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Chapter One - Vector spaces

Definition. A field F is a set with functions + and × such that G+ :=
(F,+) and G× := (F \ {0F},×) are abelian groups with idG× = 1F ,
idG+ := 0F and for λ ,µ,ν ∈ F we have that λ (µ +ν) = λ µ +λν .

Definition. A vector space V over a field F is a pair (V,+̇) where V
is a set and +̇ : F×V →V : (λ ,~v) 7→ λ~v is a map where for λ ,µ ∈ F
and~u,~v ∈V :
• λ (~u+~v) = λ~u+λ~v,

• (λ +µ)~v = λ~v+µ~v,

• λ (µ~v) = (λ µ)~v,

• 1F~v =~v.

Theorem (1.2.2). If V is a vector space and~v ∈V , then 0~v =~0.

Proof. 0~v = (0+0)~v = 0~v+0~v⇒~0 = 0~v.

Definition. A subset U ⊆V of a vector space V is a vector subspace
if U contains~0 and~u,~v ∈U,λ ∈ F ⇒~u+~v ∈U and λ~u ∈U .

Theorem. Let T ⊆V , then 〈T 〉 := {∑αi∈F αi~vi :~vi ∈ T} is a subspace
of V . If V = 〈T 〉 then T is a generating set of V .

Definition. A subset L of a vector space V is linearly independent
if for all pairwise different vectors ~v1, . . . ,~vr ∈ L and arbitrary scalars
α1, . . . ,αr ∈ F , we have that α1~v1 + · · ·+αr~vr =~0 =⇒ ∀i : αi = 0.

Definition. A basis of a vector space V is a linearly independent gen-
erating set of V .

Theorem (1.5.11). Let V be a vector space over a field F and
~v1, . . . ,~vr ∈ V vectors. The family (~vi)1≤i≤r is a basis of V if and only
if φ : Fr→V : (α1, . . . ,αr) 7→ ∑

r
i=1 αi~vi is a bijection.

Proof. (~vi)1≤i≤r is a generating set ⇔ φ is a surjection Fr → V .
(~vi)1≤i≤r is linearly independent⇔ φ is a injection Fr→V . (~vi)1≤i≤r
is a basis⇔ φ is a bijection Fr→V .

Theorem (1.5.13). Let V be a finitely generated vector space over a
field F, then V has a basis.

Theorem. If V is a vector space, L⊂V a linearly independent subset
and E ⊆V a generating set, then |L| ≤ |E|.

Theorem (1.6.1). The Fundamental estimate of linear algebra gives
that if L is a linearly-independent set of vectors in V and E is a gener-
ating set V = 〈E〉 then |L| ≤ |E|.

Theorem (Exchange Lemma). Let M ⊆ E ⊆V be such that M is lin-
early independent and V = 〈E〉. If ~w ∈ V \M is such that M∪{~w} is
linearly independent, then ∃~e∈ E \M such that V = 〈(E \{~e})∪{~w}〉.
Thus any two bases for V must have the same cardinality.

Definition. The dimension of a vector space V is the cardinality of
any basis of V (by the exchange-lemma this is independent of choice
of basis).

Theorem (The Dimension Theorem). Let V be a vector space with
subspaces U,W ⊆ V . Then dim(U +V ) + dim(U ∩V ) = dim(U) +
dim(V ).

Proof. Choose a basis~s1, . . . ,~sd of U∩W and extend it by the elements
~u1, . . . ,~ur ∈U to a basis of U and then by the elements ~w1, . . . ,~wt ∈W
to a basis of U +W . Then show that {~s1, . . . ,~sd ,zvecw1, . . . ,~wt} is a
basis of W . It’s linearly independent by construction, so show that it’s
generating.

Definition. A mapping f : V →W between vector spaces V,W is lin-
ear iff ∀~u,~v∈V : f (~u+~v) = f (~u)+ f (~v) and ∀λ ∈ F : f (λ~v) = λ f (~v).
If f is bijective then it’s an isomorphism, if V =W then f is an endo-
morphism and if both of these hold then f is an automorphism.

Theorem. Let n ∈ N and V be vector space over a field F, then V is
isomorphic to Fn iff dim(V ) = n.

Theorem (1.7.8). Let V,W be vector spaces over F and let B⊂V be
a basis. Then Hom(V,W ) →̃Maps(B,W ) : f 7→ f |B.

Theorem (1.7.9). Let f : V →W be a linear map. If f is injective then
it has a left inverse, if f is surjective then it has a right inverse.

Definition. Let f : U → V be linear. The image of f is im( f ) :=
f (U) = {~v ∈V : ∃~u ∈U,~v = f (~u)}. The kernel of f is the pre-image
ker( f ) := f−1(~0). We have im( f )⊆V and ker( f )⊆U are subspaces.

Theorem (1.8.2). A linear mapping f : V →W is injective if and only
if its kernel is zero.

Theorem (Rank-Nullity). Let f : V →W be a linear mapping between
vector spaces. Then dim(V ) = dim(ker( f ))+dim(im( f )).
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Chapter Two - Linear mappings

Theorem (2.1.1). Let F be a field and m,n ∈ N then there is a bijec-
tion HomF(Fm,Fn)→Mat(m× n;F) : f → [ f ] associating a matrix
to every linear mapping.

Definition. The matrix product is defined for A∈Mat(m× l;F), B∈
Mat(l×n) as

(AB)ik =
l

∑
j=1

Ai jB jk.

Theorem. The composition of linear maps is the product of their ma-
tricies; [ f ◦g] = [ f ][g].

Definition. A matrix M ∈ Mat(n× n;F) is invertible if there exist
matricies A,B ∈Mat(n×n;F) with AM = MB = I.
Theorem. The set of invertible matricies form a group GL(n;F) :=
Mat(n;F)×.

Definition. A square matrix M ∈Mat(n;F) is elementary if it differs
from the identity by at most one entry.

Theorem (2.2.3). Every square matrix can be written as a product of
elementary matricies.

Definition. A matrix is in Smith-normal form if it has either a one or
zero on the diagonal entries and zeros everywhere else. (2.2.5) every
matrix M has invertible P,Q such that PMQ is in Smith-normal form.

Definition. The column rank (resp. row rank) of a matrix M is the
dimension of the span of the coloumns (resp rows) of A.

Theorem (2.2.7). For any matrix, the column and row ranks are equal.

Definition. Let F be a field with V,W vector-spaces over F with or-
dered bases A = (~v1, . . . ,~vm) and B = (~u1, . . . ,~un) respectively. Then
the representing matrix B[ f ]A = [ai j] with

ai j = f (~v j) := a1 j~u1 + · · ·+an j~un.

Theorem (2.3.4). Let V,W be vector-spaces over F with bases A ,B
respectively and f ∈ Hom(V,W ). Then B[ f (~v)] = B[ f ]A ◦ A [~v].

Theorem (2.4.4). Let f ∈Hom(V,V ) be an endomorphism and A ,A ′

be bases of V . Then the change of basis formula is A ′ [ f ]A ′ =
A [idV ]

−1
A ′ A [ f ]A A [idV ]A ′ .
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Chapter Three - Rings and modules

Definition. A ring is a set with two operations (R,+, ·) such that

• (R,+) is an abelian group,

• (R, ·) is a monoid (associative with identity),

• · distributes over +; a · (b+ c) ·d = a ·b ·d +a · c ·d.

Definition. A field is a commutative ring with inverses.

Theorem (3.1.11). The ring Z/mZ is a field iff m is prime.

Definition. An element a ∈ R for a ring R is a unit if it is invertible.
We define R× as the group of units.

Definition. An element a ∈ R for a ring R is a zero-divisor if ∃b ∈ R :
b 6= 0 and ab = 0 or ba = 0.

Definition. An integral domain is a non-zero commutative ring with
no zero-divisors.

Theorem. If I is an integral domain then ab = 0 =⇒ a = 0 or b = 0.
Moreover (3.2.16), if ab = ac and a 6= 0 then b = c.

Theorem (3.2.18). Every finite integral domain is a field.

Definition. The ring of polynomials with coefficients in a ring R is
denoted R[X ].

Theorem (3.3.3). If R is a ring with no zero-divisors then R[X ] has
no zero-divisors and deg(PQ) = deg(P)+ deg(Q). If R is an integral
domain then so is R[X ].

Theorem (3.3.4). Let R be an integral domain with P,Q ∈ R[X ] with
Q(X) monic (leading term has coefficient one). Then ∃!A,B ∈ R[X ] :
P = AQ+B with deg(B)< deg(Q) or B = 0.

Definition. The evaluation of P ∈ R[X ] at λ ∈ R is P(λ ), the image
of ε : R[X ]→Maps(R,R). Then λ is a root if P(λ ) = 0.

Theorem (3.3.9). Let R be a commutative ring, then λ ∈ R is a root
of P ∈ R[X ] iff (X−λ ) divides P(X).

Theorem (3.3.10). If P ∈ R[X ] then P has at most deg(P) roots in R.

Definition. A field is algebraically closed if every non-constant poly-
nomial has a root.

Theorem. The fundamental theorem of algebra is that C is alge-
braically closed.

Theorem (3.3.14). If F is an algebraically closed field then any non-
zero polynomial P(X) ∈ F [X ] can be decomposed into linear factors;
P(X) = c(X−λ1) . . .(X−λn).

Definition. Let R and S be rings, then f : R→ S is a ring homomor-
phism if ∀x,y ∈ R : f (x+ y) = f (x)+ f (y) and f (xy) = f (x) f (y).

Theorem (3.4.5). Let f ∈Hom(R,S) be a ring-homomorphism. Then
f (0R) = 0S, f (−x) =− f (x) and f (x− y) = f (x)− f (y).

Definition. A subset of a ring /0 6= I ⊆ R is an ideal of R if I is closed
under subtraction and ∀i ∈ I,r ∈ R : ir,ri ∈ I.

Definition. The ideal generated by a subset T ⊆ R is R〈T 〉 :=
{r1t1 + . . .rntn : ∀i ri ∈ R and ti ∈ T}. It is the smallest ideal of R that
contains T (prop 3.4.14).

Definition. An ideal I is a principle ideal if it’s generated by one ele-
ment, I = 〈t〉.

Theorem. The subring test gives that R′ ⊂ R is a subring of R iff

• R′ has a multiplicative identity

• R′ is closed under subtraction

• R′ is closed under scaler multiplication

Theorem (2.4.29). If f : R→ S is a ring homomorphism then im( f ) is
a subring of S. Further, if f (1R) = 1S and x is a unit in R then f (x−1) =
f (x)−1, so f restricts to the group homomorphism f× : R×→ S×.

Definition. A relation ∼ is an equivalence relation iff

• ∼ is Reflexive; x∼ x

• ∼ is Symmetric; x∼ y =⇒ y∼ x

• ∼ is transitive; (x∼ y and y∼ z) =⇒ x∼ z.

Definition. If ∼ is an equivalence relation then the equivalence class
of x is E(x) := {y : x∼ y}.

Definition. The set of equivalence classes is (X/ ∼) ⊆P(X), with
canonical map can :X → (X/∼),x 7→ E(x).

X (X/∼)

Z

can

f
f

A map g : (X/ ∼) → Z is well-defined if ∃ f : X → Z such that
x∼ y =⇒ f (x) = f (y) and f restricts to g.

Definition. Let I be an ideal of R, then the coset of I is x+ I := {x+ i :
i ∈ I}.

Definition. Let I be an ideal of R and∼ be defined by x∼ y⇔ x−y∈ I
then R/I = (R/∼) is the factor/quotient ring of R by I.

Theorem. The first isomorphism theorem is that for rings R,S we
have ∀ f ∈ Hom(R,S) : f : R/ker f ˜toim( f ).

Definition. A (left) module over R is a pair (M,+̇) and mapping
R×M→M,(r,a)→ ra such that for a,b ∈M and r,s ∈ R:

• r(a+̇b) = (ra)+̇(rb),

• (r+ s)a = (ra)+̇(sa),

• r(sa) = (rs)a, and

• 1Ra = a.

Theorem (3.7.8). If M is an R-module then ∀a ∈ M : 0Ra = 0M ,
∀r ∈ R : r0M = 0M and (−r)a = r(−a) =−(ra).

Theorem (3.7.21). Let M,N be R-modules with f ∈Hom(M,N), then
ker f is a sub-module of M and im( f ) is a sub-module of N. Moreover
(3.7.22) f is injective iff ker f = {0M}.

Theorem (3.7.29). The intersection of any collection of sub-modules
of M is a sub-module of M.

Definition. Let N be a sub-module of M. The set a+N := {a+ b :
b ∈ N} is the coset of M by N, which defines the quotient (M/∼).

Theorem. Let R be a ring with L,M being R-modules and N ⊆ M a
sub-module of M. The canonical map can : M→M/N is a surjective
R-homomorphism with kernel N, and if f (N) = {0L} (i.e. N ⊆ ker f )
then ∃! f : M/N→ L such that f = f ◦ can.

Theorem. The First Isomorphism Theorem. Let R be a ring with
modules M and N, then ∀ f ∈ Hom(M,N) there is an R-isomorphism

f : M/ker f→̃im f .
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Chapter Four - Determinants and eigenvalues

Definition. The permutation group Sn is the group of all bijections
{1, . . . ,n}→ {1, . . . ,n}.

Definition. An inversion of a permutation σ ∈Sn is a pair (i, j) with
1≤ i < j ≤ n : σ(i)> σ( j). The length of σ is

l(σ) := |{(i, j) : 1≤ i < j ≤ n,σ(i)> σ( j)}|,

and the sign of σ is the group-homomorphism sgn(σ) = (−1)l(σ)

whose kernel is the Alternating group An. If sgn(σ) = +1 then σ

is an even permutation.

Definition. Let R be a commutative ring and n∈N. The determinant
det : Mat(n×n;R)→ R is given by

det([ai j]) = ∑
σ∈Sn

sgn(σ)a1σ(1) . . .anσ(n).

Definition. Let U,V,W be F-vector spaces. A bilinear form on U×V
is a mapping H : U×V →W such that ∀~u1,~u2 ∈U, ~v1,~v2 ∈V, λ ∈ F :

• H(~u1 +~u2,~v1) = H(~u1,~v1)+H(~u2,~v1),

• H(λ~u1,~v1) = λH(~u1,~v1),

• H(~u1,~v1 +~v2) = H(~u1,~v1)+H(~u1,~v2),

• H(~u1,λ~v1) = λH(~u1,~v1).

A bilinear form is symmetric if U =V : ∀~u,~v ∈U : H(~u,~v) = H(~v,~u)
and is anti-symmetric if ∀~u ∈U : H(~u,~u) = 0⇔H(~u,~v) =−H(~v,~u).

Definition. A mapping H : V1×·· ·×Vn→W is a multilinear form
if it’s linear in each entry. It’s alternating if H(. . . ,~u, . . . ,~u, . . .) = 0.

Theorem (4.3.6). Let F be a field. The mapping det : Mat(n;F)→ F
which is an alternating, multilinear form on [a1i| . . . |ani] with det(I) =
1F is unique.

Theorem (4.4.1,4.4.4).

det(AB) = det(A)det(B) and det(AT ) = det(A).

Definition. Let A ∈ Mat(n;R) where R is a commutative ring. The
(i, j)-cofactor of A is

Ci j = (−1)i+ j det(A〈i, j〉),

where A〈i, j〉 is the matrix A with the ith row and jth column removed.

Theorem (4.4.7).

det(A) =
n

∑
j=1

ai jCi j.

Theorem (4.4.9). The adjugate matrix is adj(A)i j = C ji for cofactor
matrix C of A. Then Cramer’s Rule is that

A · adj(A) = det(A)In.

Theorem (4.4.11). A matrix A is invertible iff det(A) 6= 0.

Definition. If V is an F-vector space then λ ∈ V is an eigenvalue of
f ∈ End(V ) if ∃~v ∈V : f (~v) = λ~v.

Theorem (4.5.4). If f ∈ End(V ) for V over F which is algebraically
closed, then f has eigenvalues.

Definition. Let R be a commutative ring, the characteristic polyno-
mial of f ∈ End(V ) is

χ f (x) = det([ f ]− xI).

Theorem (4.5.1). The roots of the characteristic polynomial of f ∈
End(V ) are exactly the eigenvalues of f .

Theorem (4.6.1). Let f ∈ End(V ) then V has an ordered basis B =
{~v1, . . .~vn} with

f (~v1) = a11~v1,

f (~v1) = a12~v1 +a22~v2,

...

f (~v1) = a1n~v1 +a2n~v2 + · · ·+ann~vn

if and only if χ f (x) decomposes into linear factors. We say f is trian-
gularisable.

Definition. A mapping f ∈ End(V ) is diagonalisable if there exists a
basis of V consisting of eigenvectors of f .

Theorem (4.6.8). If f ∈ End(V ) has dim(V ) distinct eigenvalues then
the corresponding eigenvectors are linearly independent.

Theorem (Perran-Frobeneous). Let M ∈ Mat(n;R) be a markov
matrix with positive entries, then the eigenspace E(1,M) is one-
dimensional with a basis vector ~v such that ∑

n
i=1 vi = 1 (which is

unique).
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Chapter Five - Inner product spaces

Definition. Let V be a vector space over R, an iner product of V is a
mapping

(−,−) : V ×V → R

such that ∀~u,~v,~w ∈V :

• (λ~u+µ~v,~w) = λ (~u,~w)+µ(~v,~w),

• (~u,~v) = (~v,~u),

• (~u,~u)≥ 0 with equality iff~u =~0.

Definition. Let V be a vector space over C, an iner product of V is a
mapping

(−,−) : V ×V → C

such that ∀~u,~v,~w ∈V :

• (λ~u+µ~v,~w) = λ (~u,~w)+µ(~v,~w),

• (~u,~v) = (~v,~u),

• (~u,~u)≥ 0 with equality iff~u =~0.

Definition. If (~u,~v) = 0 then we say~u and~v are orthogonal and write
~u⊥~v.

Definition. Let V be an inner-product space, then the length or norm
of a vector~v ∈V is

||~v||=
√

(~v,~v).

Definition. A family of vectors (~vi)i∈I is an orthonormal family of
vectors if (~vi,~v j) = δi j.

Theorem (5.1.10). Every finite-dimensional inner-product space has
an orthonormal basis.

Definition. Let V be an inner-product space with subset T ⊆ V , the
orthogonal set to T is T⊥ = {~v ∈V :~v⊥~u for all~u ∈ T}.

Theorem (5.2.2). Let U be a subspace of V , then U and U⊥ are com-
plementary; U⊥ =V \U and V =U⊗U⊥.

Definition. Let U be a subspace of inner-product space V , then the
orthogonal projection from V onto U is

πU : V →U,~v = ~p+~r 7→ ~p.

Theorem (5.2.5). This is the Cauchy-Schwarz inequality:

|(~u,~v)| ≤ ||~u|| · ||~v||.

Theorem (5.2.6). Let V be a normed inner-product space,~v ∈V :

• ||~v|| ≥ 0 with equality iff~v =~0,

• ||λ~v||= |λ | · ||~v||,

• ||~u+~v|| ≤ ||~u||+ ||~v||.

Definition. Let V be an inner-product space, then T,S ∈ End(V ) are
adjoint if for all~u,~v ∈V :

(T~u,~v) = (~u,S~v).

We write S = T ∗ and say that S is the adjoint of T .

Theorem (5.3.4). Let T ∈ End(V ), then T has an adjoint.

Definition. Let T ∈ End(V ), then T is self-adjoint if T ∗ = T .

Theorem (5.3.7). Let T End(V ) be self-adjoint, then

• Every eigenvalue of T is real,

• T has at least one eigenvalue,

• if the eigenvalues are distinct then the eigenvectors are orthog-
onal.

Theorem (Spectral). Let V be a finite-dimensional inner-product
space and T ∈ End(V ) be self-adjoint, then V has an orthonormal
basis consisting of eigenvectors of T .

Definition. A matrix P is orthogonal if P−1 = PT .

Theorem (Spectral II). Let A∈Mat(n;R) be symmetric. Then there is
an orthogonal matrix P ∈Mat(n;R) such that PT AP is diagonal with
entries being eigenvalues of A.

Definition. A matrix A ∈Mat(n;C) is unitary if P−1 = PT .

Theorem (Spectral III). Let A ∈ Mat(n;C) be hermitian (A = AT ).
Then there is a unitary matrix P ∈Mat(n;C) such that PT AP is diag-
onal with entries being eigenvalues of A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter Six - Jordan normal form
1. Calculate the eigenvalues λ1, . . . ,λs along with geometric

µ1, . . . ,µs and algebraic m1, . . . ,ms multiplicities,

2. Compute corresponding eigenspaces

Ek
λ
= {~v ∈V : (A− Iλ )k~v = 0}.

3. Compute the following, and draw the chart on the right:

d1 = dim(E1
λ
) �����︸ ︷︷ ︸

d1 boxes

d2 = dim(E2
λ
)−dim(E1

λ
) ����︸ ︷︷ ︸

d2 boxes

...
...

dk = dim(Ek
λ
)−dim(Ek−1

λ
) ���︸ ︷︷ ︸

dk boxes

4. Start at the bottom of the diagram, filling row k with the linearly
independent eigenvectors in Ek

λ
which are not in Ek−1

λ
. Each

time you fill in a box with a vector ~vk, fill in every box above
with the vectors~vk+1 = (A− Iλ )k~v until you reach the top.

5. Repeat steps two to four with different eigenvalues until the di-
agram is full. Then Q is the matrix whose columns are the top-
left vector followed by the vectors below it so the Jordan-normal
form is J = Q−1AQ.

6. In fact you needn’t calculate Q. Each column of the diagram is
a Jordan block - easy!
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Examples

• Integral domain that isn’t a field: Z.

• Commutative ring that isn’t an integral domain: Z4.

• A ring with infinitely many units: Mat(2;Z).

• A non-diagonalizable complex matrix:
(

1 1
0 1

)
.

• A non-zero linear map defined for any vector space~v 7→ 2~v.

• Symmetric billinear form, not an inner-product: u1u2.

• A non-symmetric bilinear form: u1v2−u2v1.

• An inner product on C: ((z1,w1),(z1,w1) 7→ z1z2 +w1w2. A
corresponding self-adjoint operator is id : ~v 7→ ~v and a non
self-adjoint one is (z,w) 7→ (iz,w).

• A linear mapping defined without a matrix is d
dx .

• An idempotent operator is one such that x · x = x.

• To check if B is a basis: just check whether the matrix with the
elements of B as its columns has non-zero determinant.

• A non-commutative ring in which all non-zero elements are
invertable: Quarternions.

Matrix representation for linear maps

Let f ∈ Hom(V,W ) be a linear map and A ,B be a bases of V and W
respectively. Then:

[
id
]
B
=
[
~b1 | . . . |~bn

]
where each~b j ∈B

A

[
f
]

=
[

f (~a1) | . . . | f (~an)
]

where each~a j ∈A .

Useful definitions

Definition. Let X be a set and F be a field, then the set Maps(X ,F)
is a vector-space over F . We define the free vector space as the sub-
space F〈X〉 ⊆Maps(X ,F) which sends all but finitely many elements
of X to zero.

Definition. The direct sum of vector spaces V1, . . . ,Vn,W and linear
maps fi : Vi→W is the set V1⊕V2⊕·· ·⊕Vn giving the linear map

f :V1⊕·· ·⊕Vn→W, f (a1~v1+· · ·+anvn) := a1 f1(v1)+· · ·+an fn(~vn).
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