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Chapter One - Vector spaces

Definition. A field F is a set with functions + and x such that G :=
(F,+) and G« := (F \ {Of}, x) are abelian groups with idg, = I,
idg, :=0f and for A,u,v € F we have that A(u+v) =Apu+Av.

Definition. A vector space V over a field F is a pair (V,+) where V
isasetand +: F xV — V : (A,V) — AV is a map where for A,u € F
and U,yeV:

o A(uv)=(Ap)v,

Uv, o lpV=".

Theorem (1.2.2). IfV is a vector space and Vv € V , then OV = 0.
Proof. 0V = (0+0)¥ = 0¥+ 0¥ = 0 = O¥. O

Definition. A subset U C V of a vector space V is a vector subspace
if U contains O and #,v e U, AL € F = ii+VeUand Aii € U.

Theorem. Let T CV, then (T) := {¥q.cr 0V; : V; € T} is a subspace
of V. IfV =(T) then T is a generating set of V.

Definition. A subset L of a vector space V is linearly independent

if for all pairwise different vectors vy, ...,V, € L and arbitrary scalars
ai,...,0, € F,wehave that ;v +---+a,V, =0 — Vi: o =0.

Definition. A basis of a vector space V is a linearly independent gen-
erating set of V.

Theorem (1.5.11). Let V be a vector space over a field F and
V1,...,V € V vectors. The family (V;)1<i<, is a basis of V if and only
ifo:F —V:(ay...,o)— Yi_ o;V;is a bijection.

Proof. (Vi)1<i<r is a generating set < ¢ is a surjection F" — V.
(Vi)1<i<r 18 linearly independent < ¢ is a injection F" — V. (Vi) 1<i<r
is a basis < ¢ is a bijection F" — V. O

Theorem (1.5.13). Let V be a finitely generated vector space over a
field F, then 'V has a basis.

Theorem. IfV is a vector space, L C 'V a linearly independent subset
and E CV a generating set, then |L| < |E|.

Theorem (1.6.1). The Fundamental estimate of linear algebra gives
that if L is a linearly-independent set of vectors in V and E is a gener-
ating set V. = (E) then |L| < |E)|.

Chapter Two - Linear mappings

Theorem (2.1.1). Let F be a field and m,n € N then there is a bijec-
tion Homp (F™,F") — Mat(m x n;F) : f — [f] associating a matrix
to every linear mapping.

Definition. The matrix product is defined for A € Mat(m x I;F), B €
Mat(/ x n) as

I
(AB)ix =) Ai;Bjt.
j=1
Theorem. The composition of linear maps is the product of their ma-
tricies; [f o g] = [f][g].

Definition. A matrix M € Mat(n x n;F) is invertible if there exist
matricies A, B € Mat(n x n; F) with AM = MB =1.

Theorem. The set of invertible matricies form a group GL(n;F) :=
Mat(n; F)*.

Definition. A square matrix M € Mat(n; F) is elementary if it differs
from the identity by at most one entry.

Theorem (Exchange Lemma). Let M C E C 'V be such that M is lin-
early independent and V = (E). If w € V\ M is such that MU {w} is
linearly independent, then 3¢ € E\M such thatV = ((E\ {€})U{w}).
Thus any two bases for V must have the same cardinality.

Definition. The dimension of a vector space V is the cardinality of
any basis of V (by the exchange-lemma this is independent of choice
of basis).

Theorem (The Dimension Theorem). Let V be a vector space with
subspaces U.W C V. Then dim(U +V) +dim(UNV) = dim(U) +
dim(V).

Proof. Choose abasis 51, ...,5; of UNW and extend it by the elements
uy,...,i, € U to abasis of U and then by the elements wy,...,w; € W

to a basis of U +W. Then show that {5,...,5;,zvecw;,..., W} is a
basis of W. It’s linearly independent by construction, so show that it’s
generating. O

Definition. A mapping f : V — W between vector spaces V, W is lin-
eariff Vii, Ve V: f(d+V) = f(id) + f(V) and VA € F : f(AV) = A f(V).
If f is bijective then it’s an isomorphism, if V = W then f is an endo-
morphism and if both of these hold then f is an automorphism.

Theorem. Let n € N and V be vector space over a field F, then 'V is
isomorphic to F" iff dim(V) = n.

Theorem (1.7.8). Let V,W be vector spaces over F and let B C 'V be
a basis. Then Hom(V,W) = Maps(B,W) : f — f|p.

Theorem (1.7.9). Let f:V — W be a linear map. If f is injective then
it has a left inverse, if f is surjective then it has a right inverse.

Definition. Let f : U — V be linear. The image of f is im(f) :=
fU)={veV:3ieU,v= f(i)}. The kernel of f is the pre-image
ker(f) := f~1(0). We have im(f) C V and ker(f) C U are subspaces.

Theorem (1.8.2). A linear mapping f :V — W is injective if and only
if its kernel is zero.

Theorem (Rank-Nullity). Let f:V — W be a linear mapping between
vector spaces. Then dim(V) = dim(ker(f)) + dim(im(f)).

Theorem (2.2.3). Every square matrix can be written as a product of
elementary matricies.

Definition. A matrix is in Smith-normal form if it has either a one or
zero on the diagonal entries and zeros everywhere else. (2.2.5) every
matrix M has invertible P, Q such that PMQ is in Smith-normal form.

Definition. The column rank (resp. row rank) of a matrix M is the
dimension of the span of the coloumns (resp rows) of A.

Theorem (2.2.7). For any matrix, the column and row ranks are equal.

Definition. Let F be a field with V,W vector-spaces over F with or-
dered bases o = (Vy,...,Vy) and & = (i, ...,uy,) respectively. Then
the representing matrix »(f]., = [a;;] with

ajj = f(l_)'j) = aljﬁl + - —&—a,,ﬁ,,.
Theorem (2.3.4). Let V,W be vector-spaces over F with bases <f , 8
respectively and f € Hom(V,W). Then »[f (V)] = 2[f]o © «[V]-
Theorem (2.4.4). Let f € Hom(V,V) be an endomorphism and o/ , o/’
be bases of V. Then the change of basis formula is ., (f]. =
A lidy) ) o[ fler oo lidy] 1.



Chapter Three - Rings and modules

Definition. A ring is a set with two operations (R, +,) such that

e (R,+) is an abelian group,

e (R,-) is a monoid (associative with identity),

e - distributes over +; a- (b+c)-d=a-b-d+a-c-d.
Definition. A field is a commutative ring with inverses.
Theorem (3.1.11). The ring Z/mZ is a field iff m is prime.

Definition. An element a € R for a ring R is a unit if it is invertible.
We define R* as the group of units.

Definition. An element a € R for aring R is a zero-divisor if 3o € R :
b#0and ab=0or ba=0.

Definition. An integral domain is a non-zero commutative ring with
no zero-divisors.

Theorem. If1 is an integral domain thenab =0 — a=00rb=0.
Moreover (3.2.16), if ab = ac and a # 0 then b = c.

Theorem (3.2.18). Every finite integral domain is a field.

Definition. The ring of polynomials with coefficients in a ring R is
denoted R[X].

Theorem (3.3.3). If R is a ring with no zero-divisors then R[X] has
no zero-divisors and deg(PQ) = deg(P) 4+ deg(Q). If R is an integral
domain then so is R[X].

Theorem (3.3.4). Let R be an integral domain with P,Q € R[X] with
Q(X) monic (leading term has coefficient one). Then 3!A,B € R[X] :
P = AQ + B with deg(B) < deg(Q) or B=0.

Definition. The evaluation of P € R[X] at A € R is P(A), the image
of € : R[X] — Maps(R,R). Then A is a root if P(1) = 0.

Theorem (3.3.9). Let R be a commutative ring, then A € R is a root
of P € RIX] iff (X — A) divides P(X).
Theorem (3.3.10). If P € R[X] then P has at most deg(P) roots in R.

Definition. A field is algebraically closed if every non-constant poly-
nomial has a root.

Theorem. The fundamental theorem of algebra is that C is alge-
braically closed.

Theorem (3.3.14). If F is an algebraically closed field then any non-
zero polynomial P(X) € F[X] can be decomposed into linear factors;
PX)=cX—-M4)...(X—A).

Definition. Let R and S be rings, then f: R — S is a ring homomor-
phism if Vx,y € R: f(x+y) = f(x) + f(y) and f(xy) = f(x) ().

Theorem (3.4.5). Let f € Hom(R,S) be a ring-homomorphism. Then
f(O0r) =05, f(—x) = —f(x) and f(x—y) = f(x) = f(¥).

Definition. A subset of aring @ # I C R is an ideal of R if I is closed
under subtraction and Vi € I,r € R:ir,ri € I.

Definition. The ideal generated by a subset 7 C R is g(T) :=
{riti+...rpty :Vir; € Rand t; € T'}. It is the smallest ideal of R that
contains T (prop 3.4.14).

Definition. An ideal / is a principle ideal if it’s generated by one ele-
ment, I = (1).

Theorem. The subring test gives that R' C R is a subring of R iff

o R has a multiplicative identity
o R’ is closed under subtraction
e R is closed under scaler multiplication

Theorem (2.4.29). If f : R — S is a ring homomorphism then im(f) is
a subring of S. Further; if f(1g) = ls and x is a unit in R then f(x~!) =
f(x)~1, so f restricts to the group homomorphism f* : R* — §*.

Definition. A relation ~ is an equivalence relation iff
e ~ is Reflexive; x ~ x
e ~is Symmetric,x ~y = y~x
e ~ istransitive; (x ~yandy ~z) => x~z.

Definition. If ~ is an equivalence relation then the equivalence class
of xis E(x) :={y : x ~y}.

Definition. The set of equivalence classes is (X/ ~) C & (X), with
canonical map can :X — (X/ ~),x— E(x).

A map g: (X/ ~) — Z is well-defined if 3f : X — Z such that
x~y = f(x)=f(y) and f restricts to g.

Definition. Let / be an ideal of R, then the coset of I is x+17:= {x+1i :
iel}.

Definition. Let/ be anideal of R and ~ be definedbyx~y < x—yel
then R/I = (R/ ~) is the factor/quotient ring of R by I.

Theorem. The first isomorphism theorem is that for rings R,S we
have Vf € Hom(R,S) : f : R/ ker ffoim(f).

Definition. A (left) module over R is a pair (M,+) and mapping
R XM — M, (r,a) — ra such that for a,b € M and r,s € R:

r(a+b) = (ra)+(rb),
(r+s)a= (ra)+(sa),

e r(sa) = (rs)a, and
e lpa=a.

Theorem (3.7.8). If M is an R-module then Ya € M : Ogra = Oy,
Vr € R : 10y =0y and (—r)a = r(—a) = —(ra).

Theorem (3.7.21). Let M,N be R-modules with f € Hom(M,N), then
ker f is a sub-module of M and im(f) is a sub-module of N. Moreover
(3.7.22) f is injective iff ker f = {Op }.

Theorem (3.7.29). The intersection of any collection of sub-modules
of M is a sub-module of M.

Definition. Let N be a sub-module of M. The seta+N :={a+b :
b € N} is the coset of M by N, which defines the quotient (M/ ~).

Theorem. Let R be a ring with L,M being R-modules and N C M a
sub-module of M. The canonical map can: M — M /N is a surjective
R-homomorphism with kernel N, and if f(N) ={0.} (i.e. N C ker f)
then 3\f : M/N — L such that f = f o can.

Theorem. The First Isomorphism Theorem. Let R be a ring with
modules M and N, then V' f € Hom(M,N) there is an R-isomorphism

f:M/ker f>imf.



Chapter Four - Determinants and eigenvalues
Definition. The permutation group S, is the group of all bijections
{1,...,n} = {1,...;n}.

Definition. An inversion of a permutation ¢ € &, is a pair (i, j) with
1<i< j<n:o(i) > o(j). The length of o is

(o) := ()},

and the sign of o is the group-homomorphism sgn(c) = (—1)!(®)
whose kernel is the Alternating group A,. If sgn(c) = +1 then &
is an even permutation.

{G.j):1<i<j<no(i)>

Definition. Let R be a commutative ring and n € N. The determinant
det : Mat(n x n;R) — R is given by

det(fay]) = Y sen(0)aroq) -

ce’,

. am(n).

Definition. Let U,V, W be F-vector spaces. A bilinear formon U xV
isamapping H : U x V — W such that Vi1, i, €U, V|,Vo €V, L€ F:
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=
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o H(Aiiy,v1) = AH (i1, V),

(
o H(iiy,V\ +V2) = H (i1, V1) + H (i1, V),
° H(

A bilinear form is symmetric if U =V :
and is anti-symmetric if Vii € U : H(i,

Definition. A mapping H : V| X

- x V, = W is a multilinear form
if it’s linear in each entry. It’s alternatlng iftH(...,i,.

Lity.)=0.

Theorem (4.3.6). Let F be a field. The mapping det : Mat(n; F) — F
which is an alternating, multilinear form on [ay;| . .. |an;] with det(I) =
1F is unique.
Theorem (4.4.1,4.4.4).

det(AB) =

det(A)det(B) and det(AT)=det(A).

Definition. Let A € Mat(n;R) where R is a commutative ring. The
(i, j)-cofactor of A is

Gij = (—1)"* det(A(i, ),

where A(i, j) is the matrix A with the i"" row and j”* column removed.

Theorem (4.4.7).

det(A

Z a;jCij.

Theorem (4.4.9). The adjugate matrix is adj(A);; = Cj; for cofactor
matrix C of A. Then Cramer’s Rule is that

A-adj(A) = det(A)1,.

Theorem (4.4.11). A matrix A is invertible iff det(A) # 0.

Definition. If V is an F-vector space then A € V is an eigenvalue of
fEeEnd(V)if WeV: f(¥)=AV

Theorem (4.5.4). If f € End(V) for V over F which is algebraically
closed, then f has eigenvalues.

Definition. Let R be a commutative ring, the characteristic polyno-
mial of f € End(V) is

det([f] — x1).

xr(x) =

Theorem (4.5.1). The roots of the characteristic polynomial of f €
End(V) are exactly the eigenvalues of f.

Theorem (4.6.1). Let f € End(V) then V has an ordered basis 2 =
{\71 . Vn} with

f(¥1) = anvy,
F1) = apvi +anvs,

f(‘_;l) =apvi +amVa+ -+ amy

if and only if x(x) decomposes into linear factors. We say f is trian-
gularisable.

Definition. A mapping f € End(V) is diagonalisable if there exists a
basis of V consisting of eigenvectors of f.

Theorem (4.6.8). If f € End(V) has dim(V) distinct eigenvalues then
the corresponding eigenvectors are linearly independent.

Theorem (Perran-Frobeneous). Let M € Mat(n;R) be a markov
matrix with positive entries, then the eigenspace E(1,M) is one-
dimensional with a basis vector V such that Y?v; = 1 (which is
unique).



Chapter Five - Inner product spaces

Definition. Let V be a vector space over R, an iner product of V is a

mapping
(=,—):VxV->R

such that Vi, v,w € V:

o (ii,i) > 0 with equality iff i = 0.

Definition. Let V be a vector space over C, an iner product of V is a
mapping

such that Vi, V,w € V:

e (ii,ii) > 0 with equality iff i = 0.

Definition. If (iZ,V) = 0 then we say i and V are orthogonal and write
il

Definition. Let V be an inner-product space, then the length or norm

of avectorv eV is
V]| = v/ (V,9).

Definition. A family of vectors (V;);c; is an orthonormal family of
vectors if (V;,V;) = §;;.

Theorem (5.1.10). Every finite-dimensional inner-product space has
an orthonormal basis.

Definition. Let V be an inner-product space with subset 7 C V, the
orthogonal setto 7 is 7+ = {Ve V : ¥ Liiforallii € T}.

Theorem (5.2.2). Let U be a subspace of V, then U and U+ are com-
plementary; Ut =V \U andV =U QU™ .

Definition. Let U be a subspace of inner-product space V, then the
orthogonal projection from V onto U is

ny:V—-UV=p+7— p.

Chapter Six - Jordan normal form

1. Calculate the eigenvalues Ai,...,A; along with geometric
Ui, .., Uus and algebraic my,...,m; multiplicities,

2. Compute corresponding eigenspaces
Ef ={FeVv:(A-IA)¥=0}.
3. Compute the following, and draw the chart on the right:
di = dim(E}) 00000
——
dy boxes

[
——

dp boxes

dy = dim(E} ) — dim(E})

dy = dim(E} ) —dim(E} ")

Theorem (5.2.5). This is the Cauchy-Schwarz inequality:
@, v)| < [ - [[V]]-
Theorem (5.2.6). LetV be a normed inner-product space, Vv € V:
o ||¥]| > 0 with equality iff ¥ =0,

o [[AV][=[A]-[[V

o [+ V] < || +[[¥]]

Definition. Let V be an inner-product space, then 7, S € End(V) are
adjoint if for all i,V € V:

We write S = T* and say that S is the adjoint of 7.
Theorem (5.3.4). Let T € End(V), then T has an adjoint.
Definition. Let 7 € End(V), then T is self-adjoint if 7* = T.
Theorem (5.3.7). Let TEnd(V) be self-adjoint, then

e FEvery eigenvalue of T is real,

e T has at least one eigenvalue,

e if the eigenvalues are distinct then the eigenvectors are orthog-
onal.

Theorem (Spectral). Let V be a finite-dimensional inner-product
space and T € End(V) be self-adjoint, then V has an orthonormal
basis consisting of eigenvectors of T.

Definition. A matrix P is orthogonal if P~! = PT.

Theorem (Spectral Il). Ler A € Mat(n;R) be symmetric. Then there is
an orthogonal matrix P € Mat(n;R) such that PT AP is diagonal with
entries being eigenvalues of A.

Definition. A matrix A € Mat(n;C) is unitary if P~! = P

Theorem (Spectral IIl). Ler A € Mat(n;C) be hermitian (A = A ).
Then there is a unitary matrix P € Mat(n; C) such that P AP is diag-
onal with entries being eigenvalues of A.

4. Start at the bottom of the diagram, filling row k with the linearly
independent eigenvectors in Eﬁ which are not in Eﬁ’l. Each
time you fill in a box with a vector ¥, fill in every box above
with the vectors ;| = (A — IA)*¥ until you reach the top.

5. Repeat steps two to four with different eigenvalues until the di-
agram is full. Then Q is the matrix whose columns are the top-
left vector followed by the vectors below it so the Jordan-normal
formis J = Q" 'AQ.

6. In fact you needn’t calculate Q. Each column of the diagram is
a Jordan block - easy!



Examples o A non-symmetric bilinear form: u;v, —upv;.

e An inner product on C: ((z;,w1),(z1,w1) = 2172 + wiwz. A
corresponding self-adjoint operator is id : Vv — V and a non
self-adjoint one is (z,w) — (iz,w).

e Integral domain that isn’t a field: Z.

o Commutative ring that isn’t an integral domain: Z,.

e A linear mapping defined without a matrix is %.

A ring with infinitely many units: Mat(2;Z).
e An idempotent operator is one such that x - x = x.

0 1 o To check if Z is a basis: just check whether the matrix with the

elements of % as its columns has non-zero determinant.

A non-diagonalizable complex matrix: (1 1) .

¢ A non-zero linear map defined for any vector space v — 2v.
e A non-commutative ring in which all non-zero elements are

Symmetric billinear form, not an inner-product: u;u,. invertable: Quarternions.

Matrix representation for linear maps Useful definitions

Let £ € Hom(V, W) be a linear map and <7, % be a bases of V and W  Definition. Let X be a set and F' be a field, then the set Maps (X, F)

respectively. Then: is a vector-space over F'. We define the free vector space as the sub-
space F(X) C Maps(X, F) which sends all but finitely many elements
lid] , = {51 | ... |Bn} whereeachzjeﬂ of X to zero.
. . . Definition. The direct sum of vector spaces Vi,...,V,,W and linear
=4 [f] = {f(al) [ |f(a,,)} where each d; € o/ maps f;: Vi > Wistheset Vi &V, & --- V), giving the linear map

Vi@ @Va—=W, flaiVi+--+apv) i=a1fivi)+- -+ anfu(Vn).



