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Vector Spaces
Lemma 1.2.4 (Product with Zero Vector).
Let V be an F -vector space, then
∀λ ∈ F : λ~0 = ~0. Furthermore, λ~v = ~0⇒ λ = 0
or ~v = 0.

Proposition 1.4.5 (Generating a Vector
Subspace From a Set).
Let T ⊆ V , V begin vector space over F . Then
〈T 〉 is the smallest subspace of V containing T .

Example 1.4.6.
Let T ⊆ V , ~v ∈ 〈T 〉. Then 〈T ∪ {~v}〉 = 〈T 〉.

Exercise 4.
Any intersection of vector subspaces is a vector
subspace.

Theorem 1.5.12 (Characterisation of Bases).
Let E ⊆ V of vector space V . The following are
equivalent:

(1) E is a basis;

(2) E is a minimal generating set, i.e.
∀~v ∈ E : E \ {~v} is not generating;

(3) E is maximal linearly independent set,
∀~v ∈ V : E ∪ {~v} is not linearly
independent.

Corollary 1.5.13 (The Existence of a Basis).
Let V be a finite vector space over field F .
Then V has a basis.

Hint: Take finite generating set, reduce until
linearly independent.

Theorem 1.5.14 (Useful Variant on
Characterisation of Bases).
Let V be a vector space.

(1) If L ⊂ V is linearly independent and E is
minimal generating set s.t. L ⊆ E, then E
is a basis.

(2) If E ⊆ V is generating and L is maximal
linearly independent set s.t. L ⊆ E, then L
is a basis.

Theorem 1.5.16 (A Useful Variant on Linear
Combinations of Basis Elements).
Let V be a F -vector space, F being a field and
(~vi)i∈I a family of vectors in V . The following
are equivalent:

(1) Family (~vi)i∈I is a basis for V ;

(2) ∀~v ∈ V , there exists precisely one family
(ai)i∈I of elements in F , almost all zero,
s.t. ~v =

∑
i∈I ai~vi.

Theorem 1.6.1 (Fundamental Estimate of
Linear Algebra).
Let V be a vector space, L ⊂ V a linearly
independent subset and E ⊆ V a generating set.
Then |L| 6 |E|.

Theorem 1.6.2 (Steinitz Exchange Theorem).
Let V be a vector space, L ⊂ V a finite linearly
independent subset and E ⊆ V a generating set.
Then we can swap elements of E with elements
of L and keep it a generating set.

Lemma 1.6.3 (Exchange Lemma).
Let V be a vector space, M ⊆ V a linearly
independent, E a generating set s.t. M ⊆ E. If
~w ∈ V \M s.t. M ∪ {~w} is linearly
independent, then ∃~e ∈ E \M s.t.
(E \ {~e} ∪ {~w}) is generating.

Hint: ~w =
∑
αi~ei, ~ei ∈ E,

M ∪ {~w} ⇒ ∃~ei 6∈M , express that ~ei with ~w.

Corollary 1.6.4 (Cardinality of Bases).
Let V be a finitely generated vector space.

(1) V has a finite basis;

(2) V cannot have an infinite basis;

(3) Any two bases of V have the same number
of elements.

Hint: Theorem 1.6.1 & Contradiction.

Example 1.6.7.
Basis of zero vector space is ∅ ⇒ dimension of
zero vector space is 0.

Corollary 1.6.8 (Cardinality Criterion for
Bases).
Let V be a finitely generated vector space.

(1) L ⊂ V linearly independent, then
|L| 6 dimV and |L| = dimV ⇒ L is a
basis.

(2) E ⊆ V generating, then dimV 6 |E| and
|E| = dimV ⇒ E is a basis.

Hint: Theorem 1.6.1 & 1.5.12.

Corollary 1.6.9 (Dimension Estimate of
Vector Subspaces).
Let U ⊂ V be a proper subspace of finite
vector space V . Then dimU < dimV .

Remark 1.6.10.
If U ⊆ V subspace of arbitrary vector space,
then dimU 6 dimV and
dimU = dimV <∞⇒ U = V .

Theorem 1.6.11 (The Dimension Theorem).
Let U,W ⊆ V be subspaces. Then

dim (U +W ) + dim (U ∩W ) = dimU + dimW

dim (U +W ) = dimU + dimW − dim (U ∩W )

Hint: f : U ⊕W → V ; (~u, ~w) 7→ ~u+ ~w
⇒ im f = U +W , ker f = U ∩W . Rank-Nullity.

Exercise 6.
Let V1, . . . , Vn be F -vector spaces, then
dim(V1 ⊕ . . .⊕ Vn) = dim(V1) + . . .+ dim(Vn).

Exercise 10.
The image/preimage of a vector subspace under
a linear mapping is a vector subspace.

Exercise 12.
Let V1, . . . , Vn,W be vector spaces, fi : Vi →W
linear mappings. Then f : V1 ⊕ . . .⊕ Vn →W
with f(~v1, . . . , ~vn) = f1(~v1) + . . .+ fi(~vn) is a
new linear mapping. This gives a bijection:

Hom(V1,W )× . . .×Hom(Vn,W )

∼−→ Hom(V1 ⊕ . . .⊕ Vn,W )

with inverse f 7→ (f ◦ ini)i.

Theorem 1.7.7 (Classification of Vector Space
by Dimension).
Let V be vector space over F , n ∈ N. Then
Fn ∼= V ⇔ dimV = n.

Exercise 17.
Let U ⊆ V be subspace of vector space V and
f : U →W . Then f can be extended to a
linear mapping f̃ : V →W .

Theorem 1.8.4 (Rank-Nullity Theorem).
Let f : V →W be a linear mapping. Then

dimV = dim (im f) + dim (ker f)

Hint: V finite ⇒ im f, ker f finite,
contrapositive shows Theorem holds for V
infinite case. Assume V finite, then Cor. 1.5.13
& Ex. 18.

Exercise 18.

Let f : V →W be a linear map. If ~v1, . . . , ~vs is
a basis for ker f and extended by ~vs+1, . . . , ~v it
is basis of V , then f(~vs+1), . . . , f(~vn) is basis of
im f .

Exercise 19.

Let U,W ⊆ V be subspaces of V . U,W are
complementary ⇔ V = U +W and
U ∩W = {0}.

Exercise 20.

Let U,W ⊆ V be subspaces of V . U,W are
complementary ⇔ V = U +W and
dimU + dimW 6 dimV .

Linear Mappings and
Matrices

Theorem 2.2.3.

Every square matrix with entries in a field can
be written as a product of elementary matrices.

Theorem 2.2.5.

For every A ∈ Mat(n×m;F ) there exist
invertible matrices P,Q s.t. PAQ is in Smith
Normal Form.

Hint: First row operations to echelon form,
then column operations.

Theorem 2.2.7.

For any matrix, column and row rank are equal.

Hint: Column & Row rank of matrix and its
Smith Normal Form are equal as P,Q in
Theorem 2.2.5 are invertible.

Theorem 2.4.3 (Change of Basis).

Let f : V →W , A,A′ ordered bases of V , B,B′
ordered bases of W . Then

[f ]B′ A′ = [idW ]B′ B ◦ [f ]B A ◦ [idV ]A A′

Corollary (unlisted).

Let f : Rn → Rm, A = {~ai} ordered basis of

Rn, B = {~bi} ordered basis of Rm. Then

[f ]B A = ( [idRm ]S(m) B)−1 ◦ [f ]S(m) A =

(~b1|~b2| . . . |~bm)−1(f(~a1)|f(~a2)| . . . |f(~an))

Theorem 2.4.4.

Let f : V → V , A,A′ ordered bases of V . Then

[f ]A′ A′ = ( [idV ]A A′ )
−1 ◦ [f ]A A ◦ [idV ]A A′

Exercise 32.

Let f : V → V . Then f nilpotent ⇒ there exists
an order basis of V s.t. representing matrix of f
is upper triangular with only 0’s along diagonal.
Additionally, M ∈ Mat(n;F ) upper triangular
with only 0’s along diagonal ⇒ Mn = 0.

Exercise 33.

Let A,B be matrices of appropriate sizes, then
tr(AB) = tr(BA).

Corollary 33.

Conjugate matrices have equal trace.

Hint: Ex. 33 with A = T−1M,B = T .

Exercise 35.

Let f : V → V be idempotent, i.e. f2 = f , then
tr(f) = dim (im f).



Rings and Modules

Proposition 3.1.11.
Let m ∈ N, then Z/mZ is a field if and only if
m is prime.

Hint: (⇒) a ∈ Z/mZ⇒ ∃b ∈ Z/mZ s.t.
ab = 1⇔ ab = km+ 1. a does not divide 1, so
cannot divide m. (⇐=) a ∈ Z/mZ,
hcf(a,m) = 1⇔ ab+mk = 1⇔ ab = 1.

Proposition 3.2.10. The set R× of units in R
forms a group under multiplication.

Remark (unknown). If R is an integral
domain, then for a, b ∈ R:

(1) ab = 0⇒ a = 0 or b = 0, and

(2) a 6= 0 and b 6= 0⇒ ab 6= 0.

Proposition 3.2.16 (Cancellation Law of
Integral Domains).
Let R be an integral domain and a, b, c ∈ R.
Then ac = bc and c 6= 0 implies a = b.

Hint: ac = bc⇔ (a− b)c = 0.

Proposition 3.2.17.
Let m ∈ N, then Z/mZ is an integral domain if
and only if m is prime.

Hint: (⇐) k, l zero-divisors ⇒ kl = 0 ⇒ m
divides k or l as m prime, so k = 0 or l = 0,
contradiction. (⇒) m not prime, then m = kl,
1 < k, l < m, then k 6= 0 or l 6= 0 but kl = 0.

Theorem 3.2.18.
Every finite integral domain is a field.

Hint: λa : R→ R; b 7→ ab, cancellation law
gives injectivity, finite gives surjectivity.

Lemma 3.3.3.

(i) If R has no zero-divisors, then R[X] has
no zero-divisors and
deg(PQ) = deg(P ) + deg(Q).

(ii) If R is an integral domain, so is R[X].

Theorem 3.3.4 (Division and Remainder).
Let R be an integral domain and P,Q ∈ R[X]
with Q monic. Then there exists unique
A,B ∈ R[X] s.t. P = AQ+B and
deg(B) < deg(Q) or B = 0.

Hint: Choose A s.t. deg(P −AQ) minimal
(possible as degree non-negative. Suppose
deg(P −AQ) = r > deg(Q) = d ⇒
deg(P −A+ arXr−dQ) < deg(P −AQ).

Exercise 42.
If R is an integral domain, then R[X]× = R×.

Exercise 43.
Let R = Fp, where p is prime. Then the
mapping R[X]→ Maps(R,R) is not injective.

Hint: Xp −X ∈ Fp[X] & Fermat’s Little
Theorem.

Proposition 3.3.9.
Let R be a commutative ring, λ ∈ R and
P (X) ∈ R[X]. Then λ is a root of P (X) if and
only if (X − λ) divides P (X).

Theorem 3.3.10.
Let R be an integral domain. Then a non-zero
polynomial P ∈ R[X] has at most deg(P ) roots
in R.

Hint: λ1,...,m distinct roots of P ⇒ i > 2 :
0 = P (λi) = A(λi)(λi − λ1) and λi − λ1 6= 0,
induction.

Theorem 3.3.13 (Fundamental Theorem of
Algebra).

The field C is algebraically closed.

Theorem 3.3.14.
Let F be an algebraically closed field. Then
every non-zero polynomial P ∈ F [X]
decomposes into linear factors

P = c(X − λ1) . . . (X − λn)

with n > 0, c ∈ F× and λi ∈ F . This
decomposition is unique, up to reordering.

Remark 3.4.4.
Let R,S be rings and f : R→ S be a
homomorphism. Then f(1R) is idempotent, i.e.
f(1R)2 = f(1R)⇔ f(1r)[f(1R)− 1S ] = 0S . If
S has no zero-divisors, then either f(1R) = 0S
or f(1R) = 1S .

Lemma 3.4.5.
Let f : R→ S be a ring homomorphism. Then
for all x, y ∈ R, m ∈ Z:

(1) f(0R) = 0S ;

(2) f(−x) = −f(x);

(3) f(x− y) = f(x)− f(y);

(4) f(mx) = mf(x).

Remark 3.4.6.

(1) Let f be a homomorphism. Then
f(xn) = (f(x))n for all n ∈ N.

(2) Let f : R→ Mat(2;R);x 7→
(
x 0
0 0

)
, then f

does not send identity to identity.

Example 3.4.10.
I = {

(
0 b
0 d

)
: b, d ∈ R ⊂ Mat(2;R) is not an

ideal, it fails to satisfy ir ∈ I.

Proposition 3.4.14.
Let R be a commutative ring, T ⊆ R. Then
〈T 〉R is the smallest ideal of R containing T .

Hint: Minimality:
I �R, t1, . . . , tm ∈ I ⇒

∑m
i=1 riti ∈ I.

Proposition 3.4.18.
Let f : R→ S be a ring homomorphism. Then
ker f �R.

Lemma 3.4.20.
f injective ⇔ ker f = {0}.

Lemma 3.4.21.
I, J �R⇒ I ∩ J �R.

Lemma 3.4.21.
I, J �R⇒ I + J = {a+ b : a ∈ I, b ∈ J}�R.

Example 3.4.25.
If F is a field, then for any m,n ∈ N, with
m 6 n, Mat(m;F ) is a subring of Mat(n, F ).
But, identities are not equal, i.e. Im 6= In.

Proposition 3.4.26 (Test for a Subring).
Let R′ be a subset of ring R. Then R′ is a
subring of R if and only if:

(1) R′ has a multiplicative identity;

(2) a, b ∈ R′ ⇒ a− b ∈ R′; and

(3) R′ is closed under multiplication.

Proposition 3.4.29.
Let f : R→ S be a ring homomorphism and
assume f(1R) = 1S . Then
x ∈ R× ⇒ f(x) ∈ S× and (f(x))−1 = f(x−1).

Hint: f(x)f(x−1) = f(xx−1) = f(1R).

Exercise 52.
Let R be a ring and I �R. If R is commutative,
so is R/I.

Exercise 53.

Let R be a ring and I �R. R/I is a non-zero
ring if and only if I 6= R.

Exercise 54.
Let R be a ring and I be a proper ideal of R. If
r ∈ R×, then r + I ∈ (R/I)× with
(r + I)−1 = r−1 + I.

Theorem 3.6.7 (The Universal Property of
Factor Rings).
Let R be a ring and I �R.

(1) can : R→ R/I; r 7→ r + I is a surjective
ring homomorphism with kernel I.

(2) If f : R→ S is a ring homomorphism with
f(I) = {0S}, so that I ⊆ ker f , then there
exists a unique ring homomorphism
f : R/I → S such that f = f ◦ can.

Hint: f(x+ I) = f(x) + f(I) = {f(x)}, so
f(x+ I) = f(x) only possible map.

Theorem 3.6.9 (First Isomorphism Theorem
for Rings).
Let R,S be rings, then every homomorphism
f : R→ S induces an isomorphism:

f : R/ ker f
∼−→ im f.

Hint: f from Universal Property,
ker f = {0 + ker f} and Lemma 3.4.20.

Example 3.7.4.
A Z-module is exactly the same as abelian
group.

Example 3.7.6.
Let I �R, then I is an R-module.

Example 3.7.7.
Let R be a ring, M1, . . . ,Mn be R-modules,
then M1 ×M2 × . . .×Mn is an R-module with
addition and scalar multiplication defined
componentwise.

Example 3.7.9.
Let R = Mat(2;C) and M = C2. Then(
0 1
0 0

)(
1
0

)
=
(
0
0

)
, so λ~v = 0 6⇒ λ = 0 or ~v = ~0.

Proposition 3.7.20 (Test for a Submodule).
Let R be a ring and let M be an R-module. Let
M ′ be a subset of M , then M ′ is a submodule if
and only if:

(1) 0M ∈M ′;
(2) a, b ∈M ′ ⇒ a− b ∈M ′;
(3) r ∈ R, a ∈M ′ ⇒ ra ∈M ′.

Lemma 3.7.21.
Let f : M → N be an R-homomorphism. Then
ker f is a submodule of M and im f is a
submodule of N .

Lemma 3.7.28.
Let T ⊆M . Then 〈T 〉R is the smalles
submodule of M containing T .

Lemma 3.7.29.
The intersection of any collection of
submodules of M is a submodule of M .

Lemma 3.7.30.
Let M1,M2 be a submodule of M . Then
M1 +M2 is a submodule of M .

Theorem 3.7.32 (The Universal Property of
Factor Modules).
Let R be a ring, L,M R-modules and N a
submodule of M .

(1) can : M →M/N ; a 7→ a+N is a surjective
R-homomorphism with kernel N .

(2) If f : M → L is an R-homomorphism with
f(N) = {0L}, so that N ⊆ ker f , then there
exists a unique homomorphism
f : M/N → L such that f = f ◦ can.



Theorem 3.6.9 (First Isomorphism Theorem
for Modules).
Let R be a ring, M,N be R-modules, then
every R-homomorphism f : M → N induces an
R-isomorphism:

f : M/ ker f
∼−→ im f.

Hint: f from Universal Property,
ker f = {0 + ker f} for injectivity.

Exercise 59 (Second Isomorphism Theorem
for Modules).
Let N,K be submodules of R-module M . Then
K is submodule of N +K, N ∩K is a
submodule of N and

N +K

K
∼=

N

N ∩K
.

Exercise 60 (Third Isomorphism Theorem for
Modules).
Let N,K be submodules of R-module M , s.t.
K ⊆ N . Then N/K is a submodule of M/K
and

M/K

N/K
∼= M/N.

Determinants and Eigenvalues
Redux

Example 4.1.4.
The identity of Sn has length 0. A
transposition swapping i and j has length
2|i− j| − 1.

Lemma 4.1.5 (Multiplicativity of Sign).
For each n ∈ N, sign of permutation
sgn : Sn → {±1} produces group
homomorphism, i.e.
∀σ, τ ∈ Sn : sgn(στ) = sgn(σ) sgn(τ).

Exercise 61.
Let σ ∈ Sn be permutation s.t. it moves i to
the first place and leaves rest unchanged. Then
σ has i− 1 inversions and sgn(σ) = (−1)i−1.

Exercise 62.
Every permutation in Sn can be written as
product of transpositions of neighbouring
numbers, i.e. permutations of form (i i+ 1).

Definition 4.2.1.
Let A ∈ Mat(n;R), where R is a ring. Then

detA =
∑
σ∈Sn

sgn(σ)a1σ(a) . . . anσn

In degenerate case n = 0, “empty matrix” is
assigned determinant of 1.

Example 4.2.4.
The determinant of an upper triangular matrix
is the product of the entries along the main
diagonal.

Exercise 63.
Let A be a block-upper triangular matrix with
diagonal entries Aii = Ai, for Ai ∈ Mat(n;R).
Then detA = det (A1) det (A2) . . . det (An).

Remark (unknown).
| det(L)| describes how much linear mapping L
changes areas. If sign of det(L) is positive, then
L preserves orientation, if negative, then L
reverses orientation.

Remark 4.3.2.
If H : U × U →W , U,W being F -vector spaces,
is an alternating bilinear form, then
∀a, b ∈ U : H(a, b) = −H(b, a). If 1F + 1F 6= 0F ,

then ∀a, b ∈ U : H(a, b) = −H(b, a) implies H is
alternating. N.B.: this does not hold in F = F2!

Remark 4.3.5.
If H : V × V × . . .× V →W , V,W being
F -vector spaces, is an alternating bilinear
form, then

H(~v1, . . . , ~vi, . . . , ~vj , . . . , ~vn) =

−H(~v1, . . . , ~vj , . . . , ~vi, . . . , ~vn)

More generally, for σ ∈ Sn:

H(~vσ(1), . . . , ~vσ(n)) = sgn(σ)H(~v1, . . . , ~vn)

Converse is true provided 1F + 1F 6= 0F .

Theorem 4.3.6 (Characterisation of the
Determinant).
Let F be a field. The mapping
det : Mat(n;F )→ F is the unique alternating
multilinear form on n-tuples of column vectors
with values in F s.t. det In = 1F .

Exercise 64.
Let d : Mat(n;F )→ F be an alternating
multilinear form on n-tuples of column vectors
in Fn, then
∀A ∈ Mat(n;F ) : d(A) = d(e1| . . . |en) det (A).

Theorem 4.4.1 (Multiplicativity of the
Determinant).
Let R be a commutative ring, A,B ∈ Mat(n;R).
Then det(AB) = (detA)(detB).

Theorem 4.4.2 (Determinantal Criterion for
Invertibility).
Let F be a field, A ∈ Mat(n;F ). Then
detA 6= 0⇔ A invertible.

Hint: (⇐) B = A−1, det (AB) = 1 by
multiplicativity, (⇒) A not invertible, then
dependent column(s), then alternating form 0.

Remark 4.4.3.
From Theorem 4.4.2 follows that
detA−1 = (detA)−1 and det (A−1BA) = detB.
Latter asserts that there exists unique
determinant for an endomorphism.

Theorem 4.4.7 (Laplace’s Expansion of the
Determinant).
Let A = (aij) with entries in commutative ring
R. For fixed i, i-th row expansion is

detA =

n∑
j=0

aijCij

and for fixed j, j-th column expansion is

detA =

n∑
i=0

aijCij

Theorem 4.4.9 (Cramer’s Rule).
Let A ∈ Mat(n;R), R being a commutative
ring. Then A · adj(A) = (detA)In.

Corollary 4.4.11 (Invertibility of Matrices).
Let A ∈ Mat(n;R), R being a commutative
ring. Then A invertible ⇔ detA ∈ R×.

Theorem 4.5.4 (Existence of Eigenvalues).
Let f : V → V be an endomorphism, V a
non-zero, finite dimensional vector space over
F , where F is algebraically closed. Then f has
an eigenvalue.

Remark 4.5.5.
Requirements in Theorem 4.5.4 are as tight as
possible: consider infinite dimensional vector
space C[X] with f : P 7→ X · P and
non-algebraically closed R2 with rotation by 90
degrees.

Theorem 4.5.8 (Eigenvalues and
Characteristic Polynomials).
Let A ∈ Mat(n;F ), F being a field. The
eigenvalues of A : Fn → Fn are the roots of χA.

Hint: λ eigenvalue of A ⇔ ∃~v 6= 0 s.t. A~v = λ~v
⇔ ker(A− λIn) 6= {~0} ⇔ det(A− λIn).

Exercise 67.
Let A ∈ Mat(n;F ), F being a field. Then
χA(x) = (−x)n + tr(A)(−x)n−1 + . . .+ det (A).

Remark 4.5.9.

(2) Let A,B ∈ Mat(n;R) be representing
matrices of f : V → V with respect to
different bases. Then A and B are
conjugate.

(3) Let A,B ∈ Mat(n;R), R being a
commutative ring, be conjugate. Then
χA = χB .

(4) Let f : V → V , V being an n-dimensional
vector space over field F and let A be
the representing matrix for f with
respect to any basis. Then χf = χA.

Exercise 68.
Let A,B ∈ Mat(n;F ), F begin a field. Then A
and B are conjugate ⇔ ∃f : V → V s.t. A and
B are representing matrices of f .

Proposition 4.6.1 (Triangularisability).
Let f : V → V , V being a finite dimensional
F -vector space. Then the following is
equivalent:

(1) f is triangularisable.

(2) χf decomposes into linear factors in F [X].

Remark 4.6.2.

(1) Endomorphism A : Fn → Fn is
triangularisable ⇔ A is conjugate to an
upper triangular matrix.

(3) Endomorphism f : Fn → Fn is
triangularisable ⇔ there exists sequence
of subspaces
{0} = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V s.t.
Vi is i-dimensional and f(Vi) ⊆ Vi.

Remark 4.6.4.
Let A ∈ Mat(n;F ), then A nilpotent ⇔
χA(x) = (−x)n.

Lemma 4.6.8 (Linear Independence of
Eigenvectors).
Let f : V → V with eigenvectors ~v1, . . . , ~vn with
pairwise different eigenvalues λ1, . . . , λn. Then
~v1, . . . , ~vn are linearly independent.

Hint: Consider
(f − λ2 idV ) ◦ . . . ◦ (f − λn idV )(~vj) =∏n
i=2(λi − λj)~vi, 0 if i 6= 1 and∏n
i=2(λ1 − λj)~v1 if i = 1. Apply to∑n
i=1 αi~vi = ~0 ⇒ α1

∏n
i=2(λ1 − λj)~v1 = ~0 ⇒

α1 = 0. Repeat for rest.

Remark 4.6.3.
Let A ∈ Mat(n;F ), then A nilpotent
⇔ χA(x) = (−x)n.

Theorem 4.6.9 (The Cayley-Hamilton
Theorem).
Let A ∈ Mat(n;R), with commutative ring R.
Then χA(A) = 0, the zero matrix.

Hint: B = A− xI ∈ Mat(n,R[x]), Cramer’s
Rule ⇒ B · adj(B) = det(B)I = χA(x)I,
adj(B) ∈ Mat(n,R[x]). Equally
adj(B) ∈ Mat(n,R)[x] ⇒ adj(B) =

∑
i>0 x

iKi.
Substitute s.t.
χA(x)I = AK0 +

∑
i>1 x

i(AKi −Ki−1).



Evaluate at A and cancel s.t.
χA(x)I = An+1Cn. Degree of cofactors of
adj(B) at most n− 1, so Cn = 0.

Lemma 4.7.6.
Let M ∈ Mat(n;R) be a Markov matrix. Then
λ = 1 is an eigenvalue of M .

Hint: Columns of M − In sum to 0⇒ sum of
row vectors is ~0⇒ linear dependence
⇒ det (M − In) = 0⇒ χM (1) = 0.

Theorem 4.7.10 (Perron, 1907).
Let M ∈ Mat(n;R) be a Markov matrix with
positive entries, then eigenspace E(1,M) is one
dimensional. There exists a unique basis vector
~v ∈ E(1,M) whose entries are positive and sum
to 1.

Inner Product Spaces

Example 5.1.4.
Let ~v, ~wCn, then standard inner product is
(~v, ~w) = ~vT ◦ ~w. N.B.: Conjugate on second.

Example 5.1.6.
Let ~v, ~w be orthogonal. Then Pythagoras’
Theorem holds: ‖~v + ~w‖2 = ‖~v‖2 + ‖~w‖2.

Theorem 5.1.10.
Every finite dimensional inner product space V
has an orthonormal basis.

Hint: Induction on dimV . Base Case
dimV = 0 trivial. dimV = n > 0⇒ ∃~v ∈ V ,
normalize to ~v1 and consider
(−, ~v1) : V → R; ~w → (~w,~v1). Kernel of that
has dim. n− 1 by Rank-Nullity.

Exercise 73.
Let V be an inner product space, then ∀T ⊆ V
T⊥ is a subspace and T⊥ = 〈T 〉⊥.

Proposition 5.2.2.
Let U ⊆ V be finite dimensional subspace of
inner product space V . Then U,U⊥ are
complementary, i.e. V = U ⊕ U⊥.

Hint: Exercise 19. ~v ∈ U ∩ UT ⇒ (~v,~v) = 0 ⇒
~v = ~0. Want ~v = ~p+ ~r s.t. ~p ∈ U , ~r ∈ U⊥.
Thrm 5.1.10 ⇒ U has orthonormal basis {~vi s.t.
~p =

∑n
i=1 (~v,~vi)~vi. Take ~r = ~v − ~p s.t.

(~r, ~vj) = 0 ⇒ ~r ∈ U⊥.

Proposition 5.2.4.
Let U ⊆ V be finite dimensional subspace of
inner product space V .

(1) πU is a linear mapping with im (πu) = U ,
ker (πU ) = U⊥;

(2) if {~v1, . . . , ~vn} orthonormal basis of U ,
then for ~v ∈ V : πU (~v) =

∑n
i=1 (~v,~vi)~vi;

(3) π2
U = πU , i.e. πU idempotent.

Theorem 5.2.5 (Cauchy-Schwarz Inequality).
Let ~v, ~w ∈ V , inner product space. Then

| (~v, ~w) 6 ‖~v‖ ‖~w‖
with equality ⇔ ~v, ~w linearly dependent.

Hint: ~w = ~0 trivially true; ~w 6= 0, W = 〈~w〉,
~x = ~v − πW (~v) ⇒ ~x ⊥ πW (~v) so Pythagoras
holds: ‖~v‖2 = ‖~x+ πW (~v)‖2 =
‖~x‖2 + ‖πW (~v)‖2, πW (~v) from Prop. 5.2.4.

Corollary 5.2.6.
Let ‖·‖ be the norm on inner product space V ,
then ∀~v, ~w ∈ V :

(1) ‖~v‖ > 0, equality ⇔ ~v = 0;

(2) ‖λ~v‖ = |λ| ‖~v‖;
(3) Triangle Inequality: ‖~v + ~w‖ = ‖~v‖+ ‖~w‖

Exercise 75.
Let T ∗ be adjoint of T . Then (T ∗)∗ = T .

Theorem 5.3.4.
Let T : V → V , V begin a finite dimensional
inner product space. Then T ∗ exists and is
unique.

Hint: φ := (T (−), ~w) : V → F , linear as (−, ~w),
T are. Thrm 5.1.10 ⇒ ∃{~ei}16i6n orthonormal
basis of V ⇒ for ~v =

∑n
i=1 (~v,~ei)~ei ⇒ φ(~v) =∑n

i=1 (~v,~ei)φ(~ei) =
(
~v,
∑n
i=1 φ(~ei)~ei

)
⇒ ∃ ~u

s.t. φ(~v) = (~v, ~u) = (~v, T ∗(~w)) ⇒ T ∗ exists.
(~v, ~u− ~u′) = φ(~v)− φ~v for uniqueness & show
linearity with uniqueness.

Theorem 5.3.7.
Let T : V → V be a self-adjoint linear
mapping on inner product space V . Then

(1) every eigenvalue of T is real;

(2) if λ, µ are distinct eigenvalues of T , then the
corresponding eigenvectors are orthogonal;

(3) T has an eigenvalue.

Hint: (1) λ (~v,~v) = (T~v,~v) = (~v, T~v) = λ (~v,~v).
(2) λ (~v, ~w) = (T~v, ~w) = (~v, T ~w) = µ (~v, ~w). (3)

Over R. R(~v) =
(T~v,~v)
(~v,~v)

restricted to unit

sphere, Heine-Borel Thrm ⇒ maximum at ~v+
in unit sphere & R(λ~v) = R(~v) ⇒ ~v+ is max.
overall. R~w(t) = R(~v+ + t ~w) is well-defined and

R′~w(0) =
(T ~w,~v+) + (T~v+, ~w)

(~v+, ~v+)
−

2 (T~v+, ~v+) (~v+, ~w)

(~v+, ~v+)2
.

Use ~w⊥ ∈ V s.t. ~v+ ⊥ ~w⊥ ⇒

R′
~w⊥ (0) =

(
T ~w⊥,~v+

)
+
(
T~v+, ~w

⊥
)

(~v+,~v+)
= 0 ⇒(

T ~w⊥, ~v+
)

= −
(
T~v+, ~w⊥

)
⇒ ~w⊥ ⊥ T~v+ ⇒

T~v+ ∈ (〈~v+〉⊥)⊥ = 〈~v+〉 ⇒
∃λ ∈ R : T~v+ = λ~v+.

Theorem 5.3.9 (The Spectral Theorem for
Self-Adjoint Endomorphisms).
Let T : V → V be a self-adjoint linear map, V
being a finite dimensional inner product space.
Then V has an orthonormal basis consisting of
eigenvectors of T .

Hint: Induction on dimV . dimV = 1 holds by
Thrm 5.3.7. For dimV = n > 1 take any
eigenvalue λ of T , exists by Thrm 5.3.7, and
normalized eigenvector ~u. U = 〈~u〉, ~v ∈ U⊥.
(~u, T~v) = λ (~u,~v) = 0 ⇒ T (U⊥) ⊆ U⊥, so
T |U⊥ : U⊥ → U⊥ self-adjoint, induction
hypothesis ⇒ ∃ orthonormal basis B ⇒
B ∪ {~u} orthonormal basis V .

Exercise 76.
Let P ∈ Mat(n;R), then PTP = In ⇔ columns
of P form orthonormal basis for Rn.

Corollary 5.3.12 (The Spectral Theorem for
Real Symmetric Matrices).
Let A ∈ Mat(n,R) be symmetric. Then there
exists P ∈ Mat(n,R) orthogonal s.t.

PTAP = P−1AP = diag(λ1, . . . , λn)

where λ1, . . . , λn ∈ R are eigenvalues of A,
repeated accordingly.

Hint: Spectral Theorem & Exercise 76.

Exercise 78.
Let P ∈ Mat(n;C), then P

T
P = In ⇔ columns

of P form orthonormal basis for Cn.

Corollary 5.3.15 (The Spectral Theorem for
Hermitian Matrices).

Let A ∈ Mat(n,C) be hermitian. Then there
exists P ∈ Mat(n,C) unitary s.t.

PTAP = P−1AP = diag(λ1, . . . , λn)

where λ1, . . . , λn ∈ R are eigenvalues of A,
repeated accordingly.

Exercise Hw.6, Ex.3.
Let T : V → V be an endomorphism of a
finite-dimensional inner product space. Let T ∗

be the adjoint of T . Then

(1) T ∗T is self-adjoint; and

(2) if T ∗T = 0, then T = 0.

Exercise Hw.6, Ex.4.

(1) Let A ∈ Mat(n;R) be an orthogonal
matrix. Then detA ∈ {±1}.

(2) Let A ∈ Mat(n;C) be a unitary matrix.
Then detA lies on the unit circle in C.

Hint: Spectral Theorem & Exercise 78.

Miscellaneous

Remark (unknown). Let ∼ be an equivalence
relation on X, x, y ∈ X and E(x), E(y)
equivalence classes for x, y respectively. The
following are equivalent:

(1) x ∼ y;

(2) E(x) = E(y);

(3) E(x) ∩ E(y) 6= ∅.

Proposition (unknown).
A,B matrices, then (A+B)T = AT +BT .

Proposition (unknown).

A ∈ Mat(n;C), then det(A
T

) = det(A).

Theorem (Lagrange’s Theorem).
Let G be a finite group and H a subgroup, then
|H| divides |G|.

Definitions

Definition (unknown).
Let U,W be subspace of V , then
U +W := 〈U ∪W 〉, i.e. subspace generated by
U and W together.

Definition 1.7.6.
Two vector spaces V1 and V2 are
complementary if addition defines a bijection

V1 × V2
∼−→ V . This produces a bijection

V1 ⊕ V2
∼−→ V , we say V = V1 ⊕ V2 is the

(internal) direct sum of V1, V2.

Definition 2.2.2.
An elementary matrix is a matrix which
differs from the identity in at most one entry.

Definition 2.2.4.
A matrix with only 0’s except possibly along
the diagonal, where first only 1’s then 0’s, is in
Smith Normal Form.

Definition 2.2.6.
Column/Row rank of a matrix is dimension of
subspace spanned by columns/rows of said
matrix.

Definition 2.2.8.
Rank of a matrix A, rkA, is column/row rank.
If rank of a matrix is equal to number of
rows/columns, then matrix has full rank.

Definition 32.
Endomorphism f : V → V is nilpotent if there
exists d ∈ N s.t. fd = 0.

Definition 2.4.6.
The trace of a matrix A, tr(A), is the sum of
the diagonal entries.



Definition 3.1.8.
A field is a non-zero, commutative ring F in
which every non-zero element a ∈ F has an
inverse a−1 ∈ F .

Definition 3.1.9.
A skewfield or division ring is a non-zero ring
F in which every non-zero element a ∈ F has an
inverse a−1 ∈ F . N.B.: does not have to be
commutative.

Definition 3.2.6. Let R be a ring. Element
a ∈ R is a unit if a−1 ∈ R, i.e. a is invertible.

Definition 3.2.12. Let R be a ring. Element
a ∈ R is a zero-divisor if a 6= 0 and ∃ b ∈ R s.t.
b 6= 0 and either ab = 0 or ba = 0.

Definition 3.2.13. An integral domain is a
non-zero, commutative ring with no
zero-divisors.

Definition 3.3.11.
A field F is algebraically closed if each
non-constant polynomial with coefficients in F
has a root in F .

Definition 3.4.7.
Let R be a ring and I ⊆ R. Then I is an ideal
of R, I �R, if:

(1) I 6= ∅;
(2) a, b ∈ I ⇒ a− b ∈ I;
(3) ∀i ∈ I, r ∈ R : ri, ir ∈ I.

E.g. mZ� Z, R�R, {0}�R.

Definition 3.4.11.
Let R be a commutative ring, T ⊂ R. Then the
ideal of R generated by T is the set:

〈T 〉R = {r1t1 + . . .+ rmtm : ti ∈ T, ri ∈ R}
including 0R in case T = ∅.

Definition 3.4.15.
Let R be a commutative ring. Then I �R is a
principal ideal if ∃t ∈ R : I = 〈t〉.

Definition 3.5.7.
A map g : (X/ ∼)→ Z is well-defined if there
exists a map f : X → Z with property
x ∼ y ⇒ f(x) = f(y) and g = f , where
f(E(x)) = f(x).

Definition 3.6.1.
Let I �R, x ∈ R then the set

x+ I = {x+ i : i ∈ I} ⊆ R
is the coset of x with respect to I in R.

Definition 3.6.3.
Let R be a ring, I �R and ∼ an equivalence
relation defined by x ∼ y ⇔ x− y ∈ I. Then
R/I, the factor ring of R by I or the quotient
of R by I is the set (R/I) of cosets of I in R.

Definition 4.1.1.
A transposition is a permutation swapping
exactly two elements.

Definition 4.1.2.
An inversion of a permutation σ ∈ Sn is a
pair (i, j) s.t. 1 6 i < j 6 n and σ(i) > σ(j).
The number of inversions of the permutation σ
is length of σ, `(σ):

`(σ) = |{(i, j) : 1 6 i < j 6 n butσ(i) > σ(j)}|

The sign of σ is sgn(σ) = (−1)`(σ).

Definition 4.3.1.
Let U, V,W be F -vector spaces. A bilinear
form H : U × V →W is a mapping s.t. for all
a, b ∈ U and c, d ∈ V and all λ ∈ F :

H(a+ b, c) = H(a, c) +H(b, c)

H(λa, c) = λH(a, c)

H(a, c+ d) = H(a, c) +H(a, d)

H(a, λc) = λH(a, c)

A bilinear form is symmetric if U = V and

∀a, b ∈ U : H(a, b) = H(b, a)

and alternating or antisymmetric if U = V
and

∀a ∈ U : H(a, a) = 0.

Definition 4.3.4.
Let V,W be F -vector spaces, H : V × . . .× V
multilinear form. Then H is alternating if it
vanishes on any n-tuple of elements of V where
at least two entries are equal:

(∃i 6= j : vi = vj)⇒ H(v1, . . . , vn) = 0.

Definition 4.4.6.
Let A ∈ Mat(n;R), R commutative ring. Let
1 6 i, j 6 n. The (i, j) cofactor of A is
Cij = (−1)i+j det (A〈i, j〉) where A〈i, j〉 is A
with row i and column j removed.

Definition 4.4.8.
Let A ∈ Mat(n;R), R being a commutative
ring. Let Cji be the (j, i)-cofactor of A, then
the adjugate matrix adj(A) is the matrix with
entries adj(A)ij = Cji.

Definition 4.5.6.
Let A ∈ Mat(n;R), R being a commutative
ring. Then the characteristic polynomial of A
is χA(x) := det (A− xIn).

Definition 4.5.9.
Let A,B ∈ Mat(n;R), R being a commutative
ring. Then A,B are conjugate if there exists
invertible P ∈ GL(n;R) s.t. B = P−1AP .

Definition 4.6.1.
Let f : V → V , V being a finite dimensional
F -vector space. Then f is triangularisable if
there exists an ordered basis for V s.t. the
representing matrix of f with respect to the
basis is triangular.

Definition 4.6.5.
An endomorphism f : V → V of F -vector space
V is diagonalisable if and only if there exists a
basis of V consisting of eigenvectors of f . For
finite dimensional V this is equivalent to
representing matrix being diagonal with
eigenvalues of f as entries.

Definition 4.7.5.
A Markov matrix or stochastic matrix, is a
matrix M s.t. each entry is non-negative and
the columns sum to 1.

Definition 5.1.1. V vector space over R,
inner product is mapping (−,−) : V × V → R
such that for ~x, ~y, ~z ∈ V , λ, µ ∈ R:

(1) (λ~x+ µ~y, ~z) = λ (~x, ~z) + µ (~y, ~z);

(2) (~x, ~y) = (~y, ~z);

(3) (~x, ~x) > 0 and 0⇔ ~x = ~0.

Definition 5.1.1. V vector space over C,
inner product is mapping (−,−) : V × V → C
such that for ~x, ~y, ~z ∈ V , λ, µ ∈ C:

(1) (λ~x+ µ~y, ~z) = λ (~x, ~z) + µ (~y, ~z);

(2) (~x, ~y) = (~y, ~z);

(3) (~x, ~x) > 0 and 0⇔ ~x = ~0.

N.B.: Complex inner product is hermitian, and
so sesquilinear.

Definition 5.1.4.
A map f : V →W , V,W complex vector
spaces, is skew-linear if for ~v, ~u ∈ V , λ ∈ C:

(i) f(~v + ~u) = f(~v) + f(~u);

(ii) f(λ~v) = λf(~v).

Definition 5.1.4.
A map f : V1 × V2 →W , complex vector spaces,
that is linear in its first and skew-linear in its
second variable is a sesquilinear form, i.e.:

(i) f(λ~v, ~u) = λf(~v, ~u)

(ii) f(~v, λ~u) = λf(~v, ~u)

Definition 5.1.4.
Let f be a sesquilinear form and let
f(~v, ~u) = f(~u,~v), then f is hermitian.

Definition 5.1.5.
In complex or real inner product space, the
length or inner product norm ‖~v‖ ∈ R is

defined ‖~v‖ =
√

(~v,~v).

Definition 5.1.7.
A family (~vi)i∈I of vectors in an inner product
space is an orthonormal family if all ~vi have
length 1 and are pairwise orthogonal, i.e.
(~vi, ~vj) = δij .
If an orthonormal family is a basis, it is an
orthonormal basis.

Definition 5.2.1.
Let V inner product space, T ⊆ V . Then

T⊥ = {~v ∈ V : ~v ⊥ ~t, ∀~t ∈ T}
is the orthogonal to T .

Definition 5.2.3.
Let U ⊆ V be finite dimensional subspace of
inner product space V . U⊥ is orthogonal
complement to U .
The map πU : V → V ;~v = ~p+ ~r 7→ ~p, ~p ∈ U ,
~r ∈ U⊥ is the orthogonal projection from V
onto U.

Definition 5.3.6.
Let A ∈ Mat(n,C) s.t. A = A

T
, then A is

hermitian.

Definition 5.3.11.
Let P ∈ Mat(m,R). P is orthogonal if
PTP = In, i.e. P−1 = PT .

Definition 5.3.14.
Let P ∈ Mat(m,C). P is unitary if P

T
P = In,

i.e. P−1 = P
T

.
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