Chapter One - Holomorphicity

Theorem (Triangle Inequality).

$$\begin{aligned} |z+w| &\leq |z|+|w| \\ ||z|-|w|| &\leq |z-w| \end{aligned}$$

Definition. The **argument** of $z \in \mathbb{C}$ is $\arg(z) := \{\theta : z = |z|e^{i\theta}\}$, the **principle argument** is $\operatorname{Arg}(z) \in \arg(z) \cap (-\pi, \pi]$ and is *unique*.

Theorem (1.1.19). Let $z, w \in \mathbb{C}$ be non-zero. Then $\arg(zw) = \arg(z) + \arg(w)$ and $\operatorname{Arg}(zw) = \operatorname{Arg}(z) + \operatorname{Arg}(w)$.

Definition. The open (resp. closed) ε -disk centred at z_0 is $D_{\varepsilon}(z_0) := \{z \in \mathbb{C} : |z - z_0| < \varepsilon\}$ (resp. $\overline{D_{\varepsilon}(z_0)} := \{z \in \mathbb{C} : |z - z_0| \le \varepsilon\}$). The puntured disk is $D'_{\varepsilon}(z_0) := D_{\varepsilon}(z_0) \setminus \{z_0\}$.

Definition. A subset $D \subseteq \mathbb{C}$ is **open** if $\forall z \in D : \exists \varepsilon > 0 : D_{\varepsilon}(z) \subseteq D$ (or it's a union of open disks) and is **closed** if $\mathbb{C} \setminus D$ is open. If $z \in D$ is open we say *D* is a **neighbourhood** of *z*.

Definition. Let $S \subseteq \mathbb{C}$ then $z_0 \in \mathbb{C}$ is a **limit-point** of *S* if $\forall \varepsilon > 0$: $D'_{\varepsilon}(z_0) \cap S \neq \emptyset$. If L_S is the set of limit points of *S* then $\overline{S} := S \cup L_S$ is the **closure** of *S*.

Theorem (1.2.9). A complex sequence z_n converges iff $\operatorname{Re}(z_n)$ and $\operatorname{Im}(z_n)$ converge.

Theorem. The complex plane \mathbb{C} is complete, namely z_n is convergent $\Leftrightarrow z_n$ is Cauchy.

Theorem (Bolzano-Weierstrass). If z_n is a bounded sequence then it has a convergent subsequence.

Theorem (1.3.3). Let $f : S \subseteq \mathbb{C} \to \mathbb{C}$ and $z_0 = x_0 + iy_0 \in \overline{S}$ and $z = x + iy, a_0 \in \mathbb{C}$, then $\exists u(x, y), v(x, y)$ such that f(z) = u(x, y) + iv(x, y). Then $a_0 = \lim_{z \to z_0} f(z)$ iff $\operatorname{Re}(z) = \lim_{(x,y) \to (x_0, y_0)} u(x, y)$ and $\operatorname{Im}(z) = \lim_{(x,y) \to (x_0, y_0)} v(x, y)$.

Definition. A function $f : \mathbb{C} \to \mathbb{C}$ is **continuous** if $f^{-1}(U)$ is open for all $U \subseteq \mathbb{C}$, equally if $\forall \varepsilon > 0 : \exists \delta > 0 : |f(z) - f(z_0)| < \varepsilon$ whenever $|z - z_0| < \delta$ then f is continuous at z_0 .

Chapter Two - Möbius transformations

Theorem. Let $f: U \to \mathbb{C}$ be holomorphic with $U \subseteq \mathbb{C}$ open, then f is **conformal** (preserves angles) at $z_0 \in U$ iff $f'(z_0) \neq 0$.

Definition. A Möbius transformation is any function of the form $f(z) = \frac{ax+b}{cz+d}$ where $ad - bd \neq 0$. This forms a group $\mathscr{M} \cong SL(2; \mathbb{C})$.

Definition. The **Riemann sphere** is $S^2 := \{(X, Y, Z) \in \mathbb{R}^3 : X^2 + Y^2 + Z^2 = 1\}$. The **extended complex plane** is $\tilde{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ where $\frac{1}{\infty} = 0$ and $z \cdot \infty = \infty \cdot z = \infty = \frac{1}{0}$ for any $z \in \mathbb{C}$.

Theorem. Möbius transformations are holomorphic and conformal on $\tilde{\mathbb{C}}$.

Theorem. Let z = x + iy. Stereographic projection is the pair of in-

Theorem. If $S \subseteq \mathbb{C}$ is compact (i.e. closed and bounded) then f(S) is compact.

Definition. A function $f : \mathbb{C} \to \mathbb{C}$ is differentiable at z_0 if $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0} = 0$. Furthermore differentiability gives continuity.

Theorem. Let $z_0 = x_0 + iy_0 \in \mathbb{C}$ and $U \subseteq \mathbb{C}$ be a neighbourhood of z_0 with $f: U \to \mathbb{C}$, f = u + iv differentiable at z_0 . The **Cauchy-Riemann** equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$.

Definition. A function $f : \mathbb{C} \to \mathbb{C}$ is holomorphic at z_0 if it's differentiable on an open neighbourhood of z_0 .

Definition. If $u : U \subseteq \mathbb{R}^2 \to \mathbb{R}$ is harmonic (i.e. $u_{xx} + u_{yy} = 0$) and f = u + iv is holomorphic, then v is the **harmonic conjugate** of u.

Definition. The **complex exponential** is $\exp(z) = e^x(\cos(y) + i\sin(y))$ where z = x + iy. It is holomorphic on all of \mathbb{C} (prop 1.6.2).

Theorem. Let $z, w \in \mathbb{C}$, then

 $\exp(z+w) = \exp(z)\exp(w)$ and $\exp(z+2\pi i) = \exp(z)$.

Definition. The complex logarithm for $z \in \mathbb{C}$ is $\log(z) := \{w \in \mathbb{C} : \exp(w) = z\}$.

Theorem (1.7.3). *Let* $z, w \in \mathbb{C}$ *, then*

$$\log(z) = \ln |z| + i \arg(z), \quad \log(zw) = \log(z) + \log(w),$$

and
$$\log(1/z) = -\log(z).$$

Definition. The principle logarithm is Log(z) := ln |z| + iArg(z).

Definition. A branch cut is $L_{z_0,\theta} := \{z \in \mathbb{C} : z = z_0 + re^{i\theta}, r \ge 0\}$, giving the cut plane $D_{0,\pi} := \mathbb{C} \setminus L_{0,\pi}$. If we let $\operatorname{Arg}_{\theta}(z) := \operatorname{arg}(z) \cap (\theta, \theta + 2\pi]$ then $\operatorname{Log}_{\theta} := \ln |z| + i\operatorname{Arg}_{\theta}(z)$.

Theorem (1.7.10). Let $\theta \in \mathbb{R}$ and $U \subseteq \mathbb{C}$ with $g : U \to \mathbb{C}$ holomorphic, then Log(g(z)) is holomorphic on $U \cap g^{-1}(D_{0,\theta})$. Particularly, if g is hol. on \mathbb{C} then Log(g(z)) is holomorphic on $g^{-1}(D_{0,\theta})$.

verse bijections $(\varphi : S^2 \to \tilde{\mathbb{C}}, \psi : \tilde{\mathbb{C}} \to S^2)$ *given by:*

$$\varphi(X,Y,Z) := \frac{X+iY}{1-Z}$$
 and $\Psi(z) := \left(\frac{2x}{|z|^2+1}, \frac{2y}{|z|^2+1}, \frac{|z|^2-1}{|z|^2+1}\right)$

Theorem (2.4.3). A Möbius transformation maps circlines (circles and lines) to circlines.

Theorem. The cross-ratio is the unique Möbius transformation which sends $(z_2, z_3, z_4) \mapsto (1, 0, \infty)$. The image of z under this is given by

$$[z, z_2, z_3, z_4] = \frac{z - z_3}{z - z_4} \frac{z_2 - z_4}{z_2 - z_3}$$

Theorem (2.5.7). *Let* M *be a Möbius transformation, then* $[Mz_1, Mz_2, Mz_3, Mz_4] = [z_1, z_2, z_3, z_4].$

Chapter Three - Complex integration

Definition. Let $[a,b] \subseteq \mathbb{R}$ be a closed interval and $f : [a,b] \to \mathbb{C}$ be of the form f = u + iv, then f is **integrable** if u and v are in the real sense. Then $\int_{[a,b]} f(t)dt = \int_{[a,b]} u(t)dt + i \int_{[a,b]} v(t)dt$.

Theorem (3.1.2). Integration in \mathbb{C} is linear, and $\int_a^b \frac{dF}{dt} dt = F(b) - F(a)$. One estimate for integration is $\left|\int_a^b f(t)dt\right| \leq \int_a^b |f(t)|dt$.

Definition. A parametrized curve Γ from z_0 to z_1 (distinct) is a continuous function $\gamma : [t_0, t_1] \to \mathbb{C}$ with $\gamma(t_0) = z_0$ and $\gamma(t_1) = z_1$. It is **regular** if $\gamma'(t)$ exists, is continuous and non-zero.

Definition. Let Γ be a regular curve and $f : \Gamma \to \mathbb{C}$ continuous. The **integral of** f **along** Γ is $\int_{\Gamma} f(z) dz = \int_{t_0}^{t_1} f(\gamma(t)) \gamma'(t) dt$.

Definition. The arc-length of Γ is $l(\Gamma) := \int_{t_0}^{t_1} |\gamma'(t)| dt$.

Theorem (3.2.9,**ML Lemma).** *Let* Γ *be regular and* $f : \Gamma \to \mathbb{C}$ *continuous, then*

$$\left| \int_{\Gamma} f(z) dz \right| \le \max_{z \in \Gamma} |f(z)| l(\Gamma)$$

Definition. $D \subseteq \mathbb{C}$ is a domain if it's open and $\forall z, w \in D : \exists \Gamma$, a contour connecting *z* to *w*.

Theorem. Fundamental Theorem of Calculus: Let D be a domain and $\Gamma \subseteq D$ a contour connecting $z_0, z_1 \in D$ and F' = f then $\int_{\Gamma} f(z)dz = F(z_1) - F(z_0)$.

Definition. Let $\Gamma \subseteq D$ be a contour in domain $D \subseteq \mathbb{C}$, Γ is a **closed** contour if it has equal endpoints $(\gamma(t_0) = \gamma(t_1))$.

Theorem. *Path-independence:* Let $D \subseteq \mathbb{C}$ be a domain with contin*uous* $f : D \to \mathbb{C}$ then the following are equivalent:

- *f* has an anti-derivative *F* on *D*,
- $\int_{\Gamma} f(z) dz = 0$ for all closed contours $\Gamma \subseteq D$,
- all contour integrals $\int_{\Gamma} f(z) dz$ are independent of path, thus depend only on the end-points.

Definition. A contour Γ is **simple** if it has no self-intersections, if it is also closed then we call it a **loop**. A loop is **positively-oriented** if a parametrisation γ goes around anti-clockwise.

Definition. Let Γ be a loop, then $Int(\Gamma)$ is the interior, and $Ext(\Gamma)$ is the exterior so that $\mathbb{C} = Int(\Gamma) \cup \Gamma \cup Ext(\Gamma)$.

Definition. A domain *D* is **simply-connected** if for any loop Γ : Int(Γ) \subseteq *D*.

Theorem. *Cauchy-Integral:* Let Γ be a loop and f be holomorphic inside and on Γ , then the following hold:

$$\int_{\Gamma} f(z)dz = 0,$$

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz = f(z_0),$$

$$\frac{n!}{2\pi i} \int_{\Gamma} \frac{f(w)}{(w - z)^{n+1}} dz = f^{(n)}(z).$$

Theorem (3.4.11). Let Γ be a loop not passing through z_0 , then

$$\int_{\Gamma} \frac{1}{z - z_0} dz = \begin{cases} 2\pi i & \text{if } z_0 \in \text{Int}(\Gamma) \\ 0 & \text{otherwise} \end{cases}$$

Theorem (3.4.12). Let Γ_1, Γ_2 be loops with f holomorphic on both then $\int_{\Gamma_1} f(z)dz = \int_{\Gamma_2} f(z)dz$, i.e. the two loops can freely be **deformed** into each other.

Theorem (3.5.2). *Let f* be holomorphic on a domain D, then f has infinitely many derivatives, all of which are holomorphic.

Theorem (Morera). Let $D \subseteq \mathbb{C}$ be a domain and f is continuous with $\int_{\Gamma} f(z)dz = 0$ for all loops Γ , then f is holomorphic on D.

Theorem. Let $f : \overline{D_R}(z_0) \to \mathbb{C}$ be holomorphic and bounded by M. Then

$$|f^{(n)}(z_0)| \le \frac{n!M}{R^n}$$

Theorem. *Liouville:* Let f be holomorphic on \mathbb{C} and bounded, then f is constant.

Theorem. Maximum modulus principle: Let $D \subseteq \mathbb{C}$ be a domain on which f is holomorphic and bounded by M. If f achieves its maximum inside D the f is constant on D.

Chapter Four - Series expansions

Theorem. Convergence tests

- Comparison test: Suppose $\forall n : |z_n| \le M_n$ with $\sum_{j=0}^{\infty} M_j$ convergent, then $\sum_{j=0}^{\infty} z_j$ converges.
- The series $\sum_{i=0}^{\infty} c^{j}$ converges iff |c| < 1.
- *Ratio Test:* Let $L := \lim_{n\to\infty} |frac z_{n+1} z_n|$, then z_n converges if L < 1 and diverges if L > 1.
- Weierstrass M: If f_n is a sequence of functions $\forall j : |f_j| \le M_j$ and $\sum_{j=0}^{\infty} M_j$ converges then f_n converges uniformly.

Definition. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions, f_n converges pointwise to f if $\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \ge N : |f_n(z) - f(z)| < \varepsilon$.

Definition. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions, f_n converges uniformly to f if $\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \ge N : \forall z : |f_n(z) - f(z)| < \varepsilon$.

Theorem (4.1.21,4.1.22). If f_n converges uniformly we may commute limits with integrals (4.1.21) and integrals with sums (4.1.22).

Theorem (4.1.23). *If every* f_n *is holomorphic and* $f_n \rightarrow f$ *uniformly then* f *is holomorphic.*

Theorem (4.2.2). Let $P = \sum_{j=0}^{\infty} a_j (z - z_0)^j$ be a power-series then $\exists R \in [0,\infty]$: (called the **radius of convregence**) such that:

- *P* converges on $D_R(z_0)$,
- *P* converges uniformly on $D_r(z_0)$ for any r < R,
- *P* diverges on $\mathbb{C} \setminus \overline{D}_R(z_0)$.

Theorem (4.2.4). If $r := \lim_{j\to\infty} \left|\frac{a_j}{a_{j+1}}\right|$ exists then it's the radius of convergence of $\sum_{j=0}^{\infty} a_j(z-z_0)^j$.

Theorem (4.2.6). The power series $\sum_{j=0}^{\infty} a_j (z-z_0)^j$ with radius of convergence R is holomorphic on $D_R(z_0)$.

Definition. The **Taylor seires** of f, for holomorphic f, is

$$\sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^j.$$

Theorem (4.3.2). If f is holomorphic on $D_R(z_0)$ then it admits a Taylor $\sum_{j=0}^{\infty} a_j(z-z_0)^j$ series which converges uniformly with radius of convergence R.

Definition. A function f is **analytic** if it admits a convergent powerseries.

Theorem (4.3.5). *Every holomorphic function is analytic.*

Theorem (4.3.9). The Taylor series of f'(z) is the term-by-term derivative of the Taylor series of f(z) (since Taylor series converge uniformly).

Theorem (4.3.12). *Taylor series are unique, specifically; the Taylor series of a function is equal to any valid power-series.*

NOTE:

$$\sum_{j=0}^{\infty} z^j \text{ is convergent on } D_1(0).$$
$$\cos(z) = \sum_{j=0}^{\infty} \frac{z^{2j}}{(2j)!}$$

Definition. The **Laurent series expansion** of a function f is $\sum_{j=-\infty}^{\infty} a_j(z-z_0)^j = \sum_{j=0}^{\infty} a_j(z-z_0)^j + \sum_{j=1}^{\infty} a_{-j}(z-z_0)^{-j}$.

Definition. The open annulus of radii *r* and *R* is $A_{r,R}(z_0) = D_R(z_0) \setminus D_r(z_0)$.

Theorem. The coefficients of a Laurent series for a holomorphic function f are given by

$$a_j = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{j+1}} dz$$

for $\Gamma \in A_{r,R}(z_0)$.

Theorem (4.4.7). *The Laurent series expansion of holomorphic* f *is unique.*

Definition. We say z_0 is a **singularity** of f if f isn't holomorphic at z_0 . It is **isolated** if $\exists R > 0 : f$ is holomorphic on $D'(z_0)$, and of **order** m if $f(z_0) = \cdots = f^{(m-1)}(z_0) = 0 \neq f^{(m)}(z_0)$.

Theorem (4.5.5). *If* $z_n \rightarrow z_0$ and $\forall n : z_n \in D$ which is a neighbourhood domain of z_0 and $f(z_0) = 0$ then f(z) = 0 for all $z \in D$.

Definition. Let z_0 be a singularity of a function f, then

- z_0 is **removable** if $\forall j < 0 : a_j = 0$,
- of order *m* if $\forall j < -m : a_j = 0$ but $a_j \neq 0$,
- essential if there are infinitely many $a_j \neq 0$ with j < 0.

Theorem (4.5.8). Let $f = \sum_{j=0}^{\infty} a_j (z-z_0)^j$ have removable singularity z_0 then re-defining $f(z_0) = a_0$ makes f holomorphic at z_0 .

Theorem (4.5.11). Let f,g be holomorphic at z_0 with z_0 a zero of order m of g then

- if z_0 isn't a zero of f then f/g has a pole of order m at z_0 ,
- if z₀ is a zero of order k of f then f/g has a pole of order m − k at z₀ if m > k and removable singularity otherwise.

Definition. We say $F : \tilde{D} \to \mathbb{C}$ is an **analytic continuation** of $f : D \to \mathbb{C}$ with $\tilde{D} \subseteq D \subseteq \mathbb{C}$ if F(z) = f(z) for $z \in D$ and F is holomorphic.

Theorem (4.6.4). *Identity theorem:* Let $D \subseteq \mathbb{C}$ be a domain with f holomorphic on D and f(z) = 0 for all $z \in D_R(z_0) \subseteq D$ then f(z) = 0 for all $z \in D$.

Theorem (4.6.5). *Let* $D \subseteq \mathbb{C}$ *be a domain with* $f, g : D \to \mathbb{C}$ *holomorphic with* $\forall z \in D_R(z_0) : f(z) = g(z)$ *then* f(z) = g(z) *for all* $z \in D$.

Theorem (4.6.7). Let $z_n \rightarrow z_0$ and $\forall n : f(z_n) = 0$ with $f : D \rightarrow \mathbb{C}$ holomorphic, then $\forall z \in D : f(z) = 0$.

Theorem (4.5.8). Let $D \subseteq \mathbb{C}$ be a domain with $f, g: D \to \mathbb{C}$ holomorphic with and $z_n \to z_0, f(z_n) = g(z_n)$ then $\forall z \in D : f(z) = g(z)$ (use this to prove that $\sin^2(z) + \cos^2(z) = 1$ holds for complex sin, cos since f = g on the real axis).

$$\sin(z) = \sum_{j=0}^{\infty} \frac{z^{2j+1}}{(2j+1)!}$$
$$\exp(z) = \sum_{j=0}^{\infty} \frac{z^j}{j!}$$

Chapter Five - Residue calculus

Definition. The **residue** of a function f at isolated singularity z_0 is $\operatorname{Res}(f, z_0) = a_{-1}$, the coefficient of $\frac{1}{z-z_0}$ in the Laurent series expansion of f.

Theorem (5.1.4). Let f be holomorphic on $D'_R(z_0)$ with removable singularity z_0 , then $\operatorname{Res}(f, z_0) = 0$.

Theorem (5.1.5). Let f be holomorphic on $D'_R(z_0)$ where z_0 is a pole of order m, then

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} ((z - z_0)^m f(z))$$

Theorem (5.1.7). Let g,h be holomorphic on $D'_R(z_0)$ where z_0 is a simple zero of h and $g(z_0) \neq 0$, then

$$\operatorname{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}.$$

Theorem. Cauchy Residue Theorem: Let Γ be a loop with f holomorphic on $Int(\Gamma) \setminus \{z_1, \ldots, z_k\}$ for isolated singularities z_1, \ldots, z_k . Then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f, z_j).$$

Definition. A function *f* is **meromorphic** on a domain *D* if $\forall z \in D, f$ has a pole of finite order or is holomorphic.

Theorem. *The Argument Principle:* Let Γ be a loop in \mathbb{C} and f meremorphic on $Int(\Gamma)$ and holomorphic on Γ , then

$$\frac{1}{2\pi i}\int_{\Gamma}\frac{f'(z)}{f(z)}dz=N_0(f)-N_{\infty}(f),$$

Sample questions

For infinite series:

$$\int_{\Gamma} \frac{\cot(\pi z)}{z^2} dz = \sum_{n} \operatorname{Res}(f, n) = \sum_{i=0}^{\infty} \frac{1}{r^2} = \frac{\pi}{6}.$$

For finding series expansions:

$$\begin{aligned} \frac{1}{1-f(z)} &= \sum_{j=0}^{\infty} f(z)^j \quad \text{for } |f(z)| < 1, \\ \frac{1}{(1-z)^2} &= \frac{d}{dz} \frac{1}{1-z} \\ \frac{1}{z-k} &= \frac{1}{z} \cdot \frac{1}{1-k/z} = \sum_{j=0}^{\infty} \left(\frac{k}{z}\right)^j. \end{aligned}$$

For maps to the unit disc: The function

$$f(z) = \frac{z-1}{z+1},$$

maps the imaginary axis (equation |z-1| = |z+1|) to the unit circle.

On any disc: On $z \in D_r(z_0)$ notice that $z\overline{z} = |z|^2 \implies \overline{z} = \frac{r^2}{z}$ and so

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2} = \frac{z + r^2/z}{2}.$$

where $N_0(f) = \sum_{j=1}^{l} \operatorname{ord}(w_j)$ is the sum of the orders of the zeros of f and $N_{\infty}(f) = \sum_{i=1}^{k} \operatorname{ord}(z_i)$ is the sum of the orders of the poles of f (the number of poles in $Int(\Gamma)$, counted with multiplicity).

Theorem. Rouché's Theorem: Let Γ be a loop and f, g be holomorphic inside and on Γ with

$$\forall z \in \Gamma : |f(z) - g(z)| < |f(z)|$$

then $N_0(f) = N_0(g)$.

Theorem. *Open-Mapping theorem:* Let $D \subseteq \mathbb{C}$ be a domain and f is non-constant and holomorphic on D, then the image f(D) is open.

Theorem. Maximum Modulus: Let $D \subseteq \mathbb{C}$ be a domain and f be holomorphic and non-constant, then |f(z)| doesn't attain its maximum on D.

Theorem (5.2.18). Suppose f is holomorphic on domain D, if any of $\operatorname{Re}(f)$, $\operatorname{Im}(f)$, |f|, or $\operatorname{Arg}(f)$ are constant functions then f is also constant.

Theorem. Jordan Lemma: Let P/Q be rational with $\deg(Q) \ge$ $\deg(P) + 1$ then

$$\lim_{\rho \to \infty} \int_C \exp(iaz) \frac{P(z)}{Q(z)} dz = 0 \quad where \ C = \begin{cases} C_{\rho}^+ & \text{for } a > 0\\ C_{\rho}^- & \text{for } a < 0 \end{cases}$$

Theorem (5.5.3). Let D be a domain with f meromorphic on D with simple pole $c \in D$, if $\gamma : [\theta_0, \theta_1] \subseteq [0, 2\pi] \to \mathbb{C}, \theta \mapsto c + r \exp(i\theta)$ parametrizes the arc S_r then

$$\lim_{r\to 0^+}\int_{S_r}f(z)dz=i(\theta_1-\theta_0)\operatorname{Res}(f,c).$$

WORKSHOP 4; QUESTION 6: The function $f(z) = (z^2 + 1)^{1/2}$ has branches given by $\exp(\frac{1}{2}g(z))$ for $g(z) \in \log(z^2 + 1) = \log(z + i) + \log(z + i)$ $\log(z-i)$ a branch og the logarithm. Thus the branch of f holomorhpic on the unit disc $D_1(0)$ is given by:

$$f(z) = \exp\left(\frac{1}{2}\left(\operatorname{Log}_{-\pi/2}(z+i) + \operatorname{Log}_{\pi/2}(z-i)\right)\right).$$

WORKSHOP 5; QUESTION 2:

r-

$$\begin{split} f_1(z) &= \frac{z-i}{z+i}: & U_1 = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\} \to D_1(0), \\ f_2(z) &= \frac{\exp(\pi z) - i}{\exp(\pi z) + i}: & U_2 = \{z \in \mathbb{C} : 0 < \operatorname{Im}(z) < 1\} \to D_1(0), \\ f_3(z) &= \frac{z^2 - i}{z^2 + i}: & U_3 = \{z \in \mathbb{C} : \operatorname{Im}(z), \operatorname{Re}(z) > 0\} \to D_1(0), \\ f_4(z) &= \frac{z^2 - 1}{z^2 + 1}: & U_4 = \left\{z \in \mathbb{C} : \operatorname{Arg}(z) \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)\right\} \to D_1(0). \end{split}$$

WORKSHOP 6; QUESTION 3:

$$\mathbb{R} \ni \left| \int_{\Gamma} f(z) dz \right| \neq \int_{\Gamma} |f(z)| dz \in \mathbb{C}$$

Useful Formulae

$$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$$
$$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$$
$$\sin(z) = \frac{\exp(iz) - \exp(-iz)}{2i}$$
$$\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2}$$

Trigonometric Integral example

Theorem.

$$\int_{0}^{2\pi} R(\cos\theta, \sin\theta) d\theta = \int_{\Gamma} f(z) dz, \text{ where } f(z) = \frac{R(\cos\theta, \sin\theta)}{i\exp(i\theta)}$$

Example. Consider the integral

$$I = \int_0^{2\pi} \frac{\sin^2 \theta}{5 + 4\cos \theta} d\theta$$

Noting that $z = e^{i\theta} = \cos\theta + i\sin\theta$ and so $\cos\theta = \operatorname{Re}(e^{i\theta}) = \frac{z+\overline{z}}{2}$ which on the unit circle becomes $\cos\theta = \frac{z+\overline{z}}{2}$ (since $1 = |z|^2 = z\overline{z}$), then:

$$f(z) = \frac{1}{iz} \frac{\left(\frac{1}{2i}\left(z - \frac{1}{z}\right)\right)^2}{5 + 4 \cdot \frac{1}{2}\left(z + \frac{1}{z}\right)} = \frac{i}{8} \frac{(z^2 - 1)^2}{z^2(z + \frac{1}{2})(z + 2)}$$

with poles at $-\frac{1}{2}$, -2 and 0, of which only 0 and $-\frac{1}{2}$ lie inside $D_1(0)$ and so we calculate their residues:

$$\operatorname{Res}(f,0) = \lim_{z \to 0} \frac{d}{dz} \left(\frac{i}{8} \frac{(z^2 - 1)^2}{(z + \frac{1}{2})(z + 2)} \right) = \frac{-5i}{16}$$
$$\operatorname{Res}(f,1/2) = \lim_{z \to \frac{1}{2}} \frac{d}{dz} \left(\frac{i}{8} \frac{(z^2 - 1)^2}{z^2(z + 2)} \right) = \frac{3i}{16}$$

sin(iz) = i sinh(z) cos(iz) = cosh(z) $cosh^{2}(z) - sinh^{2}(z) = 1$

giving that

$$I = 2\pi i \sum_{z_j \text{ is a pole}} z_j = 2\pi i \left(\frac{-5i}{16} + \frac{3i}{16} \right) = \frac{\pi}{4}.$$