Sebastian Müksch, v2, 2018/19

Vector Spaces

Lemma 1.2.4 (Product with Zero Vector).
Let V be an F-vector space, then
$\forall \lambda \in F: \lambda \overrightarrow{0}=\overrightarrow{0}$. Furthermore, $\lambda \vec{v}=\overrightarrow{0} \Rightarrow \lambda=0$ or $\vec{v}=0$.

Proposition 1.4.5 (Generating a Vector Subspace From a Set).
Let $T \subseteq V, V$ begin vector space over F. Then $\langle T\rangle$ is the smallest subspace of V containing T.

Example 1.4.6.

Let $T \subseteq V, \vec{v} \in\langle T\rangle$. Then $\langle T \cup\{\vec{v}\}\rangle=\langle T\rangle$.

Exercise 4.

Any intersection of vector subspaces is a vector subspace.

Theorem 1.5.12 (Characterisation of Bases). Let $E \subseteq V$ of vector space V. The following are equivalent:
(1) E is a basis;
(2) E is a minimal generating set, i.e. $\forall \vec{v} \in E: E \backslash\{\vec{v}\}$ is not generating;
(3) E is maximal linearly independent set, $\forall \vec{v} \in V: E \cup\{\vec{v}\}$ is not linearly independent.
Corollary 1.5.13 (The Existence of a Basis). Let V be a finite vector space over field F.
Then V has a basis.
Hint: Take finite generating set, reduce until linearly independent.

Theorem 1.5.14 (Useful Variant on Characterisation of Bases).
Let V be a vector space.
(1) If $L \subset V$ is linearly independent and E is minimal generating set s.t. $L \subseteq E$, then E is a basis.
(2) If $E \subseteq V$ is generating and L is maximal linearly independent set s.t. $L \subseteq E$, then L is a basis.
Theorem 1.5.16 (A Useful Variant on Linear Combinations of Basis Elements).
Let V be a F-vector space, F being a field and $\left(\vec{v}_{i}\right)_{i \in I}$ a family of vectors in V. The following are equivalent:
(1) Family $\left(\vec{v}_{i}\right)_{i \in I}$ is a basis for V;
(2) $\forall \vec{v} \in V$, there exists precisely one family $\left(a_{i}\right)_{i \in I}$ of elements in F, almost all zero, s.t. $\vec{v}=\sum_{i \in I} a_{i} \vec{v}_{i}$.

Theorem 1.6.1 (Fundamental Estimate of Linear Algebra).
Let V be a vector space, $L \subset V$ a linearly independent subset and $E \subseteq V$ a generating set.
Then $|L| \leqslant|E|$.
Theorem 1.6.2 (Steinitz Exchange Theorem). Let V be a vector space, $L \subset V$ a finite linearly independent subset and $E \subseteq V$ a generating set. Then we can swap elements of E with elements of L and keep it a generating set.
Lemma 1.6.3 (Exchange Lemma).
Let V be a vector space, $M \subseteq V$ a linearly
independent, E a generating set s.t. $M \subseteq E$. If $\vec{w} \in V \backslash M$ s.t. $M \cup\{\vec{w}\}$ is linearly independent, then $\exists \vec{e} \in E \backslash M$ s.t.
$(E \backslash\{\vec{e}\} \cup\{\vec{w}\})$ is generating.
Hint: $\vec{w}=\sum \alpha_{i} \vec{e}_{i}, \vec{e}_{i} \in E$,
$M \cup\{\vec{w}\} \Rightarrow \exists \vec{e}_{i} \notin M$, express that \vec{e}_{i} with \vec{w}.
Corollary 1.6.4 (Cardinality of Bases).
Let V be a finitely generated vector space.
(1) V has a finite basis;
(2) V cannot have an infinite basis;
(3) Any two bases of V have the same number of elements.
Hint: Theorem 1.6.1 \& Contradiction.
Example 1.6.7.
Basis of zero vector space is $\emptyset \Rightarrow$ dimension of zero vector space is 0 .

Corollary 1.6.8 (Cardinality Criterion for Bases).
Let V be a finitely generated vector space.
(1) $L \subset V$ linearly independent, then
$|L| \leqslant \operatorname{dim} V$ and $|L|=\operatorname{dim} V \Rightarrow L$ is a basis.
(2) $E \subseteq V$ generating, then $\operatorname{dim} V \leqslant|E|$ and $|E|=\operatorname{dim} V \Rightarrow E$ is a basis.

Hint: Theorem 1.6.1 \& 1.5.12.
Corollary 1.6.9 (Dimension Estimate of Vector Subspaces).
Let $U \subset V$ be a proper subspace of finite vector space V. Then $\operatorname{dim} U<\operatorname{dim} V$.

Remark 1.6.10.
If $U \subseteq V$ subspace of arbitrary vector space, then $\operatorname{dim} U \leqslant \operatorname{dim} V$ and
$\operatorname{dim} U=\operatorname{dim} V<\infty \Rightarrow U=V$.
Theorem 1.6.11 (The Dimension Theorem). Let $U, W \subseteq V$ be subspaces. Then
$\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim} U+\operatorname{dim} W$ $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)$
Hint: $f: U \oplus W \rightarrow V ;(\vec{u}, \vec{w}) \mapsto \vec{u}+\vec{w}$
$\Rightarrow \operatorname{im} f=U+W, \operatorname{ker} f=U \cap W$. Rank-Nullity.
Exercise 6.
Let V_{1}, \ldots, V_{n} be F-vector spaces, then
$\operatorname{dim}\left(V_{1} \oplus \ldots \oplus V_{n}\right)=\operatorname{dim}\left(V_{1}\right)+\ldots+\operatorname{dim}\left(V_{n}\right)$.
Exercise 10.
The image/preimage of a vector subspace under a linear mapping is a vector subspace.

Exercise 12.

Let V_{1}, \ldots, V_{n}, W be vector spaces, $f_{i}: V_{i} \rightarrow W$ linear mappings. Then $f: V_{1} \oplus \ldots \oplus V_{n} \rightarrow W$ with $f\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)=f_{1}\left(\vec{v}_{1}\right)+\ldots+f_{i}\left(\vec{v}_{n}\right)$ is a new linear mapping. This gives a bijection:

$$
\begin{array}{r}
\operatorname{Hom}\left(V_{1}, W\right) \times \ldots \times \operatorname{Hom}\left(V_{n}, W\right) \\
\xrightarrow{\sim} \operatorname{Hom}\left(V_{1} \oplus \ldots \oplus V_{n}, W\right)
\end{array}
$$

with inverse $f \mapsto\left(f \circ \mathrm{in}_{i}\right)_{i}$.
Theorem 1.7.7 (Classification of Vector Space by Dimension).
Let V be vector space over $F, n \in \mathbb{N}$. Then $F^{n} \cong V \Leftrightarrow \operatorname{dim} V=n$.

Exercise 17.

Let $U \subseteq V$ be subspace of vector space V and $f: U \rightarrow W$. Then f can be extended to a linear mapping $\tilde{f}: V \rightarrow W$.

Theorem 1.8.4 (Rank-Nullity Theorem). Let $f: V \rightarrow W$ be a linear mapping. Then

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{im} f)+\operatorname{dim}(\operatorname{ker} f)
$$

Hint: V finite $\Rightarrow \operatorname{im} f$, $\operatorname{ker} f$ finite,
contrapositive shows Theorem holds for V
infinite case. Assume V finite, then Cor. 1.5.13 \& Ex. 18.

Exercise 18.

Let $f: V \rightarrow W$ be a linear map. If $\vec{v}_{1}, \ldots, \vec{v}_{s}$ is a basis for $\operatorname{ker} f$ and extended by $\vec{v}_{s+1}, \ldots, \vec{v}$ it is basis of V, then $f\left(\vec{v}_{s+1}\right), \ldots, f\left(\vec{v}_{n}\right)$ is basis of $\operatorname{im} f$.

Exercise 19.

Let $U, W \subseteq V$ be subspaces of $V . U, W$ are complementary $\Leftrightarrow V=U+W$ and $U \cap W=\{0\}$.

Exercise 20.

Let $U, W \subseteq V$ be subspaces of $V . U, W$ are complementary $\Leftrightarrow V=U+W$ and
$\operatorname{dim} U+\operatorname{dim} W \leqslant \operatorname{dim} V$.

Linear Mappings and Matrices

Theorem 2.2.3.

Every square matrix with entries in a field can be written as a product of elementary matrices.

Theorem 2.2.5.

For every $A \in \operatorname{Mat}(n \times m ; F)$ there exist
invertible matrices P, Q s.t. $P A Q$ is in Smith Normal Form.
Hint: First row operations to echelon form, then column operations.

Theorem 2.2.7.

For any matrix, column and row rank are equal.
Hint: Column \& Row rank of matrix and its
Smith Normal Form are equal as P, Q in
Theorem 2.2.5 are invertible.
Theorem 2.4.3 (Change of Basis).
Let $f: V \rightarrow W, \mathcal{A}, \mathcal{A}^{\prime}$ ordered bases of $V, \mathcal{B}, \mathcal{B}^{\prime}$ ordered bases of W. Then

$$
\mathcal{B}^{\prime}[f]_{\mathcal{A}^{\prime}}={ }_{\mathcal{B}^{\prime}}\left[\mathrm{id}_{W}\right]_{\mathcal{B}} \circ{ }_{\mathcal{B}}[f]_{\mathcal{A}} \circ{ }_{\mathcal{A}}\left[\mathrm{id}_{V}\right]_{\mathcal{A}^{\prime}}
$$

Corollary (unlisted).

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathcal{A}=\left\{\vec{a}_{i}\right\}$ ordered basis of $\mathrm{R}^{n}, \mathcal{B}=\left\{\vec{b}_{i}\right\}$ ordered basis of \mathbb{R}^{m}. Then

$$
\begin{gathered}
\mathcal{B}[f]_{\mathcal{A}}=\left({ }_{\mathcal{S}(m)}\left[\mathrm{id}_{\mathbb{R}^{m}}\right]_{\mathcal{B}}\right)^{-1} \circ{ }_{\mathcal{S}(m)}[f]_{\mathcal{A}}= \\
\left(\vec{b}_{1}\left|\vec{b}_{2}\right| \ldots \mid \vec{b}_{m}\right)^{-1}\left(f\left(\vec{a}_{1}\right)\left|f\left(\vec{a}_{2}\right)\right| \ldots \mid f\left(\vec{a}_{n}\right)\right)
\end{gathered}
$$

Theorem 2.4.4.

Let $f: V \rightarrow V, \mathcal{A}, \mathcal{A}^{\prime}$ ordered bases of V. Then

$$
\mathcal{A}^{\prime}[f]_{\mathcal{A}^{\prime}}=\left(\mathcal{A}^{\left.\left[i d_{V}\right]_{\mathcal{A}^{\prime}}\right)^{-1} \circ_{\mathcal{A}}[f]_{\mathcal{A}} \circ{ }_{\mathcal{A}}\left[\mathrm{id}_{V}\right]_{\mathcal{A}^{\prime}} .}\right.
$$

Exercise 32.

Let $f: V \rightarrow V$. Then f nilpotent \Rightarrow there exists an order basis of V s.t. representing matrix of f is upper triangular with only 0 's along diagonal. Additionally, $M \in \operatorname{Mat}(n ; F)$ upper triangular with only 0 's along diagonal $\Rightarrow M^{n}=0$.

Exercise 33.

Let A, B be matrices of appropriate sizes, then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Corollary 33

Conjugate matrices have equal trace.
Hint: Ex. 33 with $A=T^{-1} M, B=T$.

Exercise 35.

Let $f: V \rightarrow V$ be idempotent, i.e. $f^{2}=f$, then $\operatorname{tr}(f)=\operatorname{dim}(\operatorname{im} f)$.

Rings and Modules

Proposition 3.1.11.

Let $m \in \mathbb{N}$, then $\mathbb{Z} / m \mathbb{Z}$ is a field if and only if m is prime.
Hint: $(\Rightarrow) \bar{a} \in \mathbb{Z} / m \mathbb{Z} \Rightarrow \exists \bar{b} \in \mathbb{Z} / m \mathbb{Z}$ s.t.
$\overline{a b}=1 \Leftrightarrow a b=k m+1$. a does not divide 1 , so cannot divide m. ($\Longleftarrow) \bar{a} \in \mathbb{Z} / m \mathbb{Z}$,
$\operatorname{hcf}(a, m)=1 \Leftrightarrow a b+m k=1 \Leftrightarrow \overline{a b}=1$.
Proposition 3.2.10. The set R^{\times}of units in R forms a group under multiplication.

Remark (unknown). If R is an integral domain, then for $a, b \in R$:
(1) $a b=0 \Rightarrow a=0$ or $b=0$, and
(2) $a \neq 0$ and $b \neq 0 \Rightarrow a b \neq 0$.

Proposition 3.2.16 (Cancellation Law of Integral Domains).
Let R be an integral domain and $a, b, c \in R$.
Then $a c=b c$ and $c \neq 0$ implies $a=b$.
Hint: $a c=b c \Leftrightarrow(a-b) c=0$.
Proposition 3.2.17.
Let $m \in \mathbb{N}$, then $\mathbb{Z} / m \mathbb{Z}$ is an integral domain if and only if m is prime.
Hint: $(\Leftarrow) \bar{k}, \bar{l}$ zero-divisors $\Rightarrow \overline{k l}=\overline{0} \Rightarrow m$ divides k or l as m prime, so $\bar{k}=0$ or $\bar{l}=0$, contradiction. $(\Rightarrow) m$ not prime, then $m=k l$, $1<k, l<m$, then $\bar{k} \neq 0$ or $\bar{l} \neq 0$ but $\overline{k l}=\overline{0}$.

Theorem 3.2.18.
Every finite integral domain is a field.
Hint: $\lambda_{a}: R \rightarrow R ; b \mapsto a b$, cancellation law gives injectivity, finite gives surjectivity.

Lemma 3.3.3.

(i) If R has no zero-divisors, then $R[X]$ has no zero-divisors and
$\operatorname{deg}(P Q)=\operatorname{deg}(P)+\operatorname{deg}(Q)$.
(ii) If R is an integral domain, so is $R[X]$.

Theorem 3.3.4 (Division and Remainder). Let R be an integral domain and $P, Q \in R[X]$ with Q monic. Then there exists unique $A, B \in R[X]$ s.t. $P=A Q+B$ and $\operatorname{deg}(B)<\operatorname{deg}(Q)$ or $B=0$.
Hint: Choose A s.t. $\operatorname{deg}(P-A Q)$ minimal
(possible as degree non-negative. Suppose
$\operatorname{deg}(P-A Q)=r \geqslant \operatorname{deg}(Q)=d \Rightarrow$
$\operatorname{deg}\left(P-A+a_{r} X^{r-d} Q\right)<\operatorname{deg}(P-A Q)$.
Exercise 42.
If R is an integral domain, then $R[X]^{\times}=R^{\times}$.

Exercise 43.

Let $R=\mathbb{F}_{p}$, where p is prime. Then the mapping $R[X] \rightarrow \operatorname{Maps}(R, R)$ is not injective.
Hint: $X^{p}-X \in \mathbb{F}_{p}[X] \&$ Fermat's Little Theorem.

Proposition 3.3.9.

Let R be a commutative ring, $\lambda \in R$ and $P(X) \in R[X]$. Then λ is a root of $P(X)$ if and only if $(X-\lambda)$ divides $P(X)$.

Theorem 3.3.10.

Let R be an integral domain. Then a non-zero polynomial $P \in R[X]$ has at most $\operatorname{deg}(P)$ roots in R.
Hint: $\lambda_{1, \ldots, m}$ distinct roots of $P \Rightarrow i \geqslant 2$:
$0=P\left(\lambda_{i}\right)=A\left(\lambda_{i}\right)\left(\lambda_{i}-\lambda_{1}\right)$ and $\lambda_{i}-\lambda_{1} \neq 0$, induction.

Theorem 3.3.13 (Fundamental Theorem of Algebra).

The field \mathbb{C} is algebraically closed.
Theorem 3.3.14.
Let F be an algebraically closed field. Then
every non-zero polynomial $P \in F[X]$
decomposes into linear factors

$$
P=c\left(X-\lambda_{1}\right) \ldots\left(X-\lambda_{n}\right)
$$

with $n \geqslant 0, c \in F^{\times}$and $\lambda_{i} \in F$. This decomposition is unique, up to reordering.

Remark 3.4.4.
Let R, S be rings and $f: R \rightarrow S$ be a
homomorphism. Then $f\left(1_{R}\right)$ is idempotent, i.e. $f\left(1_{R}\right)^{2}=f\left(1_{R}\right) \Leftrightarrow f\left(1_{r}\right)\left[f\left(1_{R}\right)-1_{S}\right]=0_{S}$. If S has no zero-divisors, then either $f\left(1_{R}\right)=0_{S}$ or $f\left(1_{R}\right)=1_{S}$.

Lemma 3.4.5.
Let $f: R \rightarrow S$ be a ring homomorphism. Then for all $x, y \in R, m \in \mathbb{Z}$:
(1) $f\left(0_{R}\right)=0_{S}$;
(2) $f(-x)=-f(x)$;
(3) $f(x-y)=f(x)-f(y)$;
(4) $f(m x)=m f(x)$.

Remark 3.4.6.

(1) Let f be a homomorphism. Then $f\left(x^{n}\right)=(f(x))^{n}$ for all $n \in \mathbb{N}$.
(2) Let $f: \mathbb{R} \rightarrow \operatorname{Mat}(2 ; \mathbb{R}) ; x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 0\end{array}\right)$, then f does not send identity to identity.

Example 3.4.10.

$I=\left\{\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right): b, d \in \mathbb{R} \subset \operatorname{Mat}(2 ; \mathbb{R})\right.$ is not an ideal, it fails to satisfy $i r \in I$.

Proposition 3.4.14.
Let R be a commutative ring, $T \subseteq R$. Then
${ }_{R}\langle T\rangle$ is the smallest ideal of R containing T.
Hint: Minimality:
$I \unlhd R, t_{1}, \ldots, t_{m} \in I \Rightarrow \sum_{i=1}^{m} r_{i} t_{i} \in I$.
Proposition 3.4.18.
Let $f: R \rightarrow S$ be a ring homomorphism. Then ker $f \unlhd R$.

Lemma 3.4.20.

f injective \Leftrightarrow ker $f=\{0\}$.
Lemma 3.4.21.
$I, J \unlhd R \Rightarrow I \cap J \unlhd R$.
Lemma 3.4.21.
$I, J \unlhd R \Rightarrow I+J=\{a+b: a \in I, b \in J\} \unlhd R$.

Example 3.4.25.

If F is a field, then for any $m, n \in \mathbb{N}$, with $m \leqslant n, \operatorname{Mat}(m ; F)$ is a subring of $\operatorname{Mat}(n, F)$.
$\boldsymbol{B u t}$, identities are not equal, i.e. $\mathbb{I}_{m} \neq \mathbb{I}_{n}$.
Proposition 3.4.26 (Test for a Subring).
Let R^{\prime} be a subset of ring R. Then R^{\prime} is a
subring of R if and only if:
(1) R^{\prime} has a multiplicative identity;
(2) $a, b \in R^{\prime} \Rightarrow a-b \in R^{\prime}$; and
(3) R^{\prime} is closed under multiplication.

Proposition 3.4.29.

Let $f: R \rightarrow S$ be a ring homomorphism and assume $f\left(1_{R}\right)=1_{S}$. Then
$x \in R^{\times} \Rightarrow f(x) \in S^{\times}$and $(f(x))^{-1}=f\left(x^{-1}\right)$.
Hint: $f(x) f\left(x^{-1}\right)=f\left(x x^{-1}\right)=f\left(1_{R}\right)$.
Exercise 52.
Let R be a ring and $I \unlhd R$. If R is commutative, so is R / I.

Exercise 53.

Let R be a ring and $I \unlhd R . R / I$ is a non-zero ring if and only if $I \neq \bar{R}$.

Exercise 54.

Let R be a ring and I be a proper ideal of R. If $r \in R^{\times}$, then $r+I \in(R / I)^{\times}$with $(r+I)^{-1}=r^{-1}+I$.

Theorem 3.6.7 (The Universal Property of Factor Rings).
Let R be a ring and $I \unlhd R$.
(1) can : $R \rightarrow R / I ; r \mapsto r+I$ is a surjective ring homomorphism with kernel I.
(2) If $f: R \rightarrow S$ is a ring homomorphism with $f(I)=\left\{0_{S}\right\}$, so that $I \subseteq \operatorname{ker} f$, then there exists a unique ring homomorphism
$\bar{f}: R / I \rightarrow S$ such that $f=\bar{f} \circ$ can.
Hint: $f(x+I)=f(x)+f(I)=\{f(x)\}$, so $\bar{f}(x+I)=f(x)$ only possible map.

Theorem 3.6.9 (First Isomorphism Theorem for Rings).
Let R, S be rings, then every homomorphism $f: R \rightarrow S$ induces an isomorphism:

$$
\bar{f}: R / \operatorname{ker} f \xrightarrow{\sim} \operatorname{im} f
$$

Hint: \bar{f} from Universal Property,
$\operatorname{ker} \bar{f}=\{0+\operatorname{ker} f\}$ and Lemma 3.4.20.

Example 3.7.4.

A \mathbb{Z}-module is exactly the same as abelian group.

Example 3.7.6.

Let $I \unlhd R$, then I is an R-module.

Example 3.7.7.

Let R be a ring, M_{1}, \ldots, M_{n} be R-modules, then $M_{1} \times M_{2} \times \ldots \times M_{n}$ is an R-module with addition and scalar multiplication defined componentwise.

Example 3.7.9.

Let $R=\operatorname{Mat}(2 ; \mathbb{C})$ and $M=\mathbb{C}^{2}$. Then $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\binom{1}{0}=\binom{0}{0}$, so $\lambda \vec{v}=0 \nRightarrow \lambda=0$ or $\vec{v}=\overrightarrow{0}$.
Proposition 3.7.20 (Test for a Submodule). Let R be a ring and let M be an R-module. Let M^{\prime} be a subset of M, then M^{\prime} is a submodule if and only if:
(1) $0_{M} \in M^{\prime}$;
(2) $a, b \in M^{\prime} \Rightarrow a-b \in M^{\prime}$;
(3) $r \in R, a \in M^{\prime} \Rightarrow r a \in M^{\prime}$.

Lemma 3.7.21.

Let $f: M \rightarrow N$ be an R-homomorphism. Then ker f is a submodule of M and $\operatorname{im} f$ is a
submodule of N.
Lemma 3.7.28.
Let $T \subseteq M$. Then ${ }_{R}\langle T\rangle$ is the smalles
submodule of M containing T.

Lemma 3.7.29.

The intersection of any collection of submodules of M is a submodule of M.

Lemma 3.7.30.

Let M_{1}, M_{2} be a submodule of M. Then $M_{1}+M_{2}$ is a submodule of M.

Theorem 3.7.32 (The Universal Property of Factor Modules).
Let R be a ring, $L, M R$-modules and N a submodule of M.
(1) can : $M \rightarrow M / N ; a \mapsto a+N$ is a surjective R-homomorphism with kernel N.
(2) If $f: M \rightarrow L$ is an R-homomorphism with $f(N)=\left\{0_{L}\right\}$, so that $N \subseteq \operatorname{ker} f$, then there exists a unique homomorphism $\bar{f}: M / N \rightarrow L$ such that $f=\bar{f} \circ$ can.

Theorem 3.6.9 (First Isomorphism Theorem for Modules).
Let R be a ring, M, N be R-modules, then
every R-homomorphism $f: M \rightarrow N$ induces an R-isomorphism:

$$
\bar{f}: M / \operatorname{ker} f \xrightarrow{\sim} \operatorname{im} f .
$$

Hint: \bar{f} from Universal Property,
$\operatorname{ker} \bar{f}=\{0+\operatorname{ker} f\}$ for injectivity.
Exercise 59 (Second Isomorphism Theorem for Modules).
Let N, K be submodules of R-module M. Then K is submodule of $N+K, N \cap K$ is a submodule of N and

$$
\frac{N+K}{K} \cong \frac{N}{N \cap K} .
$$

Exercise 60 (Third Isomorphism Theorem for Modules).
Let N, K be submodules of R-module M, s.t.
$K \subseteq N$. Then N / K is a submodule of M / K and

$$
\frac{M / K}{N / K} \cong M / N
$$

Determinants and Eigenvalues Redux

Example 4.1.4.
The identity of \mathfrak{S}_{n} has length 0 . A transposition swapping i and j has length $2|i-j|-1$.

Lemma 4.1.5 (Multiplicativity of Sign).
For each $n \in \mathbb{N}$, sign of permutation $\operatorname{sgn}: \mathfrak{S}_{n} \rightarrow\{ \pm 1\}$ produces group
homomorphism, i.e.
$\forall \sigma, \tau \in \mathfrak{S}_{n}: \operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$.

Exercise 61.

Let $\sigma \in \mathfrak{S}_{n}$ be permutation s.t. it moves i to the first place and leaves rest unchanged. Then σ has $i-1$ inversions and $\operatorname{sgn}(\sigma)=(-1)^{i-1}$.

Exercise 62.

Every permutation in \mathfrak{S}_{n} can be written as product of transpositions of neighbouring numbers, i.e. permutations of form $(i i+1)$.

Definition 4.2.1.

Let $A \in \operatorname{Mat}(n ; R)$, where R is a ring. Then

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{G}_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(a)} \ldots a_{n \sigma n}
$$

In degenerate case $n=0$, "empty matrix" is assigned determinant of 1 .

Example 4.2.4.

The determinant of an upper triangular matrix is the product of the entries along the main diagonal.

Exercise 63.

Let \mathbb{A} be a block-upper triangular matrix with diagonal entries $\mathbb{A}_{i i}=A_{i}$, for $A_{i} \in \operatorname{Mat}(n ; R)$.
Then $\operatorname{det} \mathbb{A}=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \ldots \operatorname{det}\left(A_{n}\right)$.

Remark (unknown).

$|\operatorname{det}(L)| \operatorname{describes~how~much~linear~mapping~} L$ changes areas. If sign of $\operatorname{det}(L)$ is positive, then L preserves orientation, if negative, then L reverses orientation.

Remark 4.3.2.

If $H: U \times U \rightarrow W, U, W$ being F-vector spaces, is an alternating bilinear form, then
$\forall a, b \in U: H(a, b)=-H(b, a)$. If $1_{F}+1_{F} \neq 0_{F}$,
then $\forall a, b \in U: H(a, b)=-H(b, a)$ implies H is alternating. N.B.: this does not hold in $F=\mathbb{F}_{2}$!

Remark 4.3.5.

If $H: V \times V \times \ldots \times V \rightarrow W, V, W$ being F-vector spaces, is an alternating bilinear form, then

$$
\begin{aligned}
& H\left(\vec{v}_{1}, \ldots, \vec{v}_{i}, \ldots, \vec{v}_{j}, \ldots, \vec{v}_{n}\right)= \\
& -H\left(\vec{v}_{1}, \ldots, \vec{v}_{j}, \ldots, \vec{v}_{i}, \ldots, \vec{v}_{n}\right)
\end{aligned}
$$

More generally, for $\sigma \in \mathfrak{S}_{n}$:

$$
H\left(\vec{v}_{\sigma(1)}, \ldots, \vec{v}_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) H\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)
$$

Converse is true provided $1_{F}+1_{F} \neq 0_{F}$.
Theorem 4.3.6 (Characterisation of the Determinant).
Let F be a field. The mapping
det : $\operatorname{Mat}(n ; F) \rightarrow F$ is the unique alternating multilinear form on n-tuples of column vectors with values in F s.t. $\operatorname{det} \mathbb{I}_{n}=1_{F}$.

Exercise 64.

Let $d: \operatorname{Mat}(n ; F) \rightarrow F$ be an alternating multilinear form on n-tuples of column vectors in F^{n}, then
$\forall A \in \operatorname{Mat}(n ; F): d(A)=d\left(e_{1}|\ldots| e_{n}\right) \operatorname{det}(A)$.
Theorem 4.4.1 (Multiplicativity of the Determinant).
Let R be a commutative ring, $A, B \in \operatorname{Mat}(n ; R)$.
Then $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.
Theorem 4.4.2 (Determinantal Criterion for Invertibility).
Let F be a field, $A \in \operatorname{Mat}(n ; F)$. Then
$\operatorname{det} A \neq 0 \Leftrightarrow A$ invertible.
Hint: $(\Leftrightarrow) B=A^{-1}, \operatorname{det}(A B)=1$ by multiplicativity, (\Rightarrow) A not invertible, then dependent column(s), then alternating form 0 .

Remark 4.4.3.

From Theorem 4.4.2 follows that
$\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$ and $\operatorname{det}\left(A^{-1} B A\right)=\operatorname{det} B$.
Latter asserts that there exists unique
determinant for an endomorphism.
Theorem 4.4.7 (Laplace's Expansion of the Determinant).
Let $A=\left(a_{i j}\right)$ with entries in commutative ring R. For fixed i, i-th row expansion is

$$
\operatorname{det} A=\sum_{j=0}^{n} a_{i j} C_{i j}
$$

and for fixed j, j-th column expansion is

$$
\operatorname{det} A=\sum_{i=0}^{n} a_{i j} C_{i j}
$$

Theorem 4.4.9 (Cramer's Rule).
Let $A \in \operatorname{Mat}(n ; R), R$ being a commutative ring. Then $A \cdot \operatorname{adj}(A)=(\operatorname{det} A) \mathbb{I}_{n}$.

Corollary 4.4.11 (Invertibility of Matrices). Let $A \in \operatorname{Mat}(n ; R), R$ being a commutative ring. Then A invertible $\Leftrightarrow \operatorname{det} A \in R^{\times}$.

Theorem 4.5.4 (Existence of Eigenvalues). Let $f: V \rightarrow V$ be an endomorphism, V a non-zero, finite dimensional vector space over F, where F is algebraically closed. Then f has an eigenvalue.

Remark 4.5.5.

Requirements in Theorem 4.5.4 are as tight as possible: consider infinite dimensional vector space $\mathbb{C}[X]$ with $f: P \mapsto X \cdot P$ and non-algebraically closed \mathbb{R}^{2} with rotation by 90 degrees.

Theorem 4.5.8 (Eigenvalues and Characteristic Polynomials).
Let $A \in \operatorname{Mat}(n ; F), F$ being a field. The eigenvalues of $A: F^{n} \rightarrow F^{n}$ are the roots of χ_{A}. Hint: λ eigenvalue of $A \Leftrightarrow \exists \vec{v} \neq 0$ s.t. $A \vec{v}=\lambda \vec{v}$ $\Leftrightarrow \operatorname{ker}\left(A-\lambda \mathbb{I}_{n}\right) \neq\{\overrightarrow{0}\} \Leftrightarrow \operatorname{det}\left(A-\lambda \mathbb{I}_{n}\right)$.

Exercise 67.

Let $A \in \operatorname{Mat}(n ; F), F$ being a field. Then
$\chi_{A}(x)=(-x)^{n}+\operatorname{tr}(A)(-x)^{n-1}+\ldots+\operatorname{det}(A)$.

Remark 4.5.9.

(2) Let $A, B \in \operatorname{Mat}(n ; R)$ be representing matrices of $f: V \rightarrow V$ with respect to different bases. Then A and B are conjugate.
(3) Let $A, B \in \operatorname{Mat}(n ; R), R$ being a commutative ring, be conjugate. Then $\chi_{A}=\chi_{B}$.
(4) Let $f: V \rightarrow V, V$ being an n-dimensional vector space over field F and let A be the representing matrix for f with respect to any basis. Then $\chi_{f}=\chi_{A}$.

Exercise 68.

Let $A, B \in \operatorname{Mat}(n ; F), F$ begin a field. Then A and B are conjugate $\Leftrightarrow \exists f: V \rightarrow V$ s.t. A and B are representing matrices of f.

Proposition 4.6.1 (Triangularisability).
Let $f: V \rightarrow V, V$ being a finite dimensional F-vector space. Then the following is equivalent:
(1) f is triangularisable.
(2) χ_{f} decomposes into linear factors in $F[X]$.

Remark 4.6.2.

(1) Endomorphism $A: F^{n} \rightarrow F^{n}$ is triangularisable $\Leftrightarrow A$ is conjugate to an upper triangular matrix.
(3) Endomorphism $f: F^{n} \rightarrow F^{n}$ is triangularisable \Leftrightarrow there exists sequence of subspaces
$\{0\}=V_{0} \subset V_{1} \subset V_{2} \subset \ldots \subset V_{n}=V$ s.t. V_{i} is i-dimensional and $f\left(V_{i}\right) \subseteq V_{i}$.

Remark 4.6.4.

Let $A \in \operatorname{Mat}(n ; F)$, then A nilpotent \Leftrightarrow $\chi_{A}(x)=(-x)^{n}$.

Lemma 4.6.8 (Linear Independence of Eigenvectors).
Let $f: V \rightarrow V$ with eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ with pairwise different eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent.
Hint: Consider
$\left(f-\lambda_{2} \operatorname{id}_{V}\right) \circ \ldots \circ\left(f-\lambda_{n} \operatorname{id}_{V}\right)\left(\vec{v}_{j}\right)=$
$\prod_{i=2}^{n}\left(\lambda_{i}-\lambda_{j}\right) \vec{v}_{i}, 0$ if $i \neq 1$ and
$\prod_{i=2}^{n=2}\left(\lambda_{1}-\lambda_{j}\right) \vec{v}_{1}$ if $i=1$. Apply to
$\sum_{i=1}^{n} \alpha_{i} \vec{v}_{i}=\overrightarrow{0} \Rightarrow \alpha_{1} \prod_{i=2}^{n}\left(\lambda_{1}-\lambda_{j}\right) \vec{v}_{1}=\overrightarrow{0} \Rightarrow$
$\alpha_{1}=0$. Repeat for rest.

Remark 4.6.3.

Let $A \in \operatorname{Mat}(n ; F)$, then A nilpotent $\Leftrightarrow \chi_{A}(x)=(-x)^{n}$.

Theorem 4.6.9 (The Cayley-Hamilton Theorem).
Let $A \in \operatorname{Mat}(n ; R)$, with commutative ring R .
Then $\chi_{A}(A)=0$, the zero matrix.
Hint: $B=A-x \mathbb{I} \in \operatorname{Mat}(n, R[x])$, Cramer's
Rule $\Rightarrow B \cdot \operatorname{adj}(B)=\operatorname{det}(B) \mathbb{I}=\chi_{A}(x) \mathbb{I}$,
$\operatorname{adj}(B) \in \operatorname{Mat}(n, R[x])$. Equally
$\operatorname{adj}(B) \in \operatorname{Mat}(n, R)[x] \Rightarrow \operatorname{adj}(B)=\sum_{i \geqslant 0} x^{i} K_{i}$.
Substitute s.t.
$\chi_{A}(x) \mathbb{I}=A K_{0}+\sum_{i \geqslant 1} x^{i}\left(A K_{i}-K_{i-1}\right)$.

Evaluate at A and cancel s.t.
$\chi_{A}(x) \mathbb{I}=A^{n+1} C_{n}$. Degree of cofactors of $\operatorname{adj}(B)$ at most $n-1$, so $C_{n}=0$.

Lemma 4.7.6.

Let $M \in \operatorname{Mat}(n ; \mathbb{R})$ be a Markov matrix. Then $\lambda=1$ is an eigenvalue of M.
Hint: Columns of $M-\mathbb{I}_{n}$ sum to $0 \Rightarrow$ sum of row vectors is $\overrightarrow{0} \Rightarrow$ linear dependence
$\Rightarrow \operatorname{det}\left(M-\mathbb{I}_{n}\right)=0 \Rightarrow \chi_{M}(1)=0$.
Theorem 4.7.10 (Perron, 1907).
Let $M \in \operatorname{Mat}(n ; \mathbb{R})$ be a Markov matrix with positive entries, then eigenspace $\mathrm{E}(1, M)$ is one dimensional. There exists a unique basis vector $\vec{v} \in \mathrm{E}(1, M)$ whose entries are positive and sum to 1 .

Inner Product Spaces

Example 5.1.4.
Let $\vec{v}, \vec{w} \mathbb{C}^{n}$, then standard inner product is $(\vec{v}, \vec{w})=\vec{v}^{T} \circ \stackrel{\vec{w}}{ }$. N.B.: Conjugate on second.

Example 5.1.6.

Let \vec{v}, \vec{w} be orthogonal. Then Pythagoras'
Theorem holds: $\|\vec{v}+\vec{w}\|^{2}=\|\vec{v}\|^{2}+\|\vec{w}\|^{2}$.

Theorem 5.1.10.

Every finite dimensional inner product space V has an orthonormal basis.
Hint: Induction on $\operatorname{dim} V$. Base Case
$\operatorname{dim} V=0$ trivial. $\operatorname{dim} V=n>0 \Rightarrow \exists \vec{v} \in V$, normalize to \vec{v}_{1} and consider
$\left(-, \vec{v}_{1}\right): V \rightarrow \mathbb{R} ; \vec{w} \rightarrow\left(\vec{w}, \vec{v}_{1}\right)$. Kernel of that has dim. $n-1$ by Rank-Nullity.

Exercise 73.

Let V be an inner product space, then $\forall T \subseteq V$ T^{\perp} is a subspace and $T^{\perp}=\langle T\rangle^{\perp}$.

Proposition 5.2.2.

Let $U \subseteq V$ be finite dimensional subspace of inner product space V. Then U, U^{\perp} are complementary, i.e. $V=U \oplus U^{\perp}$.
Hint: Exercise 19. $\vec{v} \in U \cap U^{T} \Rightarrow(\vec{v}, \vec{v})=0 \Rightarrow$ $\vec{v}=\overrightarrow{0}$. Want $\vec{v}=\vec{p}+\vec{r}$ s.t. $\vec{p} \in U, \vec{r} \in U^{\perp}$.
Thrm 5.1.10 $\Rightarrow U$ has orthonormal basis $\left\{\vec{v}_{i}\right.$ s.t. $\vec{p}=\sum_{i=1}^{n}\left(\vec{v}, \vec{v}_{i}\right) \vec{v}_{i}$. Take $\vec{r}=\vec{v}-\vec{p}$ s.t.
$\left(\vec{r}, \vec{v}_{j}\right)=0 \Rightarrow \vec{r} \in U^{\perp}$.

Proposition 5.2.4.

Let $U \subseteq V$ be finite dimensional subspace of inner product space V.
(1) π_{U} is a linear mapping with $\operatorname{im}\left(\pi_{u}\right)=U$, $\operatorname{ker}\left(\pi_{U}\right)=U^{\perp}$;
(2) if $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ orthonormal basis of U, then for $\vec{v} \in V: \pi_{U}(\vec{v})=\sum_{i=1}^{n}\left(\vec{v}, \vec{v}_{i}\right) \vec{v}_{i}$;
(3) $\pi_{U}^{2}=\pi_{U}$, i.e. π_{U} idempotent.

Theorem 5.2.5 (Cauchy-Schwarz Inequality). Let $\vec{v}, \vec{w} \in V$, inner product space. Then

$$
\mid(\vec{v}, \vec{w}) \leqslant\|\vec{v}\|\|\vec{w}\|
$$

with equality $\Leftrightarrow \vec{v}, \vec{w}$ linearly dependent.
Hint: $\vec{w}=\overrightarrow{0}$ trivially true; $\vec{w} \neq 0, W=\langle\vec{w}\rangle$, $\vec{x}=\vec{v}-\pi_{W}(\vec{v}) \Rightarrow \vec{x} \perp \pi_{W}(\vec{v})$ so Pythagoras holds: $\|\vec{v}\|^{2}=\left\|\vec{x}+\pi_{W}(\vec{v})\right\|^{2}=$
$\|\vec{x}\|^{2}+\left\|\pi_{W}(\vec{v})\right\|^{2}, \pi_{W}(\vec{v})$ from Prop. 5.2.4.

Corollary 5.2.6.

Let $\|\cdot\|$ be the norm on inner product space V, then $\forall \vec{v}, \vec{w} \in V$:
(1) $\|\vec{v}\| \geqslant 0$, equality $\Leftrightarrow \vec{v}=0$;
(2) $\|\lambda \vec{v}\|=|\lambda|\|\vec{v}\|$;
(3) Triangle Inequality: $\|\vec{v}+\vec{w}\|=\|\vec{v}\|+\|\vec{w}\|$

Exercise 75.
Let T^{*} be adjoint of T. Then $\left(T^{*}\right)^{*}=T$.

Theorem 5.3.4.

Let $T: V \rightarrow V, V$ begin a finite dimensional inner product space. Then T^{*} exists and is unique.
Hint: $\phi:=(T(-), \vec{w}): V \rightarrow F$, linear as $(-, \vec{w})$,
T are. Thrm 5.1.10 $\Rightarrow \exists\left\{\vec{e}_{i}\right\}_{1 \leqslant i \leqslant n}$ orthonormal basis of $V \Rightarrow$ for $\vec{v}=\sum_{i=1}^{n}\left(\vec{v}, \vec{e}_{i}\right) \vec{e}_{i} \Rightarrow \phi(\vec{v})=$ $\sum_{i=1}^{n}\left(\vec{v}, \vec{e}_{i}\right) \phi\left(\vec{e}_{i}\right)=\left(\vec{v}, \sum_{i=1}^{n} \overline{\phi\left(\vec{e}_{i}\right)} \vec{e}_{i}\right) \Rightarrow \exists \vec{u}$ s.t. $\phi(\vec{v})=(\vec{v}, \vec{u})=\left(\vec{v}, T^{*}(\vec{w})\right) \Rightarrow T^{*}$ exists. $\left(\vec{v}, \vec{u}-\vec{u}^{\prime}\right)=\phi(\vec{v})-\phi \vec{v}$ for uniqueness \& show linearity with uniqueness.

Theorem 5.3.7.

Let $T: V \rightarrow V$ be a self-adjoint linear mapping on inner product space V. Then
(1) every eigenvalue of T is real;
(2) if λ, μ are distinct eigenvalues of T, then the corresponding eigenvectors are orthogonal;
(3) T has an eigenvalue.

Hint: $(1) \lambda(\vec{v}, \vec{v})=(T \vec{v}, \vec{v})=(\vec{v}, T \vec{v})=\bar{\lambda}(\vec{v}, \vec{v})$.
(2) $\lambda(\vec{v}, \vec{w})=(T \vec{v}, \vec{w})=(\vec{v}, T \vec{w})=\mu(\vec{v}, \vec{w})$. (3)

Over $\mathbb{R} . R(\vec{v})=\frac{(T \vec{v}, \vec{v})}{(\vec{v}, \vec{v})}$ restricted to unit
sphere, Heine-Borel Thrm \Rightarrow maximum at \vec{v}_{+} in unit sphere \& $R(\lambda \vec{v})=R(\vec{v}) \Rightarrow \vec{v}_{+}$is max.
overall. $R_{\vec{w}}(t)=R\left(\vec{v}_{+}+t \vec{w}\right)$ is well-defined and

$$
\begin{aligned}
R_{\vec{w}}^{\prime}(0)= & \frac{\left(T \vec{w}, \vec{v}_{+}\right)+\left(T \vec{v}_{+}, \vec{w}\right)}{\left(\vec{v}_{+}, \vec{v}_{+}\right)}- \\
& \frac{2\left(T \vec{v}_{+}, \vec{v}_{+}\right)\left(\vec{v}_{+}, \vec{w}\right)}{\left(\vec{v}_{+}, \vec{v}_{+}\right)^{2}}
\end{aligned}
$$

Use $\vec{w}^{\perp} \in V$ s.t. $\vec{v}_{+} \perp \vec{w}^{\perp} \Rightarrow$
$R_{\vec{w}^{\perp}}^{\prime}(0)=\frac{\left(T \vec{w}^{\perp}, \vec{v}_{+}\right)+\left(T \vec{v}_{+}, \vec{w}^{\perp}\right)}{\left(\vec{v}_{+}, \vec{v}_{+}\right)}=0 \Rightarrow$
$\left(T \vec{w}^{\perp}, \vec{v}_{+}\right)=-\left(T \vec{v}_{+}, \vec{w}^{\perp}\right) \Rightarrow \vec{w}^{\perp} \perp T \vec{v}_{+} \Rightarrow$ $T \vec{v}_{+} \in\left(\left\langle\vec{v}_{+}\right\rangle^{\perp}\right)^{\perp}=\left\langle\vec{v}_{+}\right\rangle \Rightarrow$
$\exists \lambda \in \mathbb{R}: T \vec{v}_{+}=\lambda \vec{v}_{+}$.
Theorem 5.3.9 (The Spectral Theorem for Self-Adjoint Endomorphisms).
Let $T: V \rightarrow V$ be a self-adjoint linear map, V being a finite dimensional inner product space. Then V has an orthonormal basis consisting of eigenvectors of T.
Hint: Induction on $\operatorname{dim} V \cdot \operatorname{dim} V=1$ holds by Thrm 5.3.7. For $\operatorname{dim} V=n>1$ take any eigenvalue λ of T, exists by Thrm 5.3.7, and normalized eigenvector $\vec{u} . U=\langle\vec{u}\rangle, \vec{v} \in U^{\perp}$. $(\vec{u}, T \vec{v})=\lambda(\vec{u}, \vec{v})=0 \Rightarrow T\left(U^{\perp}\right) \subseteq U^{\perp}$, so $\left.T\right|_{U \perp}: U^{\perp} \rightarrow U^{\perp}$ self-adjoint, induction hypothesis $\Rightarrow \exists$ orthonormal basis $B \Rightarrow$ $B \cup\{\vec{u}\}$ orthonormal basis V.

Exercise 76.

Let $P \in \operatorname{Mat}(n ; \mathbb{R})$, then $P^{T} P=\mathbb{I}_{n} \Leftrightarrow$ columns of P form orthonormal basis for \mathbb{R}^{n}.

Corollary 5.3.12 (The Spectral Theorem for Real Symmetric Matrices).
Let $A \in \operatorname{Mat}(n, \mathbb{R})$ be symmetric. Then there exists $P \in \operatorname{Mat}(n, \mathbb{R})$ orthogonal s.t.

$$
P^{T} A P=P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n} \in \mathrm{R}$ are eigenvalues of A, repeated accordingly.
Hint: Spectral Theorem \& Exercise 76.

Exercise 78.

Let $P \in \operatorname{Mat}(n ; \mathbb{C})$, then $\bar{P}^{T} P=\mathbb{I}_{n} \Leftrightarrow$ columns of P form orthonormal basis for \mathbb{C}^{n}.

Corollary 5.3.15 (The Spectral Theorem for Hermitian Matrices).

Let $A \in \operatorname{Mat}(n, \mathbb{C})$ be hermitian. Then there exists $P \in \operatorname{Mat}(n, \mathbb{C})$ unitary s.t.

$$
P^{T} A P=P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n} \in \mathrm{R}$ are eigenvalues of A, repeated accordingly.

Exercise Hw.6, Ex. 3 .

Let $T: V \rightarrow V$ be an endomorphism of a finite-dimensional inner product space. Let T^{*} be the adjoint of T. Then
(1) $T^{*} T$ is self-adjoint; and
(2) if $T^{*} T=0$, then $T=0$.

Exercise Hw.6, Ex. 4.
(1) Let $A \in \operatorname{Mat}(n ; \mathbb{R})$ be an orthogonal matrix. Then $\operatorname{det} A \in\{ \pm 1\}$.
(2) Let $A \in \operatorname{Mat}(n ; \mathbb{C})$ be a unitary matrix. Then $\operatorname{det} A$ lies on the unit circle in \mathbb{C}.
Hint: Spectral Theorem \& Exercise 78.

Miscellaneous

Remark (unknown). Let \sim be an equivalence relation on $X, x, y \in X$ and $E(x), E(y)$ equivalence classes for x, y respectively. The following are equivalent:
(1) $x \sim y$;
(2) $E(x)=E(y)$;
(3) $E(x) \cap E(y) \neq \emptyset$.

Proposition (unknown).
A, B matrices, then $(A+B)^{T}=A^{T}+B^{T}$.
Proposition (unknown).
$A \in \operatorname{Mat}(n ; \mathbb{C})$, then $\operatorname{det}\left(\bar{A}^{T}\right)=\overline{\operatorname{det}(A)}$.
Theorem (Lagrange's Theorem).
Let G be a finite group and H a subgroup, then $|H|$ divides $|G|$.

Definitions

Definition (unknown).
Let U, W be subspace of V, then
$U+W:=\langle U \cup W\rangle$, i.e. subspace generated by U and W together.

Definition 1.7.6.

Two vector spaces V_{1} and V_{2} are
complementary if addition defines a bijection
$V_{1} \times V_{2} \xrightarrow{\sim} V$. This produces a bijection
$V_{1} \oplus V_{2} \xrightarrow{\sim} V$, we say $V=V_{1} \oplus V_{2}$ is the
(internal) direct sum of V_{1}, V_{2}.
Definition 2.2.2.
An elementary matrix is a matrix which differs from the identity in at most one entry.

Definition 2.2.4.
A matrix with only 0 's except possibly along the diagonal, where first only 1's then 0's, is in Smith Normal Form.

Definition 2.2.6.
Column/Row rank of a matrix is dimension of subspace spanned by columns/rows of said matrix.

Definition 2.2.8.

Rank of a matrix $A, \operatorname{rk} A$, is column/row rank. If rank of a matrix is equal to number of rows/columns, then matrix has full rank.

Definition 32.

Endomorphism $f: V \rightarrow V$ is nilpotent if there exists $d \in \mathbb{N}$ s.t. $f^{d}=0$.

Definition 2.4.6.

The trace of a matrix $A, \operatorname{tr}(A)$, is the sum of the diagonal entries.

Definition 3.1.8.
A field is a non-zero, commutative ring F in which every non-zero element $a \in F$ has an inverse $a^{-1} \in F$.

Definition 3.1.9.
A skewfield or division ring is a non-zero ring F in which every non-zero element $a \in F$ has an inverse $a^{-1} \in F$. N.B.: does not have to be commutative.

Definition 3.2.6. Let R be a ring. Element $a \in R$ is a unit if $a^{-1} \in R$, i.e. a is invertible.

Definition 3.2.12. Let R be a ring. Element $a \in R$ is a zero-divisor if $a \neq 0$ and $\exists b \in R$ s.t. $b \neq 0$ and either $a b=0$ or $b a=0$.

Definition 3.2.13. An integral domain is a non-zero, commutative ring with no zero-divisors.

Definition 3.3.11.
A field F is algebraically closed if each non-constant polynomial with coefficients in F has a root in F.

Definition 3.4.7.
Let R be a ring and $I \subseteq R$. Then I is an ideal of $R, I \unlhd R$, if:
(1) $I \neq \emptyset$;
(2) $a, b \in I \Rightarrow a-b \in I$;
(3) $\forall i \in I, r \in R: r i, i r \in I$.
E.g. $m \mathbb{Z} \unlhd \mathbb{Z}, R \unlhd R,\{0\} \unlhd R$.

Definition 3.4.11.
Let R be a commutative ring, $T \subset R$. Then the ideal of R generated by T is the set:

$$
{ }_{R}\langle T\rangle=\left\{r_{1} t_{1}+\ldots+r_{m} t_{m}: t_{i} \in T, r_{i} \in R\right\}
$$

including 0_{R} in case $T=\emptyset$.
Definition 3.4.15.
Let R be a commutative ring. Then $I \unlhd R$ is a principal ideal if $\exists t \in R: I=\langle t\rangle$.

Definition 3.5.7.
A map $g:(X / \sim) \rightarrow Z$ is well-defined if there exists a map $f: X \rightarrow Z$ with property $\underline{x} \sim y \Rightarrow f(x)=f(y)$ and $g=\bar{f}$, where $\bar{f}(E(x))=f(x)$.

Definition 3.6.1.
Let $I \unlhd R, x \in R$ then the set

$$
x+I=\{x+i: i \in I\} \subseteq R
$$

is the coset of x with respect to I in R.

Definition 3.6.3.

Let R be a ring, $I \unlhd R$ and \sim an equivalence relation defined by $x \sim y \Leftrightarrow x-y \in I$. Then R / I, the factor ring of R by I or the quotient of R by I is the set (R / I) of cosets of I in R.

Definition 4.1.1.
A transposition is a permutation swapping exactly two elements.

Definition 4.1.2.

An inversion of a permutation $\sigma \in \mathfrak{S}_{n}$ is a pair (i, j) s.t. $1 \leqslant i<j \leqslant n$ and $\sigma(i)>\sigma(j)$.
The number of inversions of the permutation σ is length of $\sigma, \ell(\sigma)$:

$$
\ell(\sigma)=\mid\{(i, j): 1 \leqslant i<j \leqslant n \text { but } \sigma(i)>\sigma(j)\} \mid
$$

The sign of σ is $\operatorname{sgn}(\sigma)=(-1)^{\ell(\sigma)}$.

Definition 4.3.1.

Let U, V, W be F-vector spaces. A bilinear
form $H: U \times V \rightarrow W$ is a mapping s.t. for all $a, b \in U$ and $c, d \in V$ and all $\lambda \in F$:

$$
\begin{aligned}
H(a+b, c) & =H(a, c)+H(b, c) \\
H(\lambda a, c) & =\lambda H(a, c) \\
H(a, c+d) & =H(a, c)+H(a, d) \\
H(a, \lambda c) & =\lambda H(a, c)
\end{aligned}
$$

A bilinear form is symmetric if $U=V$ and

$$
\forall a, b \in U: H(a, b)=H(b, a)
$$

and alternating or antisymmetric if $U=V$ and

$$
\forall a \in U: H(a, a)=0
$$

Definition 4.3.4.

Let V, W be F-vector spaces, $H: V \times \ldots \times V$ multilinear form. Then H is alternating if it vanishes on any n-tuple of elements of V where at least two entries are equal:

$$
\left(\exists i \neq j: v_{i}=v_{j}\right) \Rightarrow H\left(v_{1}, \ldots, v_{n}\right)=0
$$

Definition 4.4.6.
Let $A \in \operatorname{Mat}(n ; R), R$ commutative ring. Let
$1 \leqslant i, j \leqslant n$. The (i, j) cofactor of A is
$C_{i j}=(-1)^{i+j} \operatorname{det}(A\langle i, j\rangle)$ where $A\langle i, j\rangle$ is A with row i and column j removed.

Definition 4.4.8.
Let $A \in \operatorname{Mat}(n ; R), R$ being a commutative ring. Let $C_{j i}$ be the (j, i)-cofactor of A, then the adjugate matrix $\operatorname{adj}(A)$ is the matrix with entries $\operatorname{adj}(A)_{i j}=C_{j i}$.
Definition 4.5.6.
Let $A \in \operatorname{Mat}(n ; R), R$ being a commutative ring. Then the characteristic polynomial of A is $\chi_{A}(x):=\operatorname{det}\left(A-x \mathbb{I}_{n}\right)$.

Definition 4.5.9.
Let $A, B \in \operatorname{Mat}(n ; R), R$ being a commutative ring. Then A, B are conjugate if there exists invertible $P \in \mathrm{GL}(n ; R)$ s.t. $B=P^{-1} A P$.

Definition 4.6.1.
Let $f: V \rightarrow V, V$ being a finite dimensional F-vector space. Then f is triangularisable if there exists an ordered basis for V s.t. the representing matrix of f with respect to the basis is triangular.

Definition 4.6.5.

An endomorphism $f: V \rightarrow V$ of F-vector space V is diagonalisable if and only if there exists a basis of V consisting of eigenvectors of f. For finite dimensional V this is equivalent to representing matrix being diagonal with eigenvalues of f as entries.

Definition 4.7.5.

A Markov matrix or stochastic matrix, is a matrix M s.t. each entry is non-negative and the columns sum to 1 .

Definition 5.1.1. V vector space over \mathbb{R}, inner product is mapping $(-,-): V \times V \rightarrow \mathbb{R}$ such that for $\vec{x}, \vec{y}, \vec{z} \in V, \lambda, \mu \in \mathbb{R}$:
(1) $(\lambda \vec{x}+\mu \vec{y}, \vec{z})=\lambda(\vec{x}, \vec{z})+\mu(\vec{y}, \vec{z})$;
(2) $(\vec{x}, \vec{y})=(\vec{y}, \vec{z})$;
(3) $(\vec{x}, \vec{x}) \geqslant 0$ and $0 \Leftrightarrow \vec{x}=\overrightarrow{0}$.

Definition 5.1.1. V vector space over \mathbb{C}, inner product is mapping $(-,-): V \times V \rightarrow \mathbb{C}$ such that for $\vec{x}, \vec{y}, \vec{z} \in V, \lambda, \mu \in \mathbb{C}$:
(1) $(\lambda \vec{x}+\mu \vec{y}, \vec{z})=\lambda(\vec{x}, \vec{z})+\mu(\vec{y}, \vec{z})$;
(2) $(\vec{x}, \vec{y})=\overline{(\vec{y}, \vec{z})}$;
(3) $(\vec{x}, \vec{x}) \geqslant 0$ and $0 \Leftrightarrow \vec{x}=\overrightarrow{0}$.
N.B.: Complex inner product is hermitian, and so sesquilinear.

Definition 5.1.4

A map $f: V \rightarrow W, V, W$ complex vector spaces, is skew-linear if for $\vec{v}, \vec{u} \in V, \lambda \in \mathbb{C}$:
(i) $f(\vec{v}+\vec{u})=f(\vec{v})+f(\vec{u})$;
(ii) $f(\lambda \vec{v})=\bar{\lambda} f(\vec{v})$.

Definition 5.1.4.
A map $f: V_{1} \times V_{2} \rightarrow W$, complex vector spaces, that is linear in its first and skew-linear in its second variable is a sesquilinear form, i.e.:
(i) $f(\lambda \vec{v}, \vec{u})=\lambda f(\vec{v}, \vec{u})$
(ii) $f(\vec{v}, \lambda \vec{u})=\bar{\lambda} f(\vec{v}, \vec{u})$

Definition 5.1.4.

Let f be a sesquilinear form and let
$f(\vec{v}, \vec{u})=\overrightarrow{f(\vec{u}, \vec{v})}$, then f is hermitian.
Definition 5.1.5.
In complex or real inner product space, the length or inner product norm $\|\vec{v}\| \in \mathbb{R}$ is defined $\|\vec{v}\|=\sqrt{(\vec{v}, \vec{v})}$.

Definition 5.1.7.
A family $\left(\vec{v}_{i}\right)_{i \in I}$ of vectors in an inner product space is an orthonormal family if all \vec{v}_{i} have length 1 and are pairwise orthogonal, i.e. $\left(\vec{v}_{i}, \vec{v}_{j}\right)=\delta_{i j}$.
If an orthonormal family is a basis, it is an orthonormal basis.

Definition 5.2.1.
Let V inner product space, $T \subseteq V$. Then

$$
T^{\perp}=\{\vec{v} \in V: \vec{v} \perp \vec{t}, \forall \vec{t} \in T\}
$$

is the orthogonal to T.
Definition 5.2.3.
Let $U \subseteq V$ be finite dimensional subspace of inner product space $V . U^{\perp}$ is orthogonal complement to U.
The map $\pi_{U}: V \rightarrow V ; \vec{v}=\vec{p}+\vec{r} \mapsto \vec{p}, \vec{p} \in U$, $\vec{r} \in U^{\perp}$ is the orthogonal projection from V onto U.

Definition 5.3.6.
Let $A \in \operatorname{Mat}(n, \mathbb{C})$ s.t. $A=\bar{A}^{T}$, then A is hermitian.

Definition 5.3.11.
Let $P \in \operatorname{Mat}(m, \mathbb{R})$. P is orthogonal if $P^{T} P=\mathbb{I}_{n}$, i.e. $P^{-1}=P^{T}$.

Definition 5.3.14.
Let $P \in \operatorname{Mat}(m, \mathbb{C}) . P$ is unitary if $\bar{P}^{T} P=\mathbb{I}_{n}$, i.e. $P^{-1}=\bar{P}^{T}$.

