H\left(\vec{u}_{1}, \vec{v}_{1}\right)$,
- $H\left(\vec{u}_{1}, \vec{v}_{1}+\vec{v}_{2}\right)=H\left(\vec{u}_{1}, \vec{v}_{1}\right)+H\left(\vec{u}_{1}, \vec{v}_{2}\right)$,
- $H\left(\vec{u}_{1}, \lambda \vec{v}_{1}\right)=\lambda H\left(\vec{u}_{1}, \vec{v}_{1}\right)$.

A bilinear form is symmetric if $U=V: \forall \vec{u}, \vec{v} \in U: H(\vec{u}, \vec{v})=H(\vec{v}, \vec{u})$ and is anti-symmetric if $\forall \vec{u} \in U: H(\vec{u}, \vec{u})=0 \Leftrightarrow H(\vec{u}, \vec{v})=-H(\vec{v}, \vec{u})$.

Definition. A mapping $H: V_{1} \times \cdots \times V_{n} \rightarrow W$ is a multilinear form if it's linear in each entry. It's alternating if $H(\ldots, \vec{u}, \ldots, \vec{u}, \ldots)=0$.

Theorem (4.3.6). Let F be a field. The mapping det $: \operatorname{Mat}(n ; F) \rightarrow F$ which is an alternating, multilinear form on $\left[a_{1 i}|\ldots| a_{n i}\right]$ with $\operatorname{det}(\mathbb{I})=$ 1_{F} is unique.

Theorem (4.4.1,4.4.4).

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \quad \text { and } \quad \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)
$$

Definition. Let $A \in \operatorname{Mat}(n ; R)$ where R is a commutative ring. The (i, j)-cofactor of A is

$$
C_{i j}=(-1)^{i+j} \operatorname{det}(A\langle i, j\rangle),
$$

where $A\langle i, j\rangle$ is the matrix A with the $i^{\text {th }}$ row and $j^{t h}$ column removed.

Theorem (4.4.7).

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} C_{i j} .
$$

Theorem (4.4.9). The adjugate matrix is $\operatorname{adj}(A)_{i j}=C_{j i}$ for cofactor matrix C of A. Then Cramer's Rule is that

$$
A \cdot \operatorname{adj}(A)=\operatorname{det}(A) \mathbb{I}_{n}
$$

Theorem (4.4.11). A matrix A is invertible iff $\operatorname{det}(A) \neq 0$.
Definition. If V is an F-vector space then $\lambda \in V$ is an eigenvalue of $f \in \operatorname{End}(V)$ if $\exists \vec{v} \in V: f(\vec{v})=\lambda \vec{v}$.

Theorem (4.5.4). If $f \in \operatorname{End}(V)$ for V over F which is algebraically closed, then f has eigenvalues.

Definition. Let R be a commutative ring, the characteristic polynomial of $f \in \operatorname{End}(V)$ is

$$
\chi_{f}(x)=\operatorname{det}([f]-x \mathbb{I})
$$

Theorem (4.5.1). The roots of the characteristic polynomial of $f \in$ $\operatorname{End}(V)$ are exactly the eigenvalues of f.

Theorem (4.6.1). Let $f \in \operatorname{End}(V)$ then V has an ordered basis $\mathscr{B}=$ $\left\{\vec{v}_{1}, \ldots \vec{v}_{n}\right\}$ with

$$
\begin{aligned}
f\left(\vec{v}_{1}\right) & =a_{11} \vec{v}_{1} \\
f\left(\vec{v}_{1}\right) & =a_{12} \vec{v}_{1}+a_{22} \vec{v}_{2} \\
\quad & \\
f\left(\vec{v}_{1}\right) & =a_{1 n} \vec{v}_{1}+a_{2 n} \vec{v}_{2}+\cdots+a_{n n} \vec{v}_{n}
\end{aligned}
$$

if and only if $\chi_{f}(x)$ decomposes into linear factors. We say f is triangularisable.

Definition. A mapping $f \in \operatorname{End}(V)$ is diagonalisable if there exists a basis of V consisting of eigenvectors of f.

Theorem (4.6.8). If $f \in \operatorname{End}(V)$ has $\operatorname{dim}(V)$ distinct eigenvalues then the corresponding eigenvectors are linearly independent.

Theorem (Perran-Frobeneous). Let $M \in \operatorname{Mat}(n ; \mathbb{R})$ be a markov matrix with positive entries, then the eigenspace $E(1, M)$ is onedimensional with a basis vector \vec{v} such that $\sum_{i=1}^{n} v_{i}=1$ (which is unique).

Chapter Five - Inner product spaces

Definition. Let V be a vector space over \mathbb{R}, an iner product of V is a mapping

$$
(-,-): V \times V \rightarrow \mathbb{R}
$$

such that $\forall \vec{u}, \vec{v}, \vec{w} \in V$:

- $(\lambda \vec{u}+\mu \vec{v}, \vec{w})=\lambda(\vec{u}, \vec{w})+\mu(\vec{v}, \vec{w})$,
- $(\vec{u}, \vec{v})=(\vec{v}, \vec{u})$,
- $(\vec{u}, \vec{u}) \geq 0$ with equality iff $\vec{u}=\overrightarrow{0}$.

Definition. Let V be a vector space over \mathbb{C}, an iner product of V is a mapping

$$
(-,-): V \times V \rightarrow \mathbb{C}
$$

such that $\forall \vec{u}, \vec{v}, \vec{w} \in V$:

- $(\lambda \vec{u}+\mu \vec{v}, \vec{w})=\lambda(\vec{u}, \vec{w})+\mu(\vec{v}, \vec{w})$,
- $(\vec{u}, \vec{v})=\overline{(\vec{v}, \vec{u})}$,
- $(\vec{u}, \vec{u}) \geq 0$ with equality iff $\vec{u}=\overrightarrow{0}$.

Definition. If $(\vec{u}, \vec{v})=0$ then we say \vec{u} and \vec{v} are orthogonal and write $\vec{u} \perp \vec{v}$.

Definition. Let V be an inner-product space, then the length or norm of a vector $\vec{v} \in V$ is

$$
\|\vec{v}\|=\sqrt{(\vec{v}, \vec{v})} .
$$

Definition. A family of vectors $\left(\vec{v}_{i}\right)_{i \in I}$ is an orthonormal family of vectors if $\left(\vec{v}_{i}, \vec{v}_{j}\right)=\delta_{i j}$.

Theorem (5.1.10). Every finite-dimensional inner-product space has an orthonormal basis.

Definition. Let V be an inner-product space with subset $T \subseteq V$, the orthogonal set to T is $T^{\perp}=\{\vec{v} \in V: \vec{v} \perp \vec{u}$ for all $\vec{u} \in T\}$.

Theorem (5.2.2). Let U be a subspace of V, then U and U^{\perp} are complementary; $U^{\perp}=V \backslash U$ and $V=U \otimes U^{\perp}$.

Definition. Let U be a subspace of inner-product space V, then the orthogonal projection from V onto U is

$$
\pi_{U}: V \rightarrow U, \vec{v}=\vec{p}+\vec{r} \mapsto \vec{p} .
$$

Theorem (5.2.5). This is the Cauchy-Schwarz inequality:

$$
|(\vec{u}, \vec{v})| \leq\|\vec{u}\| \cdot\|\vec{v}\| .
$$

Theorem (5.2.6). Let V be a normed inner-product space, $\vec{v} \in V$:

- $\|\vec{v}\| \geq 0$ with equality iff $\vec{v}=\overrightarrow{0}$,
- $\|\lambda \vec{v}\|=|\lambda| \cdot \| \vec{v}| |$,
- $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$.

Definition. Let V be an inner-product space, then $T, S \in \operatorname{End}(V)$ are adjoint if for all $\vec{u}, \vec{v} \in V$:

$$
(T \vec{u}, \vec{v})=(\vec{u}, S \vec{v}) .
$$

We write $S=T^{*}$ and say that S is the adjoint of T.
Theorem (5.3.4). Let $T \in \operatorname{End}(V)$, then T has an adjoint.
Definition. Let $T \in \operatorname{End}(V)$, then T is self-adjoint if $T^{*}=T$.
Theorem (5.3.7). Let $T \operatorname{End}(V)$ be self-adjoint, then

- Every eigenvalue of T is real,
- T has at least one eigenvalue,
- if the eigenvalues are distinct then the eigenvectors are orthogonal.

Theorem (Spectral). Let V be a finite-dimensional inner-product space and $T \in \operatorname{End}(V)$ be self-adjoint, then V has an orthonormal basis consisting of eigenvectors of T.

Definition. A matrix P is orthogonal if $P^{-1}=P^{T}$.
Theorem (Spectral II). Let $A \in \operatorname{Mat}(n ; \mathbb{R})$ be symmetric. Then there is an orthogonal matrix $P \in \operatorname{Mat}(n ; \mathbb{R})$ such that $P^{T} A P$ is diagonal with entries being eigenvalues of A.

Definition. A matrix $A \in \operatorname{Mat}(n ; \mathbb{C})$ is unitary if $P^{-1}=\bar{P}^{T}$.
Theorem (Spectral III). Let $A \in \operatorname{Mat}(n ; \mathbb{C})$ be hermitian $\left(A=\bar{A}^{T}\right)$. Then there is a unitary matrix $P \in \operatorname{Mat}(n ; \mathbb{C})$ such that $\bar{P}^{T} A P$ is diagonal with entries being eigenvalues of A.

Chapter Six - Jordan normal form

1. Calculate the eigenvalues $\lambda_{1}, \ldots, \lambda_{s}$ along with geometric μ_{1}, \ldots, μ_{s} and algebraic m_{1}, \ldots, m_{s} multiplicities,
2. Compute corresponding eigenspaces

$$
E_{\lambda}^{k}=\left\{\vec{v} \in V:(A-\mathbb{I} \lambda)^{k} \vec{v}=0\right\}
$$

3. Compute the following, and draw the chart on the right:

$$
\begin{array}{cc}
d_{1} & =\operatorname{dim}\left(E_{\lambda}^{1}\right) \\
d_{2}=\operatorname{dim}\left(E_{\lambda}^{2}\right)-\operatorname{dim}\left(E_{\lambda}^{1}\right) & \underbrace{\square \square \square \square \square}_{d_{1} \text { boxes }} \\
\vdots \square \square \square \\
d_{2} \text { boxes } \\
d_{k} & =\operatorname{dim}\left(E_{\lambda}^{k}\right)-\operatorname{dim}\left(E_{\lambda}^{k-1}\right) \\
\underbrace{\square \square \square}_{d_{k} \text { boxes }}
\end{array}
$$

4. Start at the bottom of the diagram, filling row k with the linearly independent eigenvectors in E_{λ}^{k} which are not in E_{λ}^{k-1}. Each time you fill in a box with a vector \vec{v}_{k}, fill in every box above with the vectors $\vec{v}_{k+1}=(A-\mathbb{I} \lambda)^{k} \vec{v}$ until you reach the top.
5. Repeat steps two to four with different eigenvalues until the diagram is full. Then Q is the matrix whose columns are the topleft vector followed by the vectors below it so the Jordan-normal form is $J=Q^{-1} A Q$.
6. In fact you needn't calculate Q. Each column of the diagram is a Jordan block - easy!

Examples

- Integral domain that isn't a field: \mathbb{Z}.
- Commutative ring that isn't an integral domain: \mathbb{Z}_{4}.
- A ring with infinitely many units: $\operatorname{Mat}(2 ; \mathbb{Z})$.
- A non-diagonalizable complex matrix: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
- A non-zero linear map defined for any vector space $\vec{v} \mapsto 2 \vec{v}$.
- Symmetric billinear form, not an inner-product: $u_{1} u_{2}$.

Matrix representation for linear maps

Let $f \in \operatorname{Hom}(V, W)$ be a linear map and \mathscr{A}, \mathscr{B} be a bases of V and W respectively. Then:

$$
\begin{aligned}
{[\mathrm{id}]_{\mathscr{B}} } & =\left[\vec{b}_{1}|\ldots| \vec{b}_{n}\right] & \text { where each } \vec{b}_{j} \in \mathscr{B} \\
\mathscr{A}[f] \quad & =\left[f\left(\vec{a}_{1}\right)|\ldots| f\left(\vec{a}_{n}\right)\right] & \text { where each } \vec{a}_{j} \in \mathscr{A} .
\end{aligned}
$$

- A non-symmetric bilinear form: $u_{1} v_{2}-u_{2} v_{1}$.
- An inner product on $\mathbb{C}:\left(\left(z_{1}, w_{1}\right),\left(z_{1}, w_{1}\right) \mapsto z_{1} \overline{z_{2}}+w_{1} \overline{w_{2}}\right.$. A corresponding self-adjoint operator is id : $\vec{v} \mapsto \vec{v}$ and a non self-adjoint one is $(z, w) \mapsto(i z, w)$.
- A linear mapping defined without a matrix is $\frac{d}{d x}$.
- An idempotent operator is one such that $x \cdot x=x$.
- To check if \mathscr{B} is a basis: just check whether the matrix with the elements of \mathscr{B} as its columns has non-zero determinant.
- A non-commutative ring in which all non-zero elements are invertable: Quarternions.

Useful definitions

Definition. Let X be a set and F be a field, then the set $\operatorname{Maps}(X, F)$ is a vector-space over F. We define the free vector space as the subspace $F\langle X\rangle \subseteq \operatorname{Maps}(X, F)$ which sends all but finitely many elements of X to zero.

Definition. The direct sum of vector spaces V_{1}, \ldots, V_{n}, W and linear maps $f_{i}: V_{i} \rightarrow W$ is the set $V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ giving the linear map
$f: V_{1} \oplus \cdots \oplus V_{n} \rightarrow W, f\left(a_{1} \vec{v}_{1}+\cdots+a_{n} v_{n}\right):=a_{1} f_{1}\left(v_{1}\right)+\cdots+a_{n} f_{n}\left(\vec{v}_{n}\right)$.

