Honours Analysis

Sebastian Müksch, v2, 2018/19

Convergence

Remark [Wade 7.2].

Let $S \subseteq \mathbb{R}$, non-empty. A sequence of functions f_n converges pointwise if $\forall \varepsilon > 0, x \in S \exists N \in \mathbb{N}$ s.t.:

$$n \ge N \Rightarrow |f_n(x) - f(x)| < \varepsilon.$$

Theorem [Wade 7.9].

Let $S \subseteq \mathbb{R}$, non-empty, and suppose $f_n \to f$ uniformly on S as $n \to \infty$. Then each f_n continuous at $x_0 \in S \Rightarrow f$ continuous at $x_0 \in S$.

Theorem [Wade 7.10].

Suppose $f_n \to f$ uniformly on closed interval [a, b]. Then each f_n integrable on $[a, b] \Rightarrow f$ integrable on [a, b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) \, dx = \int_{a}^{b} \left(\lim_{n \to \infty} f_n(x) \right) \, dx$$

Lemma [Wade 7.11] (Uniform Cauchy Criterion).

Let $S \subseteq \mathbb{R}$, non-empty, and $f_n : S \to \mathbb{R}$ a sequence of functions. Then f_n converges uniformly on $S \Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N}$ s.t.:

$$n, m \ge N \Rightarrow |f_n(x) - f_m(x)| < \varepsilon, \quad \forall x \in S.$$

Theorem [Wade 7.12].

Let (a, b) be a bounded interval and f_n converging at some $x_0 \in (a, b)$. Each f_n is differentiable on (a, b) and f'_n converges **uniformly** on $(a, b) \Rightarrow f_n$ converges uniformly on (a, b) and

$$\lim_{n \to \infty} f'_n(x) = \left(\lim_{n \to \infty} f_n(x)\right)'.$$

Exercise 7.1.3.

Let the sequence of $f_n: S \to \mathbb{R}$ be bounded and let $f_n \to f$ uniformly. Then f is bounded and moreover, sequence f_n is **uniformly** bounded.

Exercise 7.1.5.

Let $f_n \to f$ and $g_n \to g$ uniformly as $n \to \infty$ on $S \subseteq \mathbb{R}$. Then

a) $f_n + g_n \to f + g, \, \alpha f_n \to \alpha f$ uniformly on S as $n \to \infty$, for all $\alpha \in \mathbb{R}$;

b) $f_n g_n \to fg \ pointwise \ on \ S;$

- c) if f, g bounded, then $f_n g_n \to fg$ uniformly on S;
- d) if g unbounded, c) is false.

Exercise 7.1.9.

Let f, g be continuous on closed \mathcal{C} bounded interval [a, b] with |g(x)| > 0 for all $x \in [a, b]$. Let $f_n \to f$ and $g_n \to g$ uniformly on [a, b]. Then

- a) $1/g_n$ is defined for large n and $f_n/g_n \to f/g$ uniformly on [a, b];
- b) a) is false if [a, b] is replaced with (a, b).

Exercise 7.1.10.

Let $S \subseteq \mathbb{R}$, non-empty, f_n sequence of **bounded** functions on S s.t. $f_n \to f$ **uniformly**. Then

$$\frac{f_1(x) + \ldots + f_n(x)}{n} \to f(x)$$

uniformly on S.

Theorem [Wade 7.14]. Let $S \subseteq \mathbb{R}$, non-empty, $f_n : S \to \mathbb{R}$.

- i) Let each f_n is continuous at $x_0 \in E \Rightarrow$. Then $f = \sum_{n=1}^{\infty} f_n$ converging *uniformly* $\Rightarrow f$ continuous at x_0 .
- ii) Suppose S = [a, b] and each f_n be integrable on [a, b]. Then $f = \sum_{n=1}^{\infty} f_n$ converging *uniformly* on $[a, b] \Rightarrow f$ *integrable* on [a, b] and

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} f_n(x)\right) \, dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) \, dx.$$

iii) Suppose S is **bounded**, **open** interval and each f_n differentiable on S. $\sum_{n=1}^{\infty} f_n$ convergent at some $x_0 \in S$ and $\sum_{n=1}^{\infty} f'_n$ uniformly convergent on $S \Rightarrow$ $f := \sum_{n=1}^{\infty} f_n$ uniformly convergent on S, f differentiable on S and

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x)$$

for $x \in S$.

Theorem [Wade 7.15] (Weierstrass M-Test). Let $S \subseteq \mathbb{R}$, non-empty, and $f_n : S \to \mathbb{R}$. Suppose $M_n \ge 0$ satisfies $\sum_{n=1}^{\infty} M_n < \infty$. If $\forall n \in \mathbb{N}, x \in S : |f_n(x)| \le M_n$, then $\sum_{n=1}^{\infty} f_n$ converges absolutely and uniformly on S

Workshop 2, Question 7. Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of *continuous* functions converging *uniformly* to f. Let (x_n) be a sequence in \mathbb{R} s.t. $x_n \to x \in \mathbb{R}$. Then $f_n(x_n) \to f(x)$.

Power Series

Theorem [Power Series, Thrm. 1]. Let *R* be radius of convergence of $\sum_{n=0}^{\infty} a_n (x-c)^n$.

 $\sum_{n=0}^{\infty} a_n (x-c)^n.$ (i) $|x-c| < R \Rightarrow$ series converges

- absolutely;
- (ii) $|x c| > R \Rightarrow$ series *diverges*.

Exercise (Radius of Convergence).

- (i) If $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$ exists, then it is radius of convergence;
- (ii) If $\lim_{n\to\infty} |a_n|^{-\frac{1}{n}}$ exists, then it is radius of convergence.

Theorem [Power Series, Thrm. 2].

Let R > 0, then $\sum_{n=0}^{\infty} a_n (x-c)^n$ converges uniformly \mathcal{C} absolutely on |x-c| < R to a continuous function f, i.e.:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

defines a continuous function $f: (c-R, c+R) \to \mathbb{R}.$

Lemma [Power Series]. $\sum_{n=0}^{\infty} a_n(x-c)^n$ and $\sum_{n=0}^{\infty} na_n(x-c)^{n-1}$ have the same radius of convergence.

Theorem [Power Series, Thrm. 3]. Suppose $\sum_{n=0}^{\infty} a_n (x-c)^n$ has radius of convergence R. Then

$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$$

is *infinitely differentiable* on |x - c| < R and for such x:

$$f'(x) = \sum_{n=0}^{\infty} na_n (x-c)^{n-1}$$

and the series converges uniformly \mathcal{C} absolutely on [c - r, c + r] for any r < R. Additionally

$$a_n = \frac{f^{(n)}(c)}{n!}.$$

Remark [Power Series].

Analytic functions are *infinitely differentiable* on $\{x \in \mathbb{R} : |x - c| < r\}$ and the coefficients of the power series are *uniquely* determined by $a_n = f^{(n)}(c)/n!$.

Exercise 7.2.2.

The geometric series

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

converges **uniformly** on any $[a, b] \subset (-1, 1)$.

Exercise 7.3.3.

Let $\sum_{k=0} \infty a_k x^k$ have radius of convergence R. Then

a) $\sum_{k=0} \infty a_k x^{2k}$ has radius of convergence \sqrt{R}

b) $\sum_{k=0}\infty a_k^2 x^k$ has radius of convergence R^2

Exercise 7.3.4.

Let $|a_k| \leq |b_k|$ for *large* k and $\sum_{k=0} \infty b_k x^k$ converges on *open* interval *I*. Then $\sum_{k=0} \infty a_k x^k$ converges on *I*. *Hint:* Supremum Definition.

Exercise 7.3.5.

Let (a_k) be **bounded** sequence of real numbers. Then $\sum_{k=0} \infty a_k x^k$ has **positive** radius of convergence.

Riemann Integration

Workshop 3, Question 5.

Let $I \subseteq \mathbb{R}$ be an open interval, $f : I \to \mathbb{R}$ differentiable with f' bounded on I. Then f is uniformly continuous.

Workshop 3, Question 7.

Let $I \subseteq \mathbb{R}$ be an open interval and let $f: I \to \mathbb{R}$ continuous. Then f uniformly continuous \Leftrightarrow whenever sequences $(s_n), (t_n)$ in I are s.t. $|s_n - t_n| \to 0$, then $|f(s_n) - f(t_n)| \to 0$.

Workshop 3, Question 8.

Let $f : [a, b] \to \mathbb{R}$ continuous. Then f is *uniformly* continuous.

Exercise (Step Function Vector Space). The class of step functions is a vector space. Moreover, if ϕ and ψ are step functions, then $\max\{\phi, \psi\}$, $\min\{\phi, \psi\}$, $|\phi|$ and $\phi\psi$ are also step functions.

Exercise (Characterising Step Functions). Function ϕ is a *step function* $\Leftrightarrow \phi$ is of form:

$$\phi(x) = \sum_{j=1}^{n} c_j \chi_{I_j}(x)$$

where each I_j is a **bounded interval**.

Lemma (Set Independence). Let ϕ be a step function. Then $\int \phi$ is *independent* of the particular set $\{x_0, x_1, \ldots, x_n\}$ with respect to which ϕ is a step function.

Proposition [Integration, Prop. 1].

Let ϕ, ψ be step functions, $\alpha, \beta \in \mathbb{R}$. Then

$$\int (\alpha \phi + \beta \psi) = \alpha \int \phi + \beta \int \psi$$

Exercise (Integral Ordering). Let ϕ, ψ be step functions. Then $\phi \leq \psi \Rightarrow \int \phi \leq \int \psi$.

Theorem [Integration, Thrm. 1]. Let $f : \mathbb{R} \to \mathbb{R}$. Then f Riemann-integrable \Leftrightarrow

$$\begin{split} \sup \left\{ \int \phi : \phi \text{ step function}, \phi \leqslant f \right\} = \\ \inf \left\{ \int \psi : \psi \text{ step function}, \psi \geqslant f \right\}. \end{split}$$

Theorem [Integration, Thrm. 2]. Let $f : \mathbb{R} \to \mathbb{R}$. Then f is *Riemann-integrable* \Leftrightarrow there exist sequences of step functions ϕ_n and ψ_n s.t. $\forall n \in \mathbb{N} : \phi_n \leq f \leq \phi_n$ and

$$\int \psi_n - \int \phi_n \to 0.$$

If ϕ_n and ψ_n are any sequences of step functions satisfying the above, then

$$\int \phi_n \to \int f \quad \text{and} \int \psi_n \to \int f$$
 as $n \to \infty$.

Exercise (Sum of Powers Estimate). Let $n \in \mathbb{N}$, then for any integer $m \ge 1$:

 $\frac{n^{m+1}}{m+1}\leqslant \sum_{j=1}^n j^m\leqslant \frac{(n+1)^{m+1}}{m+1}$

Lemma [Integration, Lem. 1].

Let $f : \mathbb{R} \to \mathbb{R}$ be **bounded** with **bounded** support [a, b]. Then the following is equivalent:

(i) f is **Riemann-integrable**;

(ii)
$$\forall \varepsilon > 0 \ \exists a = x_0 < \ldots < x_n = b \text{ s.t. if}$$

 $M_j = \sup_{x \in I_j} f(x), \quad m_j = \inf_{x \in I_j} f(x)$
where $I_j = [x_{j-1}, x_j]$, then
 $\sum_{j=1}^n (M_j - m_j)(x_j - x_{j-1}) < \varepsilon;$
iii) $\forall \varepsilon > 0 \ \exists a = x_0 < \ldots < x_n = b \text{ s.t. with}$

(iii) $\forall \varepsilon > 0 \exists a = x_0 < \ldots < x_n = b \text{ s.t., with}$ $I_j = (x_{j-1}, x_j) \text{ for } j \ge 1$: $\sum_{j=1}^n \sup_{x,y \in I_j} |f(x) - f(y)| |I_j| < \varepsilon.$

Theorem [Integration, Thrm. 3]. Let f, g be *Riemann-integrable*, $\alpha, \beta \in \mathbb{R}$. Then

(a) $\alpha f + \beta g$ is **Riemann-integrable** and

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g;$$

(b) $f \ge 0 \Rightarrow \int f \ge 0$ and $f \ge g \Rightarrow \int f \ge \int g$; (c) |f| is *Riemann-integrable* and

$$\left|\int f\right| \leqslant \int |f|;$$

- (d) $\max\{f,g\}$ and $\min\{f,g\}$ are *Riemann-integrable*;
- (e) fg is **Riemann-integrable**

Theorem [Integration, Thrm. 4]. Let $g: [a, b] \to \mathbb{R}$ be *continuous*, f(x) = g(x) if $x \in [a, b], f(x) = 0$ if $x \notin [a, b]$. Then f is *Riemann-integrable.*

Theorem [Integration, Thrm. 5]. Let $g : [a, b] \to \mathbb{R}$ be *Riemann-integrable*. For $x \in [a, b]$ let

$$G(x) = \int_{a}^{x} g.$$

Then g continuous at some $x \in [a, b] \Rightarrow G$ differentiable at x and G'(x) = g(x).

Theorem [Integration, Thrm. 6]. Let $f: [a, b] \to \mathbb{R}$ s.t. f has continuous

Let $f : [a, b] \to \mathbb{R}$ s.t. f has continuous derivative f' on [a, b]. Then

$$\int_{a}^{b} f' = f(b) - f(a).$$

Exercise (Integral Test). Let (a_n) be a **non-negative** sequence of numbers and $f : [1, \infty) \to (0, \infty)$ s.t.

(i) $\int_{1}^{n} f \leq K$ for some K and all n and (ii) $a_n \leq f(x)$ for $n \leq x < n + 1$.

Then $sum_n a_n$ converges to a real number which is at most K.

Exercise (p-Series Test). For p > 1, $\sum 1/n^p$ converges.

Workshop 5, Question 1. Let $f : \mathbb{R} \to \mathbb{R}$ be *Riemann-integrable*. Then f is *bounded* with *bounded support*.

Workshop 5, Question 7. Let $g:[a,b] \to \mathbb{R}$, a < b, be continuous and non-negative. Then $\int_a^b g \Rightarrow g = 0$ on [a,b].

Exercise 5.2.0 (b).

Let f be **Riemann-integrable**, P any polynomial, then $P \circ f$ is **Riemann-integrable**. Hint: f R-integrable $\Rightarrow f^n$ is R-integrable by Thrm. 3 linearity.

Exercise 5.2.6.

(a) Let $g_n \ge 0$ sequence of Riemann-integrable functions on [a,b] s.t.

$$\lim_{n \to \infty} \int_{a}^{b} g_n = 0$$

Then f **Riemann-integrable** on $[a, b] \Rightarrow$

$$\lim_{a \to \infty} \int_{a}^{b} fg_n = 0$$

Hint: f is bounded $\Rightarrow fg_n$ is bounded & Squeeze Thrm.

Metric Spaces

Example [Wade 10.2]. Every Euclidean space \mathbb{R}^n is a metric space with the *usual metric* $\rho(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\|$.

Definition [Wade 10.3]. \mathbb{R} is a metric space with the *discrete metric*:

$$\sigma(x,y) = \begin{cases} 0 & x = y, \\ 1 & x \neq y \end{cases}$$

Example [Wade 10.4].

Let (X, ρ) be a metric space and $E \subseteq X$. Then *E* is a metric space with metric ρ , called a *subspace* of *X*.

Exercise 10.4.10a.

 $E \subset X$ compact $\Rightarrow E$ sequentially compact. Hint: Arbitrary $x \in$, $S = \{n \in \mathbb{N} : x_n \in B_{r(x)}(x)\}$ must be finite for (x_n) not to have convergent subsequence. E has open cover $\{B_r(x_i) : 1 \leq i \leq k\} \Rightarrow \exists i \text{ s.t.}$ $B_r(x_i)$ infinite \Rightarrow contradicts S finite.

Example [Wade 10.6].

Let $\mathcal{C}[a,b]$ be the set of continuous functions $f:[a,b]\to\mathbb{R}$ and

$$||f|| \coloneqq \sup_{x \in [a,b]} |f(x)|$$

Then $\rho(f,g) := ||f - g||$ is a metric on $\mathcal{C}[a, b]$. N.B.: Convergence in this metric spaces means *uniform* convergence. Remark [Wade 10.9]. Every open ball is *open*, every closed ball is *closed*.

Remark [Wade 10.10]. Let $a \in X$. Then $X \setminus \{a\}$ is *open* and $\{a\}$ is *closed*.

Remark [Wade 10.11]. Let (X, ρ) be an *arbitrary* metric space. Then \emptyset and X are *both open* \mathcal{C} *closed*.

Example [Wade 10.12]. Every subset of discrete space \mathbb{R} is both open \mathcal{C} closed.

Theorem [Wade 10.14].

Let X be a metric space.

- i) A sequence in X can have at most one limit.
- ii) If $\{x_n\}$ in X converges to a and $\{x_{n_k}\}$ is any subsequence of $\{x_n\}$, then $\{x_{n_k}\}$ converges to a as well.
- iii) $\{x_n\}$ in X is *convergent* \Rightarrow $\{x_n\}$ is *bounded*
- iv) $\{x_n\}$ in X is **convergent** \Rightarrow $\{x_n\}$ is **Cauchy**

Remark [Wade 10.15].

Let $\{x_n\}$ in X. Then $x_n \to a$ as $n \to \infty \Leftrightarrow$ for every open set V s.t. $a \in V \exists N \in \mathbb{N}$ s.t. $n \ge N \Rightarrow x_n \in V$.

Theorem [Wade 10.16].

Let $E \subseteq X$. Then E is closed \Leftrightarrow the limit of every convergent sequence $\{x_k\}$ in E lies in E, i.e.:

 $\lim_{k \to \infty} x_k \in E$

Remark [Wade 10.17].

The discrete space contains **bounded** sequences with have **no** convergent subsequences, e.g. $\{k\}$ with $k \in \mathbb{N}$.

Remark [Wade 10.18].

The metric space \mathbb{Q} with usual metric contains *Cauchy sequences* which do *not converge*, e.g. $\{q_k\}$ in \mathbb{Q} s.t. $q_k \to \sqrt{2}$.

Exercise 10.1.4.

In *discrete* metric space, $x_n \to a$ as $n \to \infty \Leftrightarrow x_n = a$ for n large.

Exercise 10.1.5.

Let x_n , y_n sequences in (X, ρ) converge to same limit $a \in X$. Then $\rho(x_n, y_n) \to 0$ as $n \to \infty$. The *converse* is *false*, e.g. $x_n = y_n = n$.

Exercise 10.1.6.

Let (x_n) be **Cauchy** in X. Then (x_n) converges $\Leftrightarrow (x_n)$ has a convergent subsequence.

Remark [Wade 10.20].

If X is a *complete* metric space, then

- 1) every Cauchy sequence in X converges;
- 2) the limit of every Cauchy sequence in X stays in X.

Theorem [Wade 10.21].

Let X be a *complete* metric space and $E \subseteq X$. Then E is *complete* \Leftrightarrow E is *closed*.

Remark (Cluster Point in Subspace). Let $E \subseteq X$ be a *subspace* of X. The $a \in E$ is a *cluster point* in $E \Leftrightarrow \forall \delta > 0$, the *relative ball* $B_{\delta}(a) \cap E$ contains *infinitely* many points.

Theorem [Wade 10.26].

Let $a \in X$ be a *cluster point* and $f, g: X \setminus \{a\} \to Y$.

i) $\forall x \in X \setminus \{a\} : f(x) = g(x)$ and f(x) has a limit as $x \to a \Rightarrow g(x)$ has a limit as $x \to a$ and

$$\lim_{x \to a} g(x) = \lim_{x \to a} f(x)$$

ii) Sequential Characterization of Limits:

$$L \coloneqq \lim_{x \to a} f(x)$$

exists \Leftrightarrow $f(x_n) \to L$ as $n \to \infty$ for *every* sequence $\{x_n\}$ in $X \setminus \{a\}$ s.t. $x_n \to a$ as $n \to \infty$.

- iii) Let $Y = \mathbb{R}^n$. f(x) and g(x) have a limit as $x \to a \Rightarrow (f+g)(x), (fg)(x), (\alpha f)(x)$ and if $Y = \mathbb{R}$ and limit of $g(x) \neq 0$ also (f/g)(x) have limits. In this case, the usual algebra of limits applies.
- iv) Squeeze Theorem: Let $Y = \mathbb{R}$. Let $h: X \setminus \{a\} \to \mathbb{R}$ s.t. $\forall x \in X \setminus \{a\}$: $g(x) \leq h(x) \leq f(x)$ and

$$\lim_{x \to a} g(x) = \lim_{x \to a} f(x) = L$$

 \Rightarrow limit of h as $x \to a$ exists and

$$\lim_{x \to a} h(x) = L.$$

v) Comparison Theorem: Let $Y = \mathbb{R}$. $\forall x \in X \setminus \{a\} : f(x) \leq g(x) \text{ and } f, g \text{ have a limit as } x \to a, \text{ then}$

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

Theorem [Wade 10.28].

Let $E \subseteq X$, non-empty, and $f, g: E \to Y$.

- i) f continuous at $a \in E \Leftrightarrow f(x_n) \to f(a)$ as $n \to \infty$ for every sequence $\{x_n\}$ in Es.t. $x_n \to a$.
- ii) Let $Y = \mathbb{R}^n$. f, g continuous at $a \in E \Rightarrow f + g, fg, \alpha f$, for $\alpha \in \mathbb{R}$ are continuous at $a \in E$. Also, if $Y = \mathbb{R}$ and $g(a) \neq 0$, then f/g continuous at $a \in E$.

Theorem [Wade 10.29].

Let X, Y, Z be metric spaces and $a \in X$ a cluster point. Let $f: X \to Y, g: f(X) \to Z$. $f(x) \to L$ as $x \to a$ and g continuous at $L \Rightarrow$

$$\lim_{x \to a} (g \circ f)(x) = g\left(\lim_{x \to a} f(x)\right).$$

Exercise 10.2.2.

Let (X, d) be a metric space.

a) $a \in X$ isolated $\Leftrightarrow a$ not cluster point in X.

Hint: a) (\Leftarrow) not cluster $\Rightarrow B_r(a)$ finitely many elements, take ρ minimum of distance of those to a, then $X \cap B_\rho(a) = \{a\}$.

Exercise 10.2.3.

Let $E \subseteq X$. Then a is a *cluster point* \Leftrightarrow there *exists* sequence (x_n) in $E \setminus \{a\}$ s.t. $x_n \to a$ as $n \to n$.

Hint: (\Rightarrow) $x_n \in E \cap B_{\frac{1}{n}}(a)$, (\Leftarrow) $E \cap B_r(a)$ infinite as $a \neq x_n$.

Exercise 10.2.4.

- a) Let $E \subseteq X$, non-empty. Then *a* is a *cluster point* for of $E \Leftrightarrow \forall r > 0$: $(E \cap B_r(a)) \setminus \{a\} \neq \emptyset.$
- b) Every bound infinite subset of \mathbb{R} has at least one cluster point.

Hint: a) $(\Leftarrow) x_n \in (E \cap B_{\frac{1}{n}}(a)) \setminus \{a\}$ and Ex. 10.2.3. b) (x_n) sequence in E and Bolzano-Weierstrass.

Workshop 7, Question 5.

Metrics d, ρ strongly equivalent $\Rightarrow d$, ρ equivalent.

Workshop 7, Question 7.

Let d, ρ be metrics on X. Then d, ρ equivalent \Leftrightarrow every subset of X open with respect to d is also open with respect to ρ and vice-versa.

Workshop 8, Question 11.

 $X \text{ compact} \Rightarrow \forall r > 0, X$ can be covered by finitely many open balls of radius r. Hint: Consider open cover of open balls of radius r.

Workshop 8, Question 12.

Let X be compact. Then X is complete. Additionally, X compact \Leftrightarrow X is complete and can be covered by finitely many open balls of radius r for any r > 0.

Hint: X compact \Rightarrow sequentially compact, so (x_n) Cauchy sequence has convergent subsequence (x_n) converges.

Workshop 8, Question 13.

X compact \Leftrightarrow X sequentially compact. Hint: Take (x_n) Cauchy, has convergent subsequence by assumption \Rightarrow converges \Rightarrow X complete. Only need show that \exists cover with finite number open balls. Assume none exists for r > 0. Pick $x_1 \in X$. Pick $x_2 \in X$ s.t. $d(x_1, x_2) > r$, repeat to get (x_n) s.t. $d(x_m, x_n) > r \forall m, n \Rightarrow$ not convergent \Rightarrow contradiction.

Topology

Theorem [Wade 10.31].

Let X be a metric space.

- i) The *union* of *any collection* of *open* sets in X is *open*;
- ii) The *intersection* of a *finite collection* of *open* sets in X is *open*;
- iii) The *intersection* of *any collection* of *closed* sets in X is *closed*;
- iv) The *union* of a *finite collection* of *closed* sets in X is *closed*;
- v) Let $V \subseteq X$ be *open*, $E \subseteq X$ be *closed*. Then $V \setminus E$ is *open*, $E \setminus V$ is *closed*.

Remark 10.32.

The *intersection* of *any collection* of *open* sets is *not* necessarily *open*, e.g.

$$\bigcap_{k \in \mathbb{N}} \left(-\frac{1}{k}, \frac{1}{k} \right) = \{0\}.$$

The *union* of *any collection* of *closed* sets is *not* necessarily *closed*, e.g.

$$\bigcup_{k\in\mathbb{N}}\left[\frac{1}{k+1},\frac{k}{k+1}\right]=(0,1)$$

Theorem [Wade 10.34].

Let $E \subseteq X$. Then

i) $E^o \subseteq E \subseteq \overline{E};$ ii) V open and $V \subseteq E \Rightarrow V \subseteq E^o.$ iii) C closed and $C \supseteq E \Rightarrow C \supseteq E.$

Theorem [Wade 10.39]. Let $E \subseteq X$. Then $\partial E = \overline{E} \setminus E^o$.

Theorem [Wade 10.40]. Let $A, B \subseteq X$. Then

- i) $(A \cup B)^o \supseteq A^o \cup B^o, (A \cap B)^o = A^o \cap B^o;$
- ii) $\overline{A \cup B} = \overline{A} \cup \overline{B}, \ \overline{A \cap B} \subseteq \overline{A} \cap \overline{B};$
- iii) $\partial(A \cup B) \subseteq \partial A \cup \partial B$,
- $\partial(A \cap B) \subseteq (A \cap \partial B) \cup (B \cap \partial A) \cup (\partial A \cap \partial B).$

Exercise 10.3.4. Let $A \subseteq B \subseteq X$. Then $\overline{A} \subseteq \overline{B}$ & $A^o \subseteq B^o$.

Remark [Wade 10.43].

The empty set and *all finite* subsets of a metric space are *compact*.

Remark 10.44.

Every *compact* set is *closed*.

Hint: Assume *H* compact & not closed $\Rightarrow \exists$ sequence with limit *x* not in *H*. $y \in H$ and $r(y) \coloneqq \rho(x, y)/2, x \neq H \Rightarrow r(y) > 0$. Open cover of $B_{r(y)}(y) \ll f$ inite subcover $\{B_{r(y_j)}(y_j)\}$. $r = \min\{r(y_j)\}$. $x_k \to x \Rightarrow x_k \in B_r(x)$ for *k* large. $x_k \in B_r(x) \cap H \Rightarrow x_k \in B_{r(y_j)}(y_j)$ for some *j*. Then with $r_j \ge \rho(x_k, y_j) \ge \rho(x, y_j) - \rho(x_k, x) = 2r_j - \rho(x_k, x) > 2r_j - r \ge 2r_j - r_j \Rightarrow$ contradiction.

Remark [Wade 10.46].

Every *closed subset* of a *compact* set is *compact*.

Hint: $E \subseteq H$ closed w/ H compact s.t. \mathcal{V} is open cover of E. $E^c = X \setminus E$ open $\Rightarrow \mathcal{V} \cup E^c$ cover H. H compact \Rightarrow finite subcover \mathcal{V}_0 and $H \subseteq E^c \cup \mathcal{V}_0$, but $E \cap E^c = \emptyset \Rightarrow \mathcal{V}_0$ finite subcover of E.

Theorem [Wade 10.46].

Let $H \subseteq X$, X being a metric space. H compact \Rightarrow H closed & bounded.

Remark 10.47.

Given an *arbitrary* metric space, *closed* \mathcal{C} *bounded* \Rightarrow *compact* in general.

Exercise 10.4.2.

Let $A, B \subseteq X$ be *compact*. Then $A \cup B$ and $A \cap B$ are *compact*.

Hint: Combine subcovers for $A \cup B$; note $A \cap B \subset A$ closed & Thrm. 10.46.

Exercise 10.4.3.

Let $E \subseteq \mathbb{R}$ be *compact* and non-empty. Then sup E and inf E belong to E. *Hint:* Existence by boundedness. Approximation Property gives sup $E \leq x_n \leq \sup E + 1/n$ and Squeeze Theorem.

Exercise 10.4.8.

(a) Cantor Intersection Theorem: Let $H_{k+1} \subseteq H_k$ be nested sequence of compact, non-empty sets in metric space X. Then $\bigcap_{k=1}^{\infty} H_k \neq \emptyset$.

 $\begin{array}{ll} Hint: \mbox{ Assume } \bigcap_{k=1}^{\infty} H_k = \emptyset, \ \{H_k^c\} \mbox{ open cover} \\ \mbox{ of } H_1 \Rightarrow \mbox{ finite subcover } H_{k_i}, \ 1 \leqslant i \leqslant n. \ H_k \\ \mbox{ nested } \Rightarrow H_k^c \ \mbox{ nested } \Rightarrow s = \max\{k_i\} \ \mbox{ then} \\ \ H_1 \subset H_s^c \Rightarrow \emptyset = H_s \cap H_1 = H_s, \ \mbox{ contradiction.} \end{array}$

Remark [Wade 10.55].

Let $E \subseteq X$. If $\exists A, B \subseteq X$, both **open** s.t.

$$\begin{split} E \subseteq A \cup B, \quad A \cap B = \emptyset \\ A \cap E \neq \emptyset, \quad B \cap E \neq \emptyset \end{split}$$

i.e. A, B separate E, then E is not connected.

Theorem [Wade 10.56].

 $E \subseteq \mathbb{R}$ is connected $\Leftrightarrow E$ is an interval.

 $\begin{array}{l} \textbf{Remark} \quad (\text{Preimage of Open Balls}).\\ \text{Let } X,Y \text{ be metric spaces and } f:X \to Y.\\ \text{Then } f \text{ is } \textit{continuous} \Leftrightarrow \end{array}$

$B_{\delta}(a) \subseteq f^{-1}(B_{\varepsilon}(f(a))).$

Theorem [Wade 10.58].

Let $f: X \to Y$. Then f continuous $\Leftrightarrow f^{-1}(V)$ is open in X for every open V in Y.

Hint: (\Rightarrow) $f^{-1}(V)$ non-empty, let $a \in f^{-1}(V)$, i.e. $f(a) \in V \Rightarrow$ choose ε s.t. $B_{\varepsilon}(f(a)) \subseteq V$. f continuous \Rightarrow choose δ s.t.

 $B_{\delta}(a) \subseteq f^{-1}(B_{\varepsilon}(f(a))). \iff \varepsilon > 0, a \in X.$ $V = B_{\varepsilon}(f(a))$ open and by assumption $f^{-1}(V)$ open. $a \in f^{-1}(V) \Rightarrow \exists \delta > 0$ s.t. $B_{\delta}(a) \subseteq f^{-1}(V) \Rightarrow f$ continuous.

Corollary [Wade 10.59]. Let $E \subseteq X$ and $f : E \to Y$. Then f continuous on $E \Leftrightarrow f^{-1}(V) \cap E$ is *relatively open* in E for every open V in Y.

Remark (Continuous Inverse Invariance). Open & Closed sets are invariant under inverse images by *continuous* functions.

Exercise 10.5.5.

Let $E \subseteq X$ and $E \subseteq A \subseteq \overline{E}$ and E connected. Then A is *connected*.

Hint: Assume A disconnected then Remark 10.55 for A. $U \cap E \neq \emptyset$ by contradiction \Rightarrow $\exists x \in U \text{ s.t. } x \in A \setminus E. A \subset \overline{E} \Rightarrow x \text{ cluster point}$ of $E \Rightarrow \exists r > 0$ s.t. $B_r(x) \subset U$ with infinitely many points from E so $E \cap U \neq \emptyset$. Similarly $E \cap V \neq \emptyset \Rightarrow \text{contradicts} \; E \text{ connected.}$

Exercise 10.5.11.

Let $\{E_{\alpha}\}_{\alpha \in A}$ collection of *connected* sets s.t. $\bigcap_{\alpha \in A} E_{\alpha} \neq \emptyset$. Then $\bigcup_{\alpha \in A} E_{\alpha}$ is connected. Hint: Contradiction and Remark 10.55.

Theorem [Wade 10.61].

 $H \subseteq X$ compact and $f : H \to Y$ continuous \Rightarrow f(H) compact in Y.

Theorem [Wade 10.62].

 $E \subseteq X$ connected and $f : E \to Y$ continuous $\Rightarrow f(E)$ connected in Y.

Theorem [Wade 10.63] (Extreme Value Theorem). Let $H \subseteq X$, non-empty & compact and

 $f: H \to \mathbb{R}$ continuous. Then

 $M \coloneqq \sup\{f(x) : x \in H\},\$ $m \coloneqq \inf\{f(x) : x \in H\}$

are *finite real* numbers and $\exists x_M, x_m \in H$ s.t. $M = f(x_M)$ and $m = f(x_m)$.

Theorem [Wade 10.64].

Let $H \subseteq X$ be *compact* and $f : H \to Y$ injective (1-1) & continuous. Then f^{-1} is *continuous* on f(H).

Workshop 11, Question 2-5. Every open, connected set in \mathbb{R}^n is path-connected.

Hint: U set of $x, y \in E$ s.t. path exists, V s.t. does not. Show $E \subset U \cup V$, $U \cap V = \emptyset$, $U \cap E \neq \emptyset$. U is path-connected. Show U, V are open, $y \in U$ and as E open $B_r(y) \subseteq E$, let $z \in B_r(y)$ then x, z path-connected as x, y are. Similar reasoning for V open.

Exercise 10.6.5 (Intermediate Value

Theorem). Let $E \subseteq X$ be *connected*, $f : E \to \mathbb{R}$ *continuous* and $a, b \in E$ with f(a) < f(b). Then $\forall y \text{ s.t. } f(a) < y < f(b) \exists x \in E \text{ s.t.}$ f(x) = y

Hint: E connected, f continuous \Rightarrow f(E)connected and as subset of \mathbb{R} is interval, so $[f(a), f(b)] \subset f(E)$. So $f(a) < y < f(b) \Rightarrow$ $y \in f(E).$

Exercise 10.6.9.

Let X be *connected*. Then $f: X \to \mathbb{R}$ non-constant, continuous $\Rightarrow X$ uncountably many points.

Hint: Connected subsets in \mathbb{R} are intervals (a,b) and $g:(a,b) \to X$ is injective, so $g((a, b)) \subset X$ same size as (a, b).

Contraction Mappings

Exercise [Contraction Mapping]. Let f be a contraction. Then f is continuous.

Theorem (Banach's Contraction Mapping Theorem).

Let (X, d) be a *complete* metric space, $f: X \to X$ a *contraction*. Then there *exists* unique $x \in X$ s.t. f(x) = x. N.B.: It is important that $f(X) \subseteq X$. *Hint:* Pick $x_0 \in X$ and $f(x_n) = x_{n+1}$ as contraction $\Rightarrow d(x_n, x_{n+1}) \leqslant \alpha^n d(x_0, x_1)$. Use triangle inequality & finite geometric series to show $d(x_n, x_n) \leq \frac{\alpha^n}{1-\alpha} d(x_0, x_1) \Rightarrow (x_n)$ Cauchy, as X complete \Rightarrow (x_n) converges to $x \in X$. f continuous $\Rightarrow f(x) = f(\lim x_n) =$ $\lim f(x_n) = \lim x_{n+1} = x$. Uniqueness: $x,y\in X,\ f(x)=x\ \&\ f(y)=y\Rightarrow d(x,y)=$

$d(f(x), f(y)) \leq \alpha d(x, y) \Rightarrow d(x, y) = 0.$ Exercise [Contraction Mapping].

Let (X, d) be a *complete* metric space and $f: X \to X$ s.t. $f^{(n)} = f \circ f \circ \ldots \circ f$ a contraction. Then f has a unique fixed point. N.B.: f itself may not be a contraction.

Workshop 10, Question 8.

Let (X, d) be *compact* and $f : X \to X$ s.t. $d(f(x),f(y))\leqslant d(x,y)$ for all $x\neq y\in X.$ Then f has a **unique** fixed point. *Hint:* $\phi(x) = d(x, f(x))$, continuous, so image is closed & bounded subset of \mathbb{R} as X compact. f without fixed point $\Rightarrow \phi > 0$ and $\inf \phi = k > 0$ and $\exists x \in X$ s.t. d(x, f(x)) = k. d(f(x), f(f(x))) < d(x, f(x)) = k, contradicts k infimum.

Miscellaneous

Remark (Geometric Sum).

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}$$

Remark Product to Sum (). $fg = \frac{1}{4}((f+g)^2 - (f-g)^2)$ N.B.: Used in proof of Cauchy-Schwarz for functions.

Definitions

Convergence

Definition [Wade 7.1].

Let $S \subseteq \mathbb{R}$, non-empty. A sequence of functions $f_n: S \to \mathbb{R}$ converges pointwise on $S \Leftrightarrow$ $f(x) = \lim_{n \to \infty} f_n(x)$ exists for each $x \in S$. N.B.: N may depend on x.

Definition [Wade 7.7].

Let $S \subseteq \mathbb{R}$, non-empty. A sequence of functions $f_n: S \to \mathbb{R}$ converges uniformly on S to function $f \Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ s.t.}$:

 $n \ge N \Rightarrow |f_n(x) - f(x)| < \varepsilon, \quad \forall x \in S.$ N.B.: N independent of x.

Definition (Ex. 7.1.3).

Let $f_n: S \to \mathbb{R}$ be a sequence of functions. If $\exists M > 0 \, \forall x \in S, n \in \mathbb{N} \text{ s.t. } |f_n(x)| \leq M$, then the sequence of functions is *uniformly* bounded.

Definition [Wade 7.13].

Let $S \subseteq \mathbb{R}$, $f_k : S \to \mathbb{R}$ and $s_n(x) \coloneqq \sum_{k=1}^n f_k(x)$, for $x \in S$, $n \in \mathbb{N}$.

i) $\sum_{k=1}^{\infty} f_k$ converges **pointwise** on $S \Leftrightarrow$ sequence $s_n(x)$ converges pointwise on S;

- ii) $\sum_{k=1}^{\infty} f_k$ converges **uniformly** on $S \Leftrightarrow$ sequence $s_n(x)$ converges uniformly on S;
- iii) $\sum_{k=1}^{\infty} f_k$ converges **absolutely (pointwise)** on $S \Leftrightarrow$ sequence $\sum_{k=1}^{\infty} |f_k|$ converges for each $x \in S$.

Power Series

Definition (Power Series).

Let (a_n) be sequence of real numbers, $c \in \mathbb{R}$. A *power series* is a series of the form:

$$\sum_{n=0}^{\infty} a_n (x-c)^r$$

where a_n are the *coefficients*, c is the *centre*.

Definition (Radius of Convergence). The *radius of convergence* R of power series $\sum_{n=0}^{\infty} a_n (x-c)^n$ is

 $R = \sup\{r \ge 0 : (a_n r^n) \text{ is bounded}\}\$

unless $(a_n r^n)$ is bounded for all $r \ge 0$, then $R = \infty$. I.e. R is **unique** number s.t. for r < R, $(a_n r^n)$ is bound, for r > R, $(a_n r^n)$ is unbound.

Definition (Analytic Function). A function f is **analytic** on $S = \{x \in \mathbb{R} : |x - c| < r\}$ if there is a power series centred at c that converges to f on S.

Riemann Integration

Definition (Uniform Continuity). Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$. We say f is uniformly continuous on I if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. for $x, y \in I$:

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Definition (Characteristic Function). Let $E \subseteq \mathbb{R}$, then $\chi_E : \mathbb{R} \to \mathbb{R}$ is the characteristic function if $\chi_E(x) = 1$ if $x \in E$, $\chi_E(x) = 0$ if $x \notin E$.

Definition (Area Under the Curve). Let $I \subset \mathbb{R}$ be a **bounded interval**. Then

$$\int \chi_I = \operatorname{length}(I).$$

Definition [Integration, Def. 1]. We say $\phi : \mathbb{R} \to \mathbb{R}$ is a *step function* if there exist real numbers $x_0 < x_1 < \ldots < x_n$, for some $n \in \mathbb{N}$, s.t.

- (i) $\phi(x) = 0$ for $x < x_0$ and $x > x_n$;
- (ii) ϕ constant on $(x_{j-1}, x_j), 1 \leq j \leq n$.

Definition (Bounded Support).

A function f has **bounded support** if f(x) = 0for $x \notin [c, d]$, where [c, d] is some bounded interval.

Definition [Integration, Def. 2].

Let ϕ be a step function with respect to $\{x_0, x_1, \ldots, x_n\}$, where $\phi(x) = c_j$ for $x \in (x_{j-1}, x_j)$, then

$$\int \phi \coloneqq \sum_{j=1}^n c_j (x_j - x_{j-1})$$

Definition [Integration, Def. 3]. Let $f : \mathbb{R} \to \mathbb{R}$. Then f is **Riemann-integrable** if $\forall \varepsilon > 0 \exists \phi, \psi$ step functions s.t. $\phi \leq f \leq \psi$ and

$$\int \psi - \int \phi < \varepsilon.$$

Definition [Integration, Def. 4]. If f is **Riemann-integrable**, then we define:

$$\begin{split} \int f &:= \sup \left\{ \int \phi : \phi \text{ step function}, \phi \leqslant f \right\} = \\ &\inf \left\{ \int \psi : \psi \text{ step function}, \psi \geqslant f \right\}. \end{split}$$

Definition (Definite Integral). Let $f: I \to \mathbb{R}$, where I is **bounded interval** open/closed at end points $a \leq b$. Let $\tilde{f}(x) = f(x)$ for $x \in I$ and f(x) = 0 for $x \notin I$. \tilde{f} **Riemann-integrable** $\Rightarrow f$ **Riemann-integrable** on I and

$$\int_{I} f = \int_{a}^{b} f = \int_{a}^{b} f(x) \, dx \coloneqq \int \tilde{f}$$

is the *definite integral of* f on I.

Definition (Improper Integral). Let $f : \mathbb{R} \to \mathbb{R}$ be *possibly unbounded*, let

 $f_n(x) = \mathrm{mid}\{-n, f(x), n\}\chi_{[-n,n]}(x)$ and

$$F_n(x) = \min\{|f(x)|, n\}\chi_{[-n,n]}(x)$$

If $\sup_n \int F_n < \infty$, then the *improper integral* of f over interval I is

 $\int_I f \coloneqq \lim_{n \to \infty} \int_I f_n.$

Metric Spaces

Definition [Wade 10.1]. A *metric space* is a set X together with a function $\rho: X \times X \to \mathbb{R}$ (the *metric* of X) which satisfies the following properties for $x, y, z \in X$:

- (i) **Positive definite:** $\rho(x, y) \ge 0$ with $\rho(x, y) = 0 \Leftrightarrow x = y;$
- (ii) Symmetric: $\rho(x, y) = \rho(y, x);$

(iii) Triangle Inequality: $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$

N.B.: $\rho(x, y)$ is finite valued by definition.

Definition [Wade 10.7].

Let $a \in X$ and r > 0. The **open ball** (in X) with **centre** a and **radius** r is the set

$$B_r(a) \coloneqq \{ x \in X : \rho(x, a) < r \}$$

and the *closed ball* (in X) with *centre* a and *radius* r is the set

$$\{x \in X : \rho(x, a) \leqslant r\}$$

Definition [Wade 10.8].

- i) A set $V \subseteq X$ is **open** $\Leftrightarrow \forall x \in V \exists \varepsilon > 0$ s.t. open ball $B_{\varepsilon}(x) \subseteq V$.
- ii) A set $E \subseteq X$ is *closed* \Leftrightarrow complement $E^c \coloneqq X \setminus E$ is *open*.

Definition [Wade 10.13].

Let $\{x_n\}$ be a sequence in X.

i) $\{x_n\}$ converges (in X) if $\exists a \in X$ (the *limit* of x_n) s.t. $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ s.t.:

$$n \ge N \Rightarrow \rho(x_n, a) < \varepsilon.$$

$$\begin{array}{l} \mbox{ii)} \ \{x_n\} \mbox{ is } {\it Cauchy} \mbox{ if } \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ {\rm s.t.}: \\ \\ n,m \geqslant N \Rightarrow \rho(x_n,x_m) < \varepsilon. \end{array}$$

iii)
$$\{x_n\}$$
 is **bounded** if $\exists M > 0, b \in X$ s.t.
 $\rho(x_n, b) \leq M, \quad \forall n \in \mathbb{N}.$

Definition [Wade 10.19]. A metric space X is *complete* \Leftrightarrow *every Cauchy* sequence $\{x_n\}$ in X *converges* to some point *in* X.

Definition [Wade 10.22]. A point $a \in X$ is a *cluster point* $\Leftrightarrow \forall \delta > 0$, $B_{\delta}(a)$ contains *infinitely* many points.

Definition (Relative Ball). Let $E \subseteq X$ be a *subspace* of X. An *open ball* in E centred at a is defined as

 $B_r^E(a) \coloneqq \{ x \in E : \rho(x, a) < r \}$

and as metric on X and E are the same, is of the form

 $B_r^E(a) = B_r(a) \cap E$

where $B_r(a)$ is an open ball in X. $B_r^E(a)$ is called *relative ball* (in *E*). The case with closed balls is analogous.

Definition [Wade 10.25].

Let $a \in X$ be a *cluster point* and $f: X \setminus \{a\} \to Y$. Then $f(x) \to L$ as $x \to a \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0$ s.t.:

 $0<\rho(x,a)<\delta \Rightarrow \tau(f(x),L)<\varepsilon.$

Definition [Wade 10.27].

- Let $E \subseteq X$, non-empty, and $f : E \to Y$.
- i) f is continuous at point $a \in E \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0$ s.t.

 $\rho(x,a) < \delta$ and $x \in E \Rightarrow \tau(f(x), f(a)) < \varepsilon$.

ii) f is continuous on E ⇔ f continuous for every x ∈ E.
N.B.: This is valid whether a is cluster point or not.

Definition (Isolated Points). Let (X, d) be a metric space, $a \in X$. Then a is *isolated* if $\exists r > 0$ s.t. $B_r(a) = \{a\}$.

Definition (Strong Equivalence). Two metrics d and ρ on X are *strongly equivalent* if $\exists A, B$ s.t.

$$d(x,y) \leqslant A\rho(x,y)$$

$$\rho(x,y) \leqslant Bd(x,y), \quad \forall x,y \in X.$$

Definition (Equivalence). Two metrics d and ρ on X are *equivalent* if $\forall x \in X, \varepsilon > 0 \exists \delta > 0$ s.t.

$$\begin{split} d(x,y) < \delta \Rightarrow \rho(x,y) < \varepsilon \text{ and} \\ \rho(x,y) < \delta \Rightarrow d(x,y) < \varepsilon \end{split}$$

Topology

Definition [Wade 10.33]. Let X be a metric space and $E \subseteq X$.

i) The *interior* of E is the set

$$E^o \coloneqq \bigcup \{V : V \subseteq E \text{ and } V \text{ open in } X\}.$$

ii) The *closure* of E is the set $\overline{E} := \bigcap \{B : B \supseteq E \text{ and } B \text{ closed in } X\}.$

Definition [Wade 10.37].

Let $E \subset X$. The **boundary** of E is the set

$$\begin{split} \partial E &\coloneqq \{x \in X: \forall r > 0, B_r(x) \cap E \neq \emptyset \text{ and } \\ B_r(x) \cap E^c \neq \emptyset \}. \end{split}$$

Definition [Wade 10.41].

Let $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in A}$ be a *collection of subsets* of metric space X and let $E \subseteq X$.

i) \mathcal{V} covers E (\mathcal{V} is a covering of E) \Leftrightarrow

$$E \subseteq \bigcup_{\alpha \in A} V_{\alpha}.$$

- ii) \mathcal{V} is an open covering of $E \Leftrightarrow \mathcal{V}$ covers E and each V_{α} is open.
- iii) Let \mathcal{V} be a covering of E. \mathcal{V} has a finite/countable subcovering \Leftrightarrow there is a finite/countable subset $A_0 \subseteq A$ s.t. $\{V_{\alpha}\}_{\alpha \in A_0}$ covers E.

Definition [Wade 10.42].

Let $H \subseteq X$ with X being a metric space. H is compact \Leftrightarrow every open covering of H has finite subcover.

Definition 10.4.10a.

 $E \subseteq X$ is sequentially compact \Leftrightarrow every sequence (x_n) in E has a convergent subsequence with limit in E.

Definition [Wade 10.53].

Let X be a metric space.

- i) A pair of *non-empty open* sets U, V in Xseparates $X \Leftrightarrow X = U \cup V$ and $U \cap V = \emptyset$.
- ii) X is connected \Leftrightarrow X cannot be separated by any pair of open sets U, V.

Definition [Wade 10.54].

Let X be a metric space and $E \subseteq X$.

- i) $U \subseteq E$ is relatively open in $E \Leftrightarrow \exists V \subseteq X$, s.t. V open and $U = E \cap V$.
- ii) $A \subseteq E$ is *relatively closed* in $E \Leftrightarrow \exists C \subseteq X$, s.t. C *closed* and $A = E \cap C$.

Contraction Mappings

Definition (Contraction).

Let (X, d) be a metric space. A function $f: X \to X$ is a *contraction* if $\exists \alpha$ with $0 < \alpha < 1$ s.t.:

$$d(f(x), f(y)) \leq \alpha d(x, y), \quad \forall x, y \in X.$$

Constant α is called the *contraction constant* of f.

Definition (Fixed Point). Let $f: X \to X$. If $x \in X$ is s.t. f(x) = x, then x is a *fixed point* of f.