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Convergence

Remark [Wade 7.2].
Let S ⊆ R, non-empty. A sequence of functions
fn converges pointwise if
∀ε > 0, x ∈ S ∃N ∈ N s.t.:

n > N ⇒ |fn(x)− f(x)| < ε.

Theorem [Wade 7.9].
Let S ⊆ R, non-empty, and suppose fn → f
uniformly on S as n→∞. Then each fn
continuous at x0 ∈ S ⇒ f continuous at x0 ∈ S.

Theorem [Wade 7.10].
Suppose fn → f uniformly on closed interval
[a, b]. Then each fn integrable on [a, b] ⇒ f
integrable on [a, b] and

lim
n→∞

b∫
a

fn(x) dx =

b∫
a

(
lim
n→∞

fn(x)
)
dx

Lemma [Wade 7.11] (Uniform Cauchy
Criterion).
Let S ⊆ R, non-empty, and fn : S → R a
sequence of functions. Then fn converges
uniformly on S ⇔ ∀ε > 0∃N ∈ N s.t.:

n,m > N ⇒ |fn(x)− fm(x)| < ε, ∀x ∈ S.

Theorem [Wade 7.12].
Let (a, b) be a bounded interval and fn
converging at some x0 ∈ (a, b). Each fn is
differentiable on (a, b) and f ′n converges
uniformly on (a, b) ⇒ fn converges uniformly
on (a, b) and

lim
n→∞

f ′n(x) =
(

lim
n→∞

fn(x)
)′
.

Exercise 7.1.3.
Let the sequence of fn : S → R be bounded and
let fn → f uniformly. Then f is bounded and
moreover, sequence fn is uniformly bounded.

Exercise 7.1.5.
Let fn → f and gn → g uniformly as n→∞ on
S ⊆ R. Then

a) fn + gn → f + g, αfn → αf uniformly on S
as n→∞, for all α ∈ R;

b) fngn → fg pointwise on S;

c) if f , g bounded, then fngn → fg uniformly
on S;

d) if g unbounded, c) is false.

Exercise 7.1.9.
Let f, g be continuous on closed & bounded
interval [a, b] with |g(x)| > 0 for all x ∈ [a, b].
Let fn → f and gn → g uniformly on [a, b].
Then

a) 1/gn is defined for large n and fn/gn → f/g
uniformly on [a, b];

b) a) is false if [a, b] is replaced with (a, b).

Exercise 7.1.10.
Let S ⊆ R, non-empty, fn sequence of bounded
functions on S s.t. fn → f uniformly. Then

f1(x) + . . .+ fn(x)

n
→ f(x)

uniformly on S.

Theorem [Wade 7.14].
Let S ⊆ R, non-empty, fn : S → R.

i) Let each fn is continuous at x0 ∈ E ⇒.
Then f =

∑∞
n=1 fn converging uniformly

⇒ f continuous at x0.

ii) Suppose S = [a, b] and each fn be
integrable on [a, b]. Then f =

∑∞
n=1 fn

converging uniformly on [a, b] ⇒ f
integrable on [a, b] and

b∫
a

( ∞∑
n=1

fn(x)

)
dx =

∞∑
n=1

b∫
a

fn(x) dx.

iii) Suppose S is bounded, open interval and
each fn differentiable on S.

∑∞
n=1 fn

convergent at some x0 ∈ S and
∑∞
n=1 f

′
n

uniformly convergent on S ⇒
f :=

∑∞
n=1 fn uniformly convergent on S,

f differentiable on S and( ∞∑
n=1

fn(x)

)′
=

∞∑
n=1

f ′n(x)

for x ∈ S.

Theorem [Wade 7.15] (Weierstrass M-Test).
Let S ⊆ R, non-empty, and fn : S → R.
Suppose Mn > 0 satisfies

∑∞
n=1Mn <∞. If

∀n ∈ N, x ∈ S : |fn(x)| 6Mn, then
∑∞
n=1 fn

converges absolutely and uniformly on S

Workshop 2, Question 7.
Let fn : R→ R be a sequence of continuous
functions converging uniformly to f . Let (xn)
be a sequence in R s.t. xn → x ∈ R. Then
fn(xn)→ f(x).

Power Series

Theorem [Power Series, Thrm. 1].
Let R be radius of convergence of∑∞
n=0 an(x− c)n.

(i) |x− c| < R ⇒ series converges
absolutely ;

(ii) |x− c| > R ⇒ series diverges.

Exercise (Radius of Convergence).

(i) If limn→∞
∣∣∣ an
an+1

∣∣∣ exists, then it is radius

of convergence;

(ii) If limn→∞ |an|−
1
n exists, then it is radius

of convergence.

Theorem [Power Series, Thrm. 2].
Let R > 0, then

∑∞
n=0 an(x− c)n converges

uniformly & absolutely on |x− c| < R to a
continuous function f , i.e.:

f(x) =
∞∑
n=0

an(x− c)n

defines a continuous function
f : (c−R, c+R)→ R.

Lemma [Power Series].∑∞
n=0 an(x− c)n and

∑∞
n=0 nan(x− c)n−1

have the same radius of convergence.

Theorem [Power Series, Thrm. 3].
Suppose

∑∞
n=0 an(x− c)n has radius of

convergence R. Then

f(x) =

∞∑
n=0

an(x− c)n

is infinitely differentiable on |x− c| < R and
for such x:

f ′(x) =
∞∑
n=0

nan(x− c)n−1

and the series converges uniformly &
absolutely on [c− r, c+ r] for any r < R.
Additionally

an =
f (n)(c)

n!
.

Remark [Power Series].
Analytic functions are infinitely differentiable
on {x ∈ R : |x− c| < r} and the coefficients of
the power series are uniquely determined by
an = f (n)(c)/n!.

Exercise 7.2.2.
The geometric series

∞∑
n=0

xn =
1

1− x

converges uniformly on any [a, b] ⊂ (−1, 1).

Exercise 7.3.3.
Let

∑
k=0∞akxk have radius of convergence R.

Then

a)
∑
k=0∞akx2k has radius of convergence√
R

b)
∑
k=0∞a2kx

k has radius of convergence R2

Exercise 7.3.4.
Let |ak| 6 |bk| for large k and

∑
k=0∞bkxk

converges on open interval I. Then∑
k=0∞akxk converges on I.

Hint: Supremum Definition.

Exercise 7.3.5.
Let (ak) be bounded sequence of real numbers.
Then

∑
k=0∞akxk has positive radius of

convergence.

Riemann Integration

Workshop 3, Question 5.
Let I ⊆ R be an open interval, f : I → R
differentiable with f ′ bounded on I. Then f is
uniformly continuous.

Workshop 3, Question 7.
Let I ⊆ R be an open interval and let f : I → R
continuous. Then f uniformly continuous ⇔
whenever sequences (sn), (tn) in I are s.t.
|sn − tn| → 0, then |f(sn)− f(tn)| → 0.

Workshop 3, Question 8.
Let f : [a, b]→ R continuous. Then f is
uniformly continuous.

Exercise (Step Function Vector Space).
The class of step functions is a vector space.
Moreover, if φ and ψ are step functions, then
max{φ, ψ}, min{φ, ψ}, |φ| and φψ are also step
functions.

Exercise (Characterising Step Functions).
Function φ is a step function ⇔ φ is of form:

φ(x) =
n∑
j=1

cjχIj (x)

where each Ij is a bounded interval.

Lemma (Set Independence).
Let φ be a step function. Then

∫
φ is

independent of the particular set
{x0, x1, . . . , xn} with respect to which φ is a
step function.

Proposition [Integration, Prop. 1].
Let φ, ψ be step functions, α, β ∈ R. Then∫

(αφ+ βψ) = α

∫
φ+ β

∫
ψ.

Exercise (Integral Ordering).
Let φ, ψ be step functions. Then φ 6 ψ ⇒∫
φ 6

∫
ψ.

Theorem [Integration, Thrm. 1].
Let f : R→ R. Then f Riemann-integrable ⇔



sup

{∫
φ : φ step function, φ 6 f

}
=

inf

{∫
ψ : ψ step function, ψ > f

}
.

Theorem [Integration, Thrm. 2].

Let f : R→ R. Then f is Riemann-integrable
⇔ there exist sequences of step functions φn
and ψn s.t. ∀n ∈ N : φn 6 f 6 φn and∫

ψn −
∫
φn → 0.

If φn and ψn are any sequences of step
functions satisfying the above, then∫

φn →
∫
f and

∫
ψn →

∫
f

as n→∞.

Exercise (Sum of Powers Estimate).

Let n ∈ N, then for any integer m > 1:

nm+1

m+ 1
6

n∑
j=1

jm 6
(n+ 1)m+1

m+ 1

Lemma [Integration, Lem. 1].

Let f : R→ R be bounded with bounded
support [a, b]. Then the following is equivalent:

(i) f is Riemann-integrable;

(ii) ∀ε > 0 ∃ a = x0 < . . . < xn = b s.t. if

Mj = sup
x∈Ij

f(x), mj = inf
x∈Ij

f(x)

where Ij = [xj−1, xj ], then
n∑
j=1

(Mj −mj)(xj − xj−1) < ε;

(iii) ∀ε > 0 ∃ a = x0 < . . . < xn = b s.t., with
Ij = (xj−1, xj) for j > 1:

n∑
j=1

sup
x,y∈Ij

|f(x)− f(y)||Ij | < ε.

Theorem [Integration, Thrm. 3].

Let f, g be Riemann-integrable, α, β ∈ R.
Then

(a) αf + βg is Riemann-integrable and∫
(αf + βg) = α

∫
f + β

∫
g;

(b) f > 0 ⇒
∫
f > 0 and f > g ⇒

∫
f >

∫
g;

(c) |f | is Riemann-integrable and∣∣∣∣∫ f

∣∣∣∣ 6 ∫ |f |;
(d) max{f, g} and min{f, g} are

Riemann-integrable;

(e) fg is Riemann-integrable

Theorem [Integration, Thrm. 4].

Let g : [a, b]→ R be continuous, f(x) = g(x) if
x ∈ [a, b], f(x) = 0 if x 6∈ [a, b]. Then f is
Riemann-integrable.

Theorem [Integration, Thrm. 5].

Let g : [a, b]→ R be Riemann-integrable. For
x ∈ [a, b] let

G(x) =

x∫
a

g.

Then g continuous at some x ∈ [a, b] ⇒ G
differentiable at x and G′(x) = g(x).

Theorem [Integration, Thrm. 6].

Let f : [a, b]→ R s.t. f has continuous
derivative f ′ on [a, b]. Then

b∫
a

f ′ = f(b)− f(a).

Exercise (Integral Test).
Let (an) be a non-negative sequence of
numbers and f : [1,∞)→ (0,∞) s.t.

(i)
∫ n
1 f 6 K for some K and all n and

(ii) an 6 f(x) for n 6 x < n+ 1.

Then sumnan converges to a real number
which is at most K.

Exercise (p-Series Test).
For p > 1,

∑
1/np converges.

Workshop 5, Question 1.
Let f : R→ R be Riemann-integrable. Then f
is bounded with bounded support.

Workshop 5, Question 7.
Let g : [a, b]→ R, a < b, be continuous and

non-negative. Then
∫ b
a g = ⇒ g = 0 on [a, b].

Exercise 5.2.0 (b).
Let f be Riemann-integrable, P any
polynomial, then P ◦ f is Riemann-integrable.

Hint: f R-integrable ⇒ fn is R-integrable by
Thrm. 3 linearity.

Exercise 5.2.6.
(a) Let gn > 0 sequence of Riemann-integrable
functions on [a, b] s.t.

lim
n→∞

b∫
a

gn = 0

Then f Riemann-integrable on [a, b] ⇒

lim
n→∞

b∫
a

fgn = 0

Hint: f is bounded ⇒ fgn is bounded &
Squeeze Thrm.

Metric Spaces

Example [Wade 10.2].
Every Euclidean space Rn is a metric space
with the usual metric ρ(~x, ~y) = ‖~x− ~y‖.

Definition [Wade 10.3].
R is a metric space with the discrete metric:

σ(x, y) =

{
0 x = y,

1 x 6= y

Example [Wade 10.4].
Let (X, ρ) be a metric space and E ⊆ X. Then
E is a metric space with metric ρ, called a
subspace of X.

Exercise 10.4.10a.
E ⊂ X compact ⇒ E sequentially compact.

Hint: Arbitrary x ∈,
S = {n ∈ N : xn ∈ Br(x)(x)} must be finite for
(xn) not to have convergent subsequence. E has
open cover {Br(xi) : 1 6 i 6 k} ⇒ ∃ i s.t.
Br(xi) infinite ⇒ contradicts S finite.

Example [Wade 10.6].
Let C[a, b] be the set of continuous functions
f : [a, b]→ R and

‖f‖ := sup
x∈[a,b]

|f(x)|

Then ρ(f, g) := ‖f − g‖ is a metric on C[a, b].
N.B.: Convergence in this metric spaces means
uniform convergence.

Remark [Wade 10.9].
Every open ball is open, every closed ball is
closed.

Remark [Wade 10.10].
Let a ∈ X. Then X \ {a} is open and {a} is
closed.

Remark [Wade 10.11].
Let (X, ρ) be an arbitrary metric space. Then
∅ and X are both open & closed.

Example [Wade 10.12].
Every subset of discrete space R is both open
& closed.

Theorem [Wade 10.14].
Let X be a metric space.

i) A sequence in X can have at most one
limit.

ii) If {xn} in X converges to a and {xnk} is
any subsequence of {xn}, then {xnk}
converges to a as well.

iii) {xn} in X is convergent ⇒ {xn} is
bounded

iv) {xn} in X is convergent ⇒ {xn} is
Cauchy

Remark [Wade 10.15].
Let {xn} in X. Then xn → a as n→∞ ⇔ for
every open set V s.t. a ∈ V ∃N ∈ N s.t.
n > N ⇒ xn ∈ V .

Theorem [Wade 10.16].
Let E ⊆ X. Then E is closed ⇔ the limit of
every convergent sequence {xk} in E lies in
E, i.e.:

lim
k→∞

xk ∈ E

Remark [Wade 10.17].
The discrete space contains bounded sequences
with have no convergent subsequences, e.g.
{k} with k ∈ N.

Remark [Wade 10.18].
The metric space Q with usual metric contains
Cauchy sequences which do not converge, e.g.
{qk} in Q s.t. qk →

√
2.

Exercise 10.1.4.
In discrete metric space, xn → a as n→∞ ⇔
xn = a for n large.

Exercise 10.1.5.
Let xn, yn sequences in (X, ρ) converge to same
limit a ∈ X. Then ρ(xn, yn)→ 0 as n→∞.
The converse is false, e.g. xn = yn = n.

Exercise 10.1.6.
Let (xn) be Cauchy in X. Then (xn)
converges ⇔ (xn) has a convergent
subsequence.

Remark [Wade 10.20].
If X is a complete metric space, then

1) every Cauchy sequence in X converges;

2) the limit of every Cauchy sequence in X
stays in X.

Theorem [Wade 10.21].
Let X be a complete metric space and E ⊆ X.
Then E is complete ⇔ E is closed.

Remark (Cluster Point in Subspace).
Let E ⊆ X be a subspace of X. The a ∈ E is a
cluster point in E ⇔ ∀δ > 0, the relative ball
Bδ(a) ∩ E contains infinitely many points.

Theorem [Wade 10.26].
Let a ∈ X be a cluster point and
f, g : X \ {a} → Y .



i) ∀x ∈ X \ {a} : f(x) = g(x) and f(x) has a
limit as x→ a ⇒ g(x) has a limit as x→ a
and

lim
x→a

g(x) = lim
x→a

f(x).

ii) Sequential Characterization of Limits:

L := lim
x→a

f(x)

exists ⇔ f(xn)→ L as n→∞ for every
sequence {xn} in X \ {a} s.t. xn → a as
n→∞.

iii) Let Y = Rn. f(x) and g(x) have a limit as
x→ a ⇒ (f + g)(x), (fg)(x), (αf)(x) and
if Y = R and limit of g(x) 6= 0 also
(f/g)(x) have limits. In this case, the usual
algebra of limits applies.

iv) Squeeze Theorem: Let Y = R. Let
h : X \ {a} → R s.t. ∀x ∈ X \ {a} :
g(x) 6 h(x) 6 f(x) and

lim
x→a

g(x) = lim
x→a

f(x) = L

⇒ limit of h as x→ a exists and

lim
x→a

h(x) = L.

v) Comparison Theorem: Let Y = R.
∀x ∈ X \ {a} : f(x) 6 g(x) and f, g have a
limit as x→ a, then

lim
x→a

f(x) 6 lim
x→a

g(x).

Theorem [Wade 10.28].
Let E ⊆ X, non-empty, and f, g : E → Y .

i) f continuous at a ∈ E ⇔ f(xn)→ f(a)
as n→∞ for every sequence {xn} in E
s.t. xn → a.

ii) Let Y = Rn. f, g continuous at a ∈ E ⇒
f + g, fg, αf , for α ∈ R are continuous at
a ∈ E. Also, if Y = R and g(a) 6= 0, then
f/g continuous at a ∈ E.

Theorem [Wade 10.29].
Let X,Y, Z be metric spaces and a ∈ X a
cluster point. Let f : X → Y , g : f(X)→ Z.
f(x)→ L as x→ a and g continuous at L ⇒

lim
x→a

(g ◦ f)(x) = g
(

lim
x→a

f(x)
)
.

Exercise 10.2.2.
Let (X, d) be a metric space.

a) a ∈ X isolated ⇔ a not cluster point in X.

b) Discrete metric space has no cluster points.

Hint: a) (⇐) not cluster ⇒ Br(a) finitely many
elements, take ρ minimum of distance of those
to a, then X ∩Bρ(a) = {a}.

Exercise 10.2.3.
Let E ⊆ X. Then a is a cluster point ⇔ there
exists sequence (xn) in E \ {a} s.t. xn → a as
n→ n.

Hint: (⇒) xn ∈ E ∩B 1
n

(a), (⇐) E ∩Br(a)

infinite as a 6= xn.

Exercise 10.2.4.

a) Let E ⊆ X, non-empty. Then a is a cluster
point for of E ⇔ ∀r > 0 :
(E ∩Br(a)) \ {a} 6= ∅.

b) Every bound infinite subset of R has at
least one cluster point.

Hint: a) (⇐) xn ∈ (E ∩B 1
n

(a)) \ {a} and Ex.

10.2.3. b) (xn) sequence in E and
Bolzano-Weierstrass.

Workshop 7, Question 5.

Metrics d, ρ strongly equivalent ⇒ d, ρ
equivalent.

Workshop 7, Question 7.
Let d, ρ be metrics on X. Then d, ρ equivalent
⇔ every subset of X open with respect to d is
also open with respect to ρ and vice-versa.

Workshop 8, Question 11.
X compact ⇒ ∀r > 0, X can be covered by
finitely many open balls of radius r.

Hint: Consider open cover of open balls of
radius r.

Workshop 8, Question 12.
Let X be compact. Then X is complete.
Additionally, X compact ⇔ X is complete
and can be covered by finitely many open balls
of radius r for any r > 0.

Hint: X compact ⇒ sequentially compact, so
(xn) Cauchy sequence has convergent
subsequence (xn) converges.

Workshop 8, Question 13.
X compact ⇔ X sequentially compact.

Hint: Take (xn) Cauchy, has convergent
subsequence by assumption ⇒ converges ⇒ X
complete. Only need show that ∃ cover with
finite number open balls. Assume none exists
for r > 0. Pick x1 ∈ X. Pick x2 ∈ X s.t.
d(x1, x2) > r, repeat to get (xn) s.t.
d(xm, xn) > r ∀m,n ⇒ not convergent ⇒
contradiction.

Topology

Theorem [Wade 10.31].
Let X be a metric space.

i) The union of any collection of open sets
in X is open ;

ii) The intersection of a finite collection of
open sets in X is open ;

iii) The intersection of any collection of
closed sets in X is closed ;

iv) The union of a finite collection of closed
sets in X is closed ;

v) Let V ⊆ X be open, E ⊆ X be closed.
Then V \ E is open, E \ V is closed.

Remark 10.32.
The intersection of any collection of open
sets is not necessarily open, e.g.⋂

k∈N

(
−

1

k
,

1

k

)
= {0}.

The union of any collection of closed sets is
not necessarily closed, e.g.⋃

k∈N

[
1

k + 1
,

k

k + 1

]
= (0, 1).

Theorem [Wade 10.34].
Let E ⊆ X. Then

i) Eo ⊆ E ⊆ E;

ii) V open and V ⊆ E ⇒ V ⊆ Eo.
iii) C closed and C ⊇ E ⇒ C ⊇ E.

Theorem [Wade 10.39].
Let E ⊆ X. Then ∂E = E \ Eo.

Theorem [Wade 10.40].
Let A,B ⊆ X. Then

i) (A ∪B)o ⊇ Ao ∪Bo, (A ∩B)o = Ao ∩Bo;
ii) A ∪B = A ∪B, A ∩B ⊆ A ∩B;

iii) ∂(A ∪B) ⊆ ∂A ∪ ∂B,
∂(A∩B) ⊆ (A∩∂B)∪(B∩∂A)∪(∂A∩∂B).

Exercise 10.3.4.
Let A ⊆ B ⊆ X. Then A ⊆ B & Ao ⊆ Bo.

Remark [Wade 10.43].
The empty set and all finite subsets of a
metric space are compact.

Remark 10.44.
Every compact set is closed.

Hint: Assume H compact & not closed ⇒ ∃
sequence with limit x not in H. y ∈ H and
r(y) := ρ(x, y)/2, x 6= H ⇒ r(y) > 0. Open
cover of Br(y)(y) w/ finite subcover
{Br(yj)(yj)}. r = min{r(yj)}. xk → x ⇒
xk ∈ Br(x) for k large. xk ∈ Br(x) ∩H ⇒
xk ∈ Br(yj)(yj) for some j. Then with rj >
ρ(xk, yj) > ρ(x, yj)− ρ(xk, x) =
2rj − ρ(xk, x) > 2rj − r > 2rj − rj ⇒
contradiction.

Remark [Wade 10.46].
Every closed subset of a compact set is
compact.

Hint: E ⊆ H closed w/ H compact s.t. V is
open cover of E. Ec = X \ E open ⇒ V ∪ Ec
cover H. H compact ⇒ finite subcover V0 and
H ⊆ Ec ∪ V0, but E ∩ Ec = ∅ ⇒ V0 finite
subcover of E.

Theorem [Wade 10.46].
Let H ⊆ X, X being a metric space. H
compact ⇒ H closed & bounded.

Remark 10.47.
Given an arbitrary metric space, closed &
bounded 6⇒ compact in general.

Exercise 10.4.2.
Let A,B ⊆ X be compact. Then A ∪B and
A ∩B are compact.

Hint: Combine subcovers for A ∪B; note
A ∩B ⊂ A closed & Thrm. 10.46.

Exercise 10.4.3.
Let E ⊆ R be compact and non-empty. Then
supE and inf E belong to E.

Hint: Existence by boundedness.
Approximation Property gives
supE 6 xn 6 supE + 1/n and Squeeze
Theorem.

Exercise 10.4.8.
(a) Cantor Intersection Theorem: Let
Hk+1 ⊆ Hk be nested sequence of compact,
non-empty sets in metric space X. Then⋂∞
k=1Hk 6= ∅.

Hint: Assume
⋂∞
k=1Hk = ∅. {Hc

k} open cover
of H1 ⇒ finite subcover Hki , 1 6 i 6 n. Hk
nested ⇒ Hc

k nested ⇒ s = max{ki} then
H1 ⊂ Hc

s ⇒ ∅ = Hs ∩H1 = Hs, contradiction.

Remark [Wade 10.55].
Let E ⊆ X. If ∃A,B ⊆ X, both open s.t.

E ⊆ A ∪B, A ∩B = ∅
A ∩ E 6= ∅, B ∩ E 6= ∅

i.e. A,B separate E, then E is not connected.

Theorem [Wade 10.56].
E ⊆ R is connected ⇔ E is an interval.

Remark (Preimage of Open Balls).
Let X,Y be metric spaces and f : X → Y .
Then f is continuous ⇔

Bδ(a) ⊆ f−1(Bε(f(a))).

Theorem [Wade 10.58].
Let f : X → Y . Then f continuous ⇔ f−1(V )
is open in X for every open V in Y .

Hint: (⇒) f−1(V ) non-empty, let a ∈ f−1(V ),
i.e. f(a) ∈ V ⇒ choose ε s.t. Bε(f(a)) ⊆ V . f
continuous ⇒ choose δ s.t.



Bδ(a) ⊆ f−1(Bε(f(a))). (⇐) ε > 0, a ∈ X.
V = Bε(f(a)) open and by assumption f−1(V )
open. a ∈ f−1(V ) ⇒ ∃ δ > 0 s.t.
Bδ(a) ⊆ f−1(V ) ⇒ f continuous.

Corollary [Wade 10.59].
Let E ⊆ X and f : E → Y . Then f continuous
on E ⇔ f−1(V ) ∩E is relatively open in E for
every open V in Y .

Remark (Continuous Inverse Invariance).
Open & Closed sets are invariant under inverse
images by continuous functions.

Exercise 10.5.5.
Let E ⊆ X and E ⊆ A ⊆ E and E connected.
Then A is connected.

Hint: Assume A disconnected then Remark
10.55 for A. U ∩ E 6= ∅ by contradiction ⇒
∃x ∈ U s.t. x ∈ A \E. A ⊂ E ⇒ x cluster point
of E ⇒ ∃ r > 0 s.t. Br(x) ⊂ U with infinitely
many points from E so E ∩ U 6= ∅. Similarly
E ∩ V 6= ∅ ⇒ contradicts E connected.

Exercise 10.5.11.
Let {Eα}α∈A collection of connected sets s.t.⋂
α∈A Eα 6= ∅. Then

⋃
α∈A Eα is connected.

Hint: Contradiction and Remark 10.55.

Theorem [Wade 10.61].
H ⊆ X compact and f : H → Y continuous ⇒
f(H) compact in Y .

Theorem [Wade 10.62].
E ⊆ X connected and f : E → Y continuous
⇒ f(E) connected in Y .

Theorem [Wade 10.63] (Extreme Value
Theorem).
Let H ⊆ X, non-empty & compact and
f : H → R continuous. Then

M := sup{f(x) : x ∈ H},
m := inf{f(x) : x ∈ H}

are finite real numbers and ∃xM , xm ∈ H s.t.
M = f(xM ) and m = f(xm).

Theorem [Wade 10.64].
Let H ⊆ X be compact and f : H → Y
injective (1-1) & continuous. Then f−1 is
continuous on f(H).

Workshop 11, Question 2-5.
Every open, connected set in Rn is
path-connected.

Hint: U set of x, y ∈ E s.t. path exists, V s.t.
does not. Show E ⊂ U ∪ V , U ∩ V = ∅,
U ∩ E 6= ∅. U is path-connected. Show U, V are
open, y ∈ U and as E open Br(y) ⊆ E, let
z ∈ Br(y) then x, z path-connected as x, y are.
Similar reasoning for V open.

Exercise 10.6.5 (Intermediate Value
Theorem).
Let E ⊆ X be connected, f : E → R
continuous and a, b ∈ E with f(a) < f(b).
Then ∀y s.t. f(a) < y < f(b) ∃x ∈ E s.t.
f(x) = y

Hint: E connected, f continuous ⇒ f(E)
connected and as subset of R is interval, so
[f(a), f(b)] ⊂ f(E). So f(a) < y < f(b) ⇒
y ∈ f(E).

Exercise 10.6.9.
Let X be connected. Then f : X → R
non-constant, continuous ⇒ X uncountably
many points.

Hint: Connected subsets in R are intervals
(a, b) and g : (a, b)→ X is injective, so
g((a, b)) ⊂ X same size as (a, b).

Contraction Mappings

Exercise [Contraction Mapping].
Let f be a contraction. Then f is continuous.

Theorem (Banach’s Contraction Mapping
Theorem).
Let (X, d) be a complete metric space,
f : X → X a contraction. Then there exists
unique x ∈ X s.t. f(x) = x.
N.B.: It is important that f(X) ⊆ X.

Hint: Pick x0 ∈ X and f(xn) = xn+1 as
contraction ⇒ d(xn, xn+1) 6 αnd(x0, x1). Use
triangle inequality & finite geometric series to

show d(xm, xn) 6
αn

1− α
d(x0, x1) ⇒ (xn)

Cauchy, as X complete ⇒ (xn) converges to
x ∈ X. f continuous ⇒ f(x) = f(limxn) =
lim f(xn) = limxn+1 = x. Uniqueness:
x, y ∈ X, f(x) = x & f(y) = y ⇒ d(x, y) =
d(f(x), f(y)) 6 αd(x, y) ⇒ d(x, y) = 0.

Exercise [Contraction Mapping].
Let (X, d) be a complete metric space and
f : X → X s.t. f (n) = f ◦ f ◦ . . . ◦ f a
contraction. Then f has a unique fixed point.
N.B.: f itself may not be a contraction.

Workshop 10, Question 8.
Let (X, d) be compact and f : X → X s.t.
d(f(x), f(y)) 6 d(x, y) for all x 6= y ∈ X. Then
f has a unique fixed point.

Hint: φ(x) = d(x, f(x)), continuous, so image is
closed & bounded subset of R as X compact. f
without fixed point ⇒ φ > 0 and inf φ = k > 0
and ∃x ∈ X s.t. d(x, f(x)) = k.
d(f(x), f(f(x))) < d(x, f(x)) = k, contradicts k
infimum.

Miscellaneous

Remark (Geometric Sum).
n∑
k=0

rk =
1− rn+1

1− r

Remark Product to Sum (
). fg = 1

4
((f + g)2 − (f − g)2)

N.B.: Used in proof of Cauchy-Schwarz for
functions.

Definitions
Convergence

Definition [Wade 7.1].
Let S ⊆ R, non-empty. A sequence of functions
fn : S → R converges pointwise on S ⇔
f(x) = limn→∞ fn(x) exists for each x ∈ S.
N.B.: N may depend on x.

Definition [Wade 7.7].
Let S ⊆ R, non-empty. A sequence of functions
fn : S → R converges uniformly on S to
function f ⇔ ∀ε > 0∃N ∈ N s.t.:

n > N ⇒ |fn(x)− f(x)| < ε, ∀x ∈ S.
N.B.: N independent of x.

Definition (Ex. 7.1.3).
Let fn : S → R be a sequence of functions. If
∃M > 0 ∀x ∈ S, n ∈ N s.t. |fn(x)| 6M , then
the sequence of functions is uniformly
bounded.

Definition [Wade 7.13].
Let S ⊆ R, fk : S → R and
sn(x) :=

∑n
k=1 fk(x), for x ∈ S, n ∈ N.

i)
∑∞
k=1 fk converges pointwise on S ⇔

sequence sn(x) converges pointwise on S;

ii)
∑∞
k=1 fk converges uniformly on S ⇔

sequence sn(x) converges uniformly on S;

iii)
∑∞
k=1 fk converges absolutely (pointwise)

on S ⇔ sequence
∑∞
k=1 |fk| converges for

each x ∈ S.

Power Series

Definition (Power Series).
Let (an) be sequence of real numbers, c ∈ R. A
power series is a series of the form:

∞∑
n=0

an(x− c)n

where an are the coefficients, c is the centre.

Definition (Radius of Convergence).
The radius of convergence R of power series∑∞
n=0 an(x− c)n is

R = sup{r > 0 : (anr
n) is bounded}

unless (anrn) is bounded for all r > 0, then
R =∞. I.e. R is unique number s.t. for r < R,
(anrn) is bound, for r > R, (anrn) is unbound.

Definition (Analytic Function).
A function f is analytic on
S = {x ∈ R : |x− c| < r} if there is a power
series centred at c that converges to f on S.

Riemann Integration

Definition (Uniform Continuity).
Let I ⊆ R be an interval, f : I → R. We say f is
uniformly continuous on I if ∀ε > 0∃ δ > 0
s.t. for x, y ∈ I:

|x− y| < δ ⇒ |f(x)− f(y)| < ε

Definition (Characteristic Function).
Let E ⊆ R, then χE : R→ R is the
characteristic function if χE(x) = 1 if x ∈ E,
χE(x) = 0 if x 6∈ E.

Definition (Area Under the Curve).
Let I ⊂ R be a bounded interval. Then∫

χI = length(I).

Definition [Integration, Def. 1].
We say φ : R→ R is a step function if there
exist real numbers x0 < x1 < . . . < xn, for some
n ∈ N, s.t.

(i) φ(x) = 0 for x < x0 and x > xn;

(ii) φ constant on (xj−1, xj), 1 6 j 6 n.

Definition (Bounded Support).
A function f has bounded support if f(x) = 0
for x 6∈ [c, d], where [c, d] is some bounded
interval.

Definition [Integration, Def. 2].
Let φ be a step function with respect to
{x0, x1, . . . , xn}, where φ(x) = cj for
x ∈ (xj−1, xj), then∫

φ :=

n∑
j=1

cj(xj − xj−1).

Definition [Integration, Def. 3].
Let f : R→ R. Then f is Riemann-integrable
if ∀ε > 0 ∃φ, ψ step functions s.t. φ 6 f 6 ψ
and ∫

ψ −
∫
φ < ε.

Definition [Integration, Def. 4].
If f is Riemann-integrable, then we define:



∫
f := sup

{∫
φ : φ step function, φ 6 f

}
=

inf

{∫
ψ : ψ step function, ψ > f

}
.

Definition (Definite Integral).
Let f : I → R, where I is bounded interval
open/closed at end points a 6 b. Let
f̃(x) = f(x) for x ∈ I and f(x) = 0 for x 6∈ I. f̃
Riemann-integrable ⇒ f Riemann-integrable
on I and∫

I
f =

b∫
a

f =

b∫
a

f(x) dx :=

∫
f̃

is the definite integral of f on I.

Definition (Improper Integral).
Let f : R→ R be possibly unbounded, let

fn(x) = mid{−n, f(x), n}χ[−n,n](x)

and

Fn(x) = min{|f(x)|, n}χ[−n,n](x)

If supn
∫
Fn <∞, then the improper integral

of f over interval I is∫
I
f := lim

n→∞

∫
I
fn.

Metric Spaces

Definition [Wade 10.1].
A metric space is a set X together with a
function ρ : X ×X → R (the metric of X)
which satisfies the following properties for
x, y, z ∈ X:

(i) Positive definite: ρ(x, y) > 0 with
ρ(x, y) = 0 ⇔ x = y;

(ii) Symmetric: ρ(x, y) = ρ(y, x);

(iii) Triangle Inequality:
ρ(x, y) 6 ρ(x, z) + ρ(z, y)

N.B.: ρ(x, y) is finite valued by definition.

Definition [Wade 10.7].
Let a ∈ X and r > 0. The open ball (in X)
with centre a and radius r is the set

Br(a) := {x ∈ X : ρ(x, a) < r}
and the closed ball (in X) with centre a and
radius r is the set

{x ∈ X : ρ(x, a) 6 r}

Definition [Wade 10.8].

i) A set V ⊆ X is open ⇔ ∀x ∈ V ∃ ε > 0 s.t.
open ball Bε(x) ⊆ V .

ii) A set E ⊆ X is closed ⇔ complement
Ec := X \ E is open.

Definition [Wade 10.13].
Let {xn} be a sequence in X.

i) {xn} converges (in X) if ∃ a ∈ X (the
limit of xn) s.t. ∀ε > 0∃N ∈ N s.t.:

n > N ⇒ ρ(xn, a) < ε.

ii) {xn} is Cauchy if ∀ε > 0 ∃N ∈ N s.t.:

n,m > N ⇒ ρ(xn, xm) < ε.

iii) {xn} is bounded if ∃M > 0, b ∈ X s.t.

ρ(xn, b) 6M, ∀n ∈ N.

Definition [Wade 10.19].
A metric space X is complete ⇔ every
Cauchy sequence {xn} in X converges to
some point in X.

Definition [Wade 10.22].
A point a ∈ X is a cluster point ⇔ ∀δ > 0,
Bδ(a) contains infinitely many points.

Definition (Relative Ball).
Let E ⊆ X be a subspace of X. An open ball
in E centred at a is defined as

BEr (a) := {x ∈ E : ρ(x, a) < r}
and as metric on X and E are the same, is of
the form

BEr (a) = Br(a) ∩ E

where Br(a) is an open ball in X. BEr (a) is
called relative ball (in E). The case with
closed balls is analogous.

Definition [Wade 10.25].
Let a ∈ X be a cluster point and
f : X \ {a} → Y . Then f(x)→ L as x→ a ⇔
∀ε > 0 ∃ δ > 0 s.t.:

0 < ρ(x, a) < δ ⇒ τ(f(x), L) < ε.

Definition [Wade 10.27].
Let E ⊆ X, non-empty, and f : E → Y .

i) f is continuous at point a ∈ E ⇔
∀ε > 0∃ δ > 0 s.t.

ρ(x, a) < δ and x ∈ E ⇒ τ(f(x), f(a)) < ε.

ii) f is continuous on E ⇔ f continuous for
every x ∈ E.
N.B.: This is valid whether a is cluster
point or not.

Definition (Isolated Points).
Let (X, d) be a metric space, a ∈ X. Then a is
isolated if ∃ r > 0 s.t. Br(a) = {a}.

Definition (Strong Equivalence).
Two metrics d and ρ on X are strongly
equivalent if ∃A,B s.t.

d(x, y) 6 Aρ(x, y)

ρ(x, y) 6 Bd(x, y), ∀x, y ∈ X.

Definition (Equivalence).
Two metrics d and ρ on X are equivalent if
∀x ∈ X, ε > 0 ∃ δ > 0 s.t.

d(x, y) < δ ⇒ ρ(x, y) < ε and

ρ(x, y) < δ ⇒ d(x, y) < ε

Topology

Definition [Wade 10.33].
Let X be a metric space and E ⊆ X.

i) The interior of E is the set

Eo :=
⋃
{V : V ⊆ E and V open in X}.

ii) The closure of E is the set

E :=
⋂
{B : B ⊇ E and B closed in X}.

Definition [Wade 10.37].

Let E ⊂ X. The boundary of E is the set

∂E := {x ∈ X : ∀r > 0, Br(x) ∩ E 6= ∅ and

Br(x) ∩ Ec 6= ∅}.

Definition [Wade 10.41].

Let V = {Vα}α∈A be a collection of subsets of
metric space X and let E ⊆ X.

i) V covers E (V is a covering of E) ⇔

E ⊆
⋃
α∈A

Vα.

ii) V is an open covering of E ⇔ V covers E
and each Vα is open.

iii) Let V be a covering of E. V has a
finite/countable subcovering ⇔ there is a
finite/countable subset A0 ⊆ A s.t.
{Vα}α∈A0 covers E.

Definition [Wade 10.42].

Let H ⊆ X with X being a metric space. H is
compact ⇔ every open covering of H has
finite subcover.

Definition 10.4.10a.

E ⊆ X is sequentially compact ⇔ every
sequence (xn) in E has a convergent
subsequence with limit in E.

Definition [Wade 10.53].

Let X be a metric space.

i) A pair of non-empty open sets U , V in X
separates X ⇔ X = U ∪ V and U ∩ V = ∅.

ii) X is connected ⇔ X cannot be separated
by any pair of open sets U , V .

Definition [Wade 10.54].

Let X be a metric space and E ⊆ X.

i) U ⊆ E is relatively open in E ⇔ ∃V ⊆ X,
s.t. V open and U = E ∩ V .

ii) A ⊆ E is relatively closed in E ⇔
∃C ⊆ X, s.t. C closed and A = E ∩ C.

Contraction Mappings

Definition (Contraction).

Let (X, d) be a metric space. A function
f : X → X is a contraction if ∃α with
0 < α < 1 s.t.:

d(f(x), f(y)) 6 αd(x, y), ∀x, y ∈ X.

Constant α is called the contraction constant
of f .

Definition (Fixed Point).

Let f : X → X. If x ∈ X is s.t. f(x) = x, then
x is a fixed point of f .
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