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Convergence: Point-wise vs Uniform

Definition. A function f converges to L as x→ a if ∀ε > 0 : ∃δ > 0 :
such that 0 6= |x−a|< δ =⇒ | f (x)−L|< ε .

Theorem (3.6). f → L as x→ a on I \{a} iff for every sequence such
that xn → a we have f (xn)→ L. This is a good way of disproving
convergence.

Definition (Convergence). A sequence of function ( fn : E→R)n∈N is
said to converge

• point-wise if ∀ε > 0 :∀x ∈ E :∃N : ∀n≥ N :| f − fn|< ε .

• uniformly if ∀ε > 0 :∃N : ∀n≥ N :∀x ∈ E :| f − fn|< ε .

Theorem (7.9). If fn→ f uniformly and each fn is continuous then f
is continuous.

Proof. Let ε > 0 and N ∈ N so that n ≥ N ⇒ | fn− f | < ε

3 (by uni-
form convergence). Let δ > 0 so |x− x0|< δ ⇒ | fN(x0)− fN(x)|< ε

3
(by continuity of fN at x0). So | f (x)− f (x0)| ≤ | f − fN |+ | fN(x0)−
fN(x)|+ | fN(x0)− fN(x)|< ε .

Theorem (7.10). If fn → f uniformly then limn→∞

(∫ b
a fn(x)dx

)
=∫ b

a f (x)dx.

Proof. Note that f is bounded on [a,b]. Let ε > 0 and choose
N ∈ N so that n ≥ N gives | f (x)− fn(x)| < ε for all x ∈ [a,b].
Choose step functions ψP = ε

|P| for decreasing partitions P of [a,b]
so that | f (x)− fn(x)| < |ψn| < ε

|P| . Then 0 ≤ f < ψP for all P
and

∫
ψP − 0→ 0 so f − fn is integrable, giving that f is too, and

lim(
∫

fn) =
∫

lim( fn) =
∫

f , as stated!

Theorem (Cauchy Criterion). The sequence fn → f uniformly iff
∀ε > 0 : ∃N ∈ N : n,m > n⇒ | fn− fm|< ε .

Proof. Triangle inequality.

Theorem (Weierstrass M-Test:). If ( fn : E→R)n∈N and ∀n : | fn| ≤Mn
with ∑

∞
k=1 Mk < ∞ =⇒ ∑

∞
k=1 fk converges uniformly and absolutely.

Proof. Let ε > 0 and use Cauchy criterion to choose N s.t. ∀m≥ n≥
N : ∑

m
k=n Mk < ε . Then |∑m

k=n fk| ≤ ∑
m
k=n | fk| ≤ ∑

m
k=n Mk < ε .

Theorem (Dirichlet’s Test). Suppose fk,gk : E→R and |∑∞
k=1 fk| ≤M

and gk→ 0 uniformly then ∑
∞
k=1 fkgk converges uniformly.

Proof. |∑n
k=m fkgk| =

∣∣gn ∑
n
k=m fk +∑

n−1
k=m (∑m

i=k fk)(gk−gk+1)
∣∣ ≤

2Mgn +2M ∑
n−1
k=m(gk−gk+1) = 2Mgm.
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Continuity: Point-wise vs Uniform
“Uniform continuity means fn(x)→ f (x) at roughly the same rate, for each x”

Definition. A function f : E→R is uniformly continuous if ∀ε > 0 : ∃δ > 0 :
such that |x−a|< δ and a,x ∈ E =⇒ | f (x)− f (a)|< ε .

Theorem (3.38). If (xn)n∈N is Cauchy and f is uniformly continuous then
( f (n))n∈N is Cauchy.

Proof. Cauchy ⇒ ∀δ > 0 : ∃N : ∀m,n > N we get |xm− xn| < δ then using
uniform continuity | f (xm)− f (xn)|< ε .

Theorem (3.39). If f is continuous on a closed, bounded interval I then f is
uniformly continuous on I.

Proof. Contradiction proof: Let ε > 0 and δ = 1/n and |xn−yn|< 1/n but also
| f (xn)− f (yn)| ≥ ε . By Bolzano-Weierstrass both xn and yn have convergent
subsequences xnk → x and yn j → y so that | f (x)− f (y)| > ε ie f (x) 6= f (y),
but |xn− yn|< 1/n→ 0 so x = y⇒ f (x) = f (y), contradiction!

Theorem. Suppose f : (a,b)→ R is continuous. Then f is uniformly contin-
uous iff it can be extended continuously to [a,b].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Series

Definition (Radius of Convergence). The radius of convergence
(RoC), R, of a power-series S(x) = ∑

∞
k=0 ak(x− x0)

k is such that S(x)
converges absolutely for x− x0 < R and diverges for x− x0 > R. Thus

R = sup{r ≥ 0 : (anrn)n∈N is bounded}.

Theorem (Radius of convergence). Let S(x) := ∑
∞
k=0 ak(x− x0)

k be a
power series with RoC R, then

• If r =
∣∣∣ 1

limsupk→∞ ak(x−x0)k

∣∣∣1/k
< ∞ then R = r and S(x) converges

uniformly on (x0−R,x0 +R).

• If r = limk→∞
|ak|
|ak+1|

exists then R = r.

Proof. Root and ratio test, respectively.

Definition (Interval of Convergence). The Interval of convergence of
a power series S(x) is the largest interval for which S(x) converges.

Theorem (Abel’s Theorem). If S(x) = ∑
∞
k=0 ak(x− x0)

k converges on
[a,b] then S(x) is continuous and converges uniformly on [a,b].

Theorem. If S(x) := ∑
∞
k=0 ak(x− x0)

k has RoC R > 0 then S′(x) =
∑

∞
k=0 kak(x− x0)

k−1 for x ∈ (x0−R,x0 +R).

Theorem. The two power series ∑
∞
n=0 an(x− x0)

n and ∑
∞
n=0 nan(x−

x0)
n have the same radius of convergence.

Theorem. If ∑
∞
n=0 an(x−x0)

n has radius of convergence R then S(x)=
∑

∞
n=0 an(x−x0)

n is infinitely differentiable for |x−x0|< R with deriva-
tive ∑

∞
n=0 nan(x− x0)

n−1.
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Riemann Integration
Definition. The characteristic function of E ⊆ R is

χE(x) =

{
1 if x ∈ E
0 otherwise

.

Definition. The integral of χE is∫
χE = length(E).

Definition. We say that φ is a step-function if there are real numbers
x0 < x1 < · · ·< xn such that

• φ(x) = 0 for all x < x0 and x > xn (this is called bounded sup-
port),

• φ(x) is constant on (x j−1,x j)1≤ j ≤ n.

Note that then φ(x) = ∑
n
j=1 c jχ(x j−1,x j)(x).

Definition. The integral of a step function φ(x) =∑
n
j=1 c jχ(x j−1,x j)(x)

is defined by∫
φ =

∫
φ(x) =

n

∑
j=1

c jχ(x j−1,x j)(x)dx = φ(x) =
n

∑
j=1

c j(x j−1− x j).

Theorem. Integration is linear:
∫
(αφ +βψ) = α

∫
φ +β

∫
ψ .

Definition. Let f : R→R, we say f is Riemann-integrable if for all
ε > 0 there exist step functions φ ,ψ such that

φ ≤ f ≤ ψ and
∫

ψ−
∫

φ < ε.

Definition. Let f be Riemann integrable, then∫
f = sup

{∫
φ : φ is a step function and φ ≤ f

}
= inf

{∫
ψ : ψ is a step function and ψ ≥ f

}
.

Theorem. A function f is Riemann integrable iff there exists se-
quences of step functions (φn),(ψn) such that

φn ≤ f ≤ ψn and
∫

ψn−
∫

φn→ 0 as n→ ∞.

Theorem. Let f ,g be Riemann integrable, then

• a f +bg is Riemann integrable with
∫
(a f +bg) = a

∫
f +b

∫
g,

• if f ≥ 0 then
∫

f ≥ 0; if f ≤ g then
∫

f ≤
∫

g,

• | f | is Riemann integrable and |
∫

f | ≤
∫
| f |,

• min{ f ,g} and max{ f ,g} are Riemann integrable, and

• f g is Riemann integrable.

Theorem. if f̃ (x) = f (x) for x ∈ [a,b], where f̃ : [a,b]→ R is contin-
uous and f (x) = 0 if x /∈ [a,b] then f is Riemann integrable, and we
define ∫ b

a
f̃ =

∫
f .

Fundamental Theorem of Calculus

Theorem. Let g be Riemann integrable and continuous for x ∈ [a,b],
then defining G(x) =

∫ x
a g we have that

d
dx

G(x) = g(x).

Theorem. Suppose f : [a,b]→ R is continuously differentiable, then

∫ b

a

d f
dx

= f (b)− f (a).

Integrals and sequences/series

Theorem. Suppose ( fn :R→R)n∈N converges uniformly to f :R→R
with each fn Riemann-integrable, then f is Riemann integrable with∫

f = lim
n→∞

∫
fn and thus,∫

∑
n

fn = ∑
n

∫
fn.

Metric Spaces
“Metric spaces generalise our idea of distance.”

Basic Ideas

Axiom (Metric Space). A metric space M = (X ,τ) is a set X and a function
τ : X×X → X such that for all x,y,z ∈ X :

• Positive-definite: τ(x,y)≥ 0 with τ(x,y) = 0 iff x = y,

• Symmetric: τ(x,y) = τ(y,x), and

• Triangle Inequality: τ(x,z)≤ τ(x,y)+ τ(y,z).

Definition (Open and Closed Balls). The open ball of radius r centred at x0 of
a metric space M = (X ,τ) is Br(x0) = {x ∈ X : τ(x,x0)< r}. The closed ball
is Br(x0) = {x ∈ X : τ(x,x0)≤ r}. These generalise open/closed intervals.

Definition (Open and Closed sets). A subset V ⊆ X of a metric-space (τ,X)
is said to be open if ∀ε > 0 : ∃Bε (x0) ⊆ V . A set E ⊆ X is closed if X \E is
open.

Theorem (10.14). Let M = (X ,τ) be a metric space.

• A sequence in M can have at most one limit,

• if xn→ x and xnk is a subsequence of xn then xnk → x also,

• every convergent sequence in M is bounded,

• every convergent sequence is Cauchy.

Theorem (10.16). A set E ⊂ X for metric space M = (X ,τ) is closed iff every
convergent sequence xk in E satisfies limk→∞(xk) ∈ E.

Proof. Suppose (for contradiction) that E ⊆ X is closed and limk→∞ xn ∈ X \E
which is open by definition of closed, then there is an N such that ∀n ≥ N :
xn ∈ X \ E by the definition of limits - contradiction! The other direction
uses squeeze-theorem to show some sequence τ(xk,x)→ 0 with x ∈ X \E and
xk ∈ E, so that xk→ x giving a contradiction that x is and isn’t in E.

Definition (Complete). A metric space M = (x,τ) is complete if every Cauchy
sequence xn ∈ X converges to some point in X .

Theorem (10.21). If (X ,τ) is a complete metric space with E ⊆ X then
(E,τ|E) is a complete metric space iff E is closed.

Proof. If E is complete and xn→ x ∈ E and so by Theorem 10.14(iv) the se-
quence (xk)k∈N is Cauchy, so by 10.16 E is closed. Suppose E is closed and
xn ∈ E ⊆ X is Cauchy, then xn is Cauchy (and hence convergent) in X since X
is complete and since E is closed this limit must belong to E.

Limits and Continuity

Definition (Cluster Point). A point a ∈ X for metric space (X ,τ) is a cluster
point of X iff ∀δ > 0 : |Bδ (a)| = ∞. This avoids the problem that |x− y| < δ

may have no solutions with x 6= y.
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Definition (Convergence). Let a be a cluster point of metric space (X ,τ)
and f : X \ {a} → Y for some metric space (Y,ρ) then f (x) converges to L
if ∀ε > 0 : ∃δ > 0 : 0 < τ(x,a)< δ =⇒ τ( f (x),L)< ε .

Definition (Continuous). A function f : E ⊆ X → Y between metric spaces
(X ,τ) and (Y,ρ) is continuous at x0 ∈ E iff ∀ε > 0 : ∃δ > 0 : τ(x,x0)< δ and
x ∈ E =⇒ ρ( f (x), f (x0))< ε .

Theorem (10.28 and 10.29). A function between metric spaces (X ,τ) and
(Y,ρ) is continuous iff for any sequence xn → x ∈ X we have f (xn)→ f (x).
Furthermore if f : X → Y and g : Y → Z are continuous then lim(g ◦ f ) =
g(lim( f )).

Interior, Closure and Boundary

Theorem (10.31). Let {Vα}α∈A and {Eβ }β∈B be a collection of open and
closed sets, respectively:

•
⋃

α∈A Vα is open.

• If |A| is finite then
⋂

α∈A Vα is open.

•
⋂

β∈B Eβ is closed.

• If |B| is finite then
⋃

β∈B Eα is closed.

Proof. Just follow the definitions and use De-Morgan’s laws.

Definition (Interior, Closure, Boundary). Let (X ,τ) be a metric space and
E ⊆ X

• The interior of E is Eo :=
⋃
{V ⊂ E : V is open in X},

• the closure of E is E :=
⋂
{B⊇ E : B is closed in X}, and

• the boundary of E is ∂E := {x ∈ X : ∀r > 0Br(x)∩E 6= /0 6= Br(x)∩
(X \E)}= E \Eo.

Thus Eo ⊆ E is the largest open subset of E and E ⊇ E is the smallest closed
superset of E. The fundamental theorem of calculus determines an integral
based only on the endpoints of the domain, the boundary of a set generalises
this.

Theorem (10.40). Let A,B⊆ X for a metric space (X ,τ), then

(A∪B)o ⊇ Ao∪Bo, (A∩B)o = Ao∩Bo,

A∪B = A∪B, A∩B⊆ A∩B.

Compactness

Compactness generalises the idea of a ‘closed and bounded interval’ which we
use to prove the Extreme Value Theorem (EVT), thus the aim of this section
is to prove EVT for more general metric spaces.

Definition (Covering). Let V = {Vi}i∈I be a collection of subsets Vi ⊆ X of a
metric space (X ,τ) with E ⊆ X .

• V covers E iff E ⊆
⋃

i∈I Vi,

• V is an open cover iff each Vi is open and V covers E, and

• V has a finite subcover iff ∃I0 ⊆ I : |I0|< ∞ such that {Vi}I0 covers V .

Definition (Compact). A subset H ⊆ X of a metric space is compact iff every
open covering of H has a finite subcover, thus compact sets are those that can
be covered by finitely many sets of arbitrarily small size.

Theorem (10.44-10.46). Let H ⊆ X for H closed and (X ,τ) compact, then H
is compact and thus is closed and bounded.

Definition (Separable). A metric space (X ,τ) is separable iff it contains a
countable dense subset, ie ∀a∈ X : ∃(xk)k∈N : xk→ a as k→∞ with xk ∈ Z for
some countable Z. This allows us to get a partial converse to Theorem 10.46.

Theorem (Lindelöf). Let E ⊆ X for separable metric space (X ,τ). If V is an
open cover of E then V has a finite subcover.

Theorem (Heine-Borel). Let (X ,τ) be a separable metric space where every
bounded sequence has a convergent subsequence and let H ⊆ X. Then H is
compact⇔ H is closed and bounded.

Connectedness

Definition (Connected). Let U,V ⊆ X be open in a metric space (X ,τ), they
separate X iff X = U ∪V and U ∩V = /0. The space X is connected if no
such separating U,V exist. (ie. the sets (−∞,

√
2)∪(

√
2,∞) separate Q, so the

rationals aren’t connected).

Definition (Relatively open/closed). Let E ⊂ X for metric space (X ,τ), then
U ⊆ E is relatively open (resp. closed) if ∃V ⊆ X : U = E ∩V and V open
(resp. closed).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Continuous Functions

Recall for this section that function f : (X ,τ)→ (Y,ρ) is continuous
at a ∈ X if ∀ε > 0 : ∃δ > 0 : τ(x,a)< δ ⇒ ρ( f (x), f (a))< ε . In other
words Bδ (a)⊆ f−1

(
Bε( f (a))

)
⊆ X . This leads to

Theorem (Continuity). A function f : X→Y is continuous iff ∀V ⊆Y
open: f−1(V ) is open.

Theorem (10.61 and 10.62). If H ⊆ X is compact and f : H → Y is
continuous then f (X) is compact. If E is connected in X and f : E→Y
is continuous then f (E) is connected.

Theorem (Extreme Value Theorem). Let /0 6= H ⊂ X be a compact
subset of a metric space (X ,τ) with f : H → R continuous, then
M := sup{ f (x) : x ∈ H} and m := inf{ f (x) : x ∈ H} are finite real
numbers and ∃xM,xm ∈ H : f (xm) = m and f (xM) = M.

Proof. Since H is compact so is f (H) by 10.61, so by 10.64 f (H) is
closed and bounded, thus M is bounded (ie finite). By the approxima-
tion property let xk ∈H be so that f (xk)→M so that xM = limk→∞(xk)
since f (H) is closed and thus contains its limit points.

Theorem (10.64). If H is compact and f : H → Y is injective and
continuous then f−1 is continuous on f (H).
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Contraction Mappings
Definition. Let (X ,d) be a metric space. A function f : (X ,d) →
(X ,d) is a contraction mapping if there exists an α ∈ (0,1) such that

d( f (x), f (y))≤ αd(x,y) for all x,y ∈ X .

Brower’s Fixed point theorem

Theorem. If (X ,d) is a complete metric space with contraction f :
(X ,d)→ (X ,d) then there exists a unique ‘fixed point’ x such that

f (x) = x

Proof. Pick x0 ∈ X and let xn+1 = f (x), then d(xn+1,xn) =
d( f (xn), f (xn−1)≤ αd(xn,xn−1)≤ αnd(x1,x0). Thus if m > n then

d(xm,xn)≤ d(xm,xm−1) . . .d(xn+1,xn)

≤ (αm−1 . . .αn)d(x1,x0)

≤ αn

1−α
d(x1,x0)→ 0 as n→ ∞.

Hence (xn)n∈N is Cauchy thus (by completeness) is convergent to some
x. Now contraction maps are continuous, so

f (x) = lim
n→∞

xn = lim
n→∞

f (xn) = lim
n→∞

xn+1 = x,

giving our fixed point, which is unique by the uniqueness of limits.

Differential Equations

Our aim is to find conditions under which the system

dx
dt

= F(x, t), x(0) = A

has a unique solution x(t) for |t|< s.

Definition. A function F(x, t) satisfies the Lipshitz condition in x
if for A ∈ R where F : [A−ρ,A+ρ]× [−r,r]→ R is continuous for
ρ,r > 0, and

∀x,y∈ [A−ρ,A+ρ] :∀t ∈ [−r,r] :∃M > 0 : |F(x, t)−F(y, t)| ≤M|x−y|.

Theorem (Picard). Suppose F(x, t) satisfies the Lipschitz condition in
x, then

∃s > 0 :
dx
dt

= F(x, t), x(0) = A (1)

has a unique solution x(t) for |t|< s.

Proof. Consider the mapping T given by

T (x)(t) = A+
∫ t

0
F
(
x(u),u

)
du,

this is a contraction mapping of the (complete) space of continuous
functions C ([A− ρ,A + ρ]) with metric d∞( f ,g) = sup|u|≤s | f (u)−
g(u)| for a sufficiently small s. Choosing such an s gives, by Ba-
nach’s fixed-point theorem, that there is a ‘fixed point’, i.e. an element
f ∈ C ([A−ρ,A+ρ]) where T ( f )(t) = f (t), which is then a solution
to (1) by the fundamental theorem of calculus.
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Useful Formula
Various Equations
Theorem (De-Morgan’s Law). If for any α ∈ A for indexing set A we
have Eα ⊆ X then

X \
⋃

α∈A

Eα =
⋂

α∈A

Eα and X \
⋂

α∈A

Eα =
⋃

α∈A

Eα .

Axiom (Completeness). If A⊂ R then sup(A) ∈ R exists.

Theorem (Nested Interval). If (In)n∈N is a sequence of non-empty
bounded intervals then

⋂
n∈N In 6= /0, specifically if |In| → 0 then In→

{x}, a singleton.

Theorem. The metric space (R, | · |), ie R under the Euclidean metric,
is complete (“Cauchy =⇒ convergent”).

Proof. Suppose that (xn)n∈N is Cauchy so that ∀ε > 0 : ∀m,n > N :
|xm−xn|< ε . Choose ε = 1 and N so that |xN−xm|< 1 for all m > N
giving by the triangle inequality that |xm| < 1+ |xN |. Thus (xn)n∈N is
bounded by M := max{|x1|, . . . , |xN−1|, |xN |+ 1}, then use Bolzano-
Weierstrass.

Theorem (Bernoulli’s inequality). Let x ∈ [−1,∞). Then 0 < α ≤
1 =⇒ (1+ x)α ≤ 1+αx and α ≥ 1 =⇒ (1+ x)α ≥ 1+αx.

Proof. Let f (t) = tα then f ′(t) = αtα−1 then by Mean Value Theorem
∃c ∈ [1,1+x] : f (1+x)− f (1) = αxcα−1. Then split into cases x > 0
and −1≤ x≤ 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FPM Revision
Definition. A function f is continuous at a iff ∀ε > 0 : ∃δ > 0 such
that |x−a|< δ =⇒ | f (x)− f (a)|< ε .

Theorem (Extreme Value). If I is a closed, bounded interval then any
f : I→ R is bounded and f will attain these upper and lower bounds.

Proof. Assume this is false so that | f (xn)| > n for some n ∈ N, by
Bolzano-Weierstrass there is a subsequence xnk → a, so that | f (xnk)|>
nk will have the same limiting behaviour as | f (xn)|, but then f (a)→∞

- a contradiction of Bolzano-Weierstrass! So f is bounded.

Theorem (Intermediate Value). Suppose f : [a,b]→ R is continuous,
if y0 lies between f (a) and f (b) then ∃x0 ∈ (a,b) : f (x0) = y0.

Proof. WLOG assume f (a) < y0 < f (b). Consider E := {x ∈ [a,b] :
f (x) < y0}, by the completeness axiom x0 := supE exists, so choose

a sequence so that xn→ x0 then by continuity f (x0) = lim f (xn)≤ y0.
For contradiction, assume that f (x0) < y0 then 0 < y0− f (x0) is con-
tinuous on [a,b), so ∃x1 > x0 such that y0 − f (x1) > ε > 0 so that
supE < x1 ∈ E, a contradiction!

Theorem (Rolle). Suppose that a < b. If f is continuous on [a,b] and
differentiable on (a,b) with f (a) = f (b) then ∃c ∈ (a,b) : f ′(c) = 0.

Proof. Look at the maximum ∀x ∈ [a,b] : f (x) ≤ f (c) := M, and let
ε > 0 so that f (c− ε)− f (c) ≤ 0 and f (c+ ε)− f (c) ≥ 0, then use
intermediate value theorem to get f ′(c) limε→0

(
f (c−ε)− f (c)

ε

)
= 0.

Theorem (Mean Value). If f ,g are continuous on [a,b] and differen-
tiable on (a,b) then ∃c ∈ (a,b) such that f (b)− f (a) = f ′(c)

(
b− a

)
and g′(c)

(
f (b)− f (a)

)
= f ′(c)

(
g(b)−g(a)

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem (2.8). Every convergent sequence is bounded.

Proof. Let M := max{|x1|, |x2|, . . . , |xN |}, then use n > N⇒ |xn−a|<
1⇒ |xn|< 1+ |a|.
Theorem (Squeeze Theorem). Suppose (xn)n∈N,(yn)n∈N and (wn)n∈N
are sequences in R, then if xn,yn → a and ∀n : xn ≤ wn ≤ yn then
wn→ a also.

Proof. Just use a− ε < xn ≤ wn ≤ yn < a+ ε .

Theorem (Comparison Test). Suppose (xn)n∈N and (yn)n∈N are con-
vergent with ∀n : xn ≤ yn then limn→∞(xn)≤ limn→∞(yn).

Proof. Proof by contradiction: assume that ∀n : xn ≤ yn and
limn→∞(xn) > limn→∞(yn). Let ε := x−y

2 > 0 and choose N so that
∀n ≥ N : |x− xn|, |y− yn| < ε . Then xn > x− ε = y + ε > yn so
∃n : xn > yn, contradiction!

Theorem (Monotone Convergence). If (xn)n∈N is increasing and
bounded above then it converges.

Proof. Use approximation property for the supremum a := sup{xn :
n ∈ N} (which exists by the completeness axiom) to get ∀ε > 0,n >
N : a− ε < xN ≤ a then use the squeeze theorem.

Theorem (Bolzano-Weierstrass). Every bounded sequence has a con-
vergent subsequence.

Proof. Choose a,b ∈ R such that ∀n : xn ∈ [a,b] =: I0, then divide I0
into two sets I0 = [a, b−a

2 ]. Define I1 as the one of these halves that con-
tain infinitely many xn, and repeat the split so that |In| → 0, then by the
nested interval theorem limn→∞ In = {x}, the limit of a subsequence.

Theorem (2.36). Let (xn)n∈N be a sequence of real numbers. Then
xn→ x as n→ ∞ if and only if limsupxn = liminfxn = x.

Proof. Use that inf(xn)≤ xn ≤ sup(xn) and squeeze-theorem.

Definition. The partial sum of order n of a sequence (an)n∈N is given
by sn := ∑

n
i=1 ai. The infinite sum ∑

∞
i=1 ai converges if (sn)n∈N does.

Definition. A series ∑
∞
i=0 an converges absolutely if ∑

∞
i=0 |an| con-

verges.

Theorem (Convergence Tests). Let (an)n∈N be a sequence and sn :=
∑

n
i=0 ai and s∞ := ∑

∞
i=0 ai, and also let r∞ := ∑

∞
i=0 bi, then

• Divergence test: If s∞ converges then an→ 0 as n→ ∞.

• Telescoping: ∑
∞
i=1(ai−ai+1) = a1− limn→∞ an.

• Geometric Series: |x|< 1⇐⇒ ∑
∞
i=N xn = xN

1−x .

• Cauchy Criterion: s∞ converges iff ∀ε > 0 : ∃N : m≥ n≥ N⇒
|sn|< ε .

• Integral Test: If f > 0 is decreasing then ∑
∞
i=0 f (k) converges

iff
∫

∞

1 f (x)dx < ∞.

• p-test: ∑
∞
i=1

1
ip converges iff p > 1.

• Comparison Test: If ∀i : 0 ≤ ai ≤ bi then r∞ converges ⇒ s∞

converges, and s∞ diverges⇒ r∞ diverges.

• Limit Comparison Test: Let L := limn→∞
an
bn

then L > 0⇒ r∞

converges iff s∞ does. If L = 0 then r∞ converges ⇒ sn con-
verges.

• Root Test: Let d := limsupk→∞ |ak|1/k. Then d < 1⇒ sk con-
verges absolutely, and if d > 1 then it diverges.

• Ratio Test: Let d := limk→∞

∣∣∣ ak+1
ak

∣∣∣ then d < 1⇒ sk converges
absolutely, and if d > 1 then it diverges.
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Dependency tree of theorems

Nested Interval Theorem

Bolzano-Weierstrass

“ f is cts on bounded interval
⇒ f is uniformly cts”

R is complete Extreme Value
Theorem

10.64 10.61

Intermediate
Value Theorem

Rolle’s Theorem

Mean Value
Theorem

Inverse Function
Theorem

Approximation Property Monotone Convergence Theorem

Completeness Axiom

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Probably non-examinable

Theorem (4.32). Suppose I is an interval and f : I → R is injective
and continuous on I, then J := f (I) is an interval on which f−1 is
monotone, and f is monotone on I.

Proof. Suppose a,b ∈ I and c,d ∈ J with f (a) = c < f (b) = d, and
let y0 ∈ (c,d), then by Intermediate value theorem (since f is continu-
ous) ∃x0 ∈ (a,b) : y0 = f (x0). To summarise, y0 ∈ (c,d) =⇒ y0 ∈ J
so J is an interval. To prove f is monotone use contradiction; assume
f isn’t monotone then use intermediate value theorem again to derive
that f (c) < f (a) < f (b) or f (a) < f (b) < f (c) =⇒ ∃x1 ∈ (a,b) :
f (x1) = f (a) or f (x1) = f (b), a contradiction!

Theorem (Inverse Function Theorem). If I is an interval and f : I→
R is injective and continuous with b = f (a) and f ′(a) exists, then
d
dt f−1(b) = 1

f ′(a) . In other words dy
dx = 1

dx/dy .

Proof. Theorem 4.32 gives that f is monotone, so we can fix the in-
tervals of f and f−1. Then use that f is continuous to swap f−1 with
differentiation limits:

lim
h→0

f−1(b+h)− f−1(b)
h

= lim
x→a

x−a
f (x)− f (a)

=
1

f ′(x)
,

where x := f−1(b+ h) and b = f−1(a) by assumption so that f (x)−
f (a) = (b+h)−b = h.

Definition. A series ∑
∞
k=0 bk is a rearrangement of ∑

∞
k=0 ak iff there is

an injective function so that b f (k) = ak.

Theorem (6.27). If ∑
∞
k=0 ak converges absolutely and ∑

∞
k=0 bk is a re-

arrangement then ∑
∞
k=0 bk = ∑

∞
k=0 ak.

Theorem (Riemann). If x ∈ R and ∑
∞
k=0 ak is conditionally (but not

absolutely) convergent then there is a rearrangement of ∑
∞
k=0 ak so

that ∑
∞
k=0 bk = x.
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