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Chapter One - Holomorphicity

Theorem (Triangle Inequality).

|z+w| ≤ |z|+ |w|
||z|− |w|| ≤ |z−w|

Definition. The argument of z ∈ C is arg(z) := {θ : z = |z|eiθ}, the
principle argument is Arg(z) ∈ arg(z)∩ (−π,π] and is unique.

Theorem (1.1.19). Let z,w∈C be non-zero. Then arg(zw) = arg(z)+
arg(w) and Arg(zw) = Arg(z)+Arg(w).

Definition. The open (resp. closed) ε-disk centred at z0 is Dε(z0) :=
{z ∈ C : |z− z0| < ε} (resp. Dε(z0) := {z ∈ C : |z− z0| ≤ ε}). The
puntured disk is D′ε(z0) := Dε(z0)\{z0}.

Definition. A subset D⊆C is open if ∀z ∈D : ∃ε > 0 : Dε(z)⊆D (or
it’s a union of open disks) and is closed if C \D is open. If z ∈ D is
open we say D is a neighbourhood of z.

Definition. Let S ⊆ C then z0 ∈ C is a limit-point of S if ∀ε > 0 :
D′ε(z0)∩S 6= /0. If LS is the set of limit points of S then S := S∪LS is
the closure of S.

Theorem (1.2.9). A complex sequence zn converges iff Re(zn) and
Im(zn) converge.

Theorem. The complex plane C is complete, namely zn is convergent
⇔ zn is Cauchy.

Theorem (Bolzano-Weierstrass). If zn is a bounded sequence then it
has a convergent subsequence.

Theorem (1.3.3). Let f : S ⊆ C→ C and z0 = x0 + iy0 ∈ S and z =
x+ iy,a0 ∈ C, then ∃u(x,y),v(x,y) such that f (z) = u(x,y)+ iv(x,y).
Then a0 = limz→z0 f (z) iff Re(z) = lim(x,y)→(x0,y0) u(x,y) and Im(z) =
lim(x,y)→(x0,y0) v(x,y).

Definition. A function f : C→C is continuous if f−1(U) is open for
all U ⊆ C, equally if ∀ε > 0 : ∃δ > 0 : | f (z)− f (z0)| < ε whenever
|z− z0|< δ then f is continuous at z0.

Theorem. If S⊆ C is compact (i.e. closed and bounded) then f (S) is
compact.

Definition. A function f : C → C is differentiable at z0 if
limz→z0

f (z)− f (z0)
z−z0

= 0. Furthermore differentiability gives continu-
ity.

Theorem. Let z0 = x0 + iy0 ∈C and U ⊆C be a neighbourhood of z0
with f : U → C, f = u+ iv differentiable at z0. The Cauchy-Riemann
equations are

∂u
∂x

=
∂v
∂y

and
∂v
∂x

=−∂u
∂y

.

Definition. A function f : C→ C is holomorphic at z0 if it’s differ-
entiable on an open neighbourhood of z0.

Definition. If u : U ⊆ R2 → R is harmonic (i.e. uxx + uyy = 0) and
f = u+ iv is holomorphic, then v is the harmonic conjugate of u.

Definition. The complex exponential is exp(z)= ex(cos(y)+ isin(y))
where z = x+ iy. It is holomorphic on all of C (prop 1.6.2).

Theorem. Let z,w ∈ C, then

exp(z+w) = exp(z)exp(w) and exp(z+2πi) = exp(z).

Definition. The complex logarithm for z ∈ C is log(z) := {w ∈ C :
exp(w) = z}.

Theorem (1.7.3). Let z,w ∈ C, then

log(z) = ln |z|+iarg(z), log(zw) = log(z)+ log(w),
and log(1/z) =− log(z).

Definition. The principle logarithm is Log(z) := ln |z|+ iArg(z).

Definition. A branch cut is Lz0,θ := {z ∈ C : z = z0 + reiθ ,r ≥ 0},
giving the cut plane D0,π := C \L0,π . If we let Argθ (z) := arg(z)∩
(θ ,θ +2π] then Logθ := ln |z|+ iArgθ (z).

Theorem (1.7.10). Let θ ∈ R and U ⊆ C with g : U → C holomor-
phic, then Log(g(z)) is holomorhpic on U ∩g−1(D0,θ ). Particularly, if
g is hol. on C then Log(g(z)) is holomorhpic on g−1(D0,θ ).
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Chapter Two - Möbius transformations

Theorem. Let f : U → C be holomorphic with U ⊆ C open, then f is
conformal (preserves angles) at z0 ∈U iff f ′(z0) 6= 0.

Definition. A Möbius transformation is any function of the form
f (z) = ax+b

cz+d where ad−bd 6= 0. This forms a group M ∼= SL(2;C).

Definition. The Riemann sphere is S2 := {(X ,Y,Z)∈R3 : X2+Y 2+
Z2 = 1}. The extended complex plane is C̃ :=C∪{∞} where 1

∞
= 0

and z ·∞ = ∞ · z = ∞ = 1
0 for any z ∈ C.

Theorem. Möbius transformations are holomorphic and conformal
on C̃.

Theorem. Let z = x+ iy. Stereographic projection is the pair of in-

verse bijections (ϕ : S2→ C̃,ψ : C̃→ S2) given by:

ϕ(X ,Y,Z) :=
X + iY
1−Z

and ψ(z) :=
(

2x
|z|2 +1

,
2y
|z|2 +1

,
|z|2−1
|z|2 +1

)
Theorem (2.4.3). A Möbius transformation maps circlines (circles
and lines) to circlines.

Theorem. The cross-ratio is the unique Möbius transformation which
sends (z2,z3,z4) 7→ (1,0,∞). The image of z under this is given by

[z,z2,z3,z4] =
z− z3

z− z4

z2− z4

z2− z3
.

Theorem (2.5.7). Let M be a Möbius transformation, then
[Mz1,Mz2,Mz3,Mz4] = [z1,z2,z3,z4].
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Chapter Three - Complex integration

Definition. Let [a,b] ⊆ R be a closed interval and f : [a,b]→ C be
of the form f = u+ iv, then f is integrable if u and v are in the real
sense. Then

∫
[a,b] f (t)dt =

∫
[a,b] u(t)dt + i

∫
[a,b] v(t)dt.

Theorem (3.1.2). Integration in C is linear, and
∫ b

a
dF
dt dt = F(b)−

F(a). One estimate for integration is
∣∣∣∫ b

a f (t)dt
∣∣∣≤ ∫ b

a | f (t)|dt.

Definition. A parametrized curve Γ from z0 to z1 (distinct) is a con-
tinuous function γ : [t0, t1]→ C with γ(t0) = z0 and γ(t1) = z1. It is
regular if γ ′(t) exists, is continuous and non-zero.

Definition. Let Γ be a regular curve and f : Γ→ C continuous. The
integral of f along Γ is

∫
Γ

f (z)dz =
∫ t1

t0 f (γ(t))γ ′(t)dt.

Definition. The arc-length of Γ is l(Γ) :=
∫ t1

t0 |γ
′(t)|dt.

Theorem (3.2.9,ML Lemma). Let Γ be regular and f : Γ→ C con-
tinuous, then ∣∣∣∣∫

Γ

f (z)dz
∣∣∣∣≤max

z∈Γ
| f (z)|l(Γ)

Definition. D⊆ C is a domain if it’s open and ∀z,w ∈ D : ∃Γ, a con-
tour connecting z to w.

Theorem. Fundamental Theorem of Calculus: Let D be a do-
main and Γ ⊆ D a contour connecting z0,z1 ∈ D and F ′ = f then∫

Γ
f (z)dz = F(z1)−F(z0).

Definition. Let Γ ⊆ D be a contour in domain D ⊆ C, Γ is a closed
contour if it has equal endpoints (γ(t0) = γ(t1)).

Theorem. Path-independence: Let D ⊆ C be a domain with contin-
uous f : D→ C then the following are equivalent:

• f has an anti-derivative F on D,

•
∫

Γ
f (z)dz = 0 for all closed contours Γ⊆ D,

• all contour integrals
∫

Γ
f (z)dz are independent of path, thus de-

pend only on the end-points.

Definition. A contour Γ is simple if it has no self-intersections, if it
is also closed then we call it a loop. A loop is positively-oriented if a
parametrisation γ goes around anti-clockwise.

Definition. Let Γ be a loop, then Int(Γ) is the interior, and Ext(Γ) is
the exterior so that C= Int(Γ)∪Γ∪Ext(Γ).

Definition. A domain D is simply-connected if for any loop Γ :
Int(Γ)⊆ D.

Theorem. Cauchy-Integral: Let Γ be a loop and f be holomorphic
inside and on Γ, then the following hold:∫

Γ

f (z)dz = 0,

1
2πi

∫
Γ

f (z)
z− z0

dz = f (z0),

n!
2πi

∫
Γ

f (w)
(w− z)n+1 dz = f (n)(z).

Theorem (3.4.11). Let Γ be a loop not passing through z0, then

∫
Γ

1
z− z0

dz =

{
2πi if z0 ∈ Int(Γ)
0 otherwise

.

Theorem (3.4.12). Let Γ1,Γ2 be loops with f holomorphic on both
then

∫
Γ1

f (z)dz =
∫

Γ2
f (z)dz, i.e. the two loops can freely be deformed

into each other.

Theorem (3.5.2). Let f be holomorphic on a domain D, then f has
infinitely many derivatives, all of which are holomorphic.

Theorem (Morera). Let D⊆ C be a domain and f is continuous with∫
Γ

f (z)dz = 0 for all loops Γ, then f is holomorphic on D.

Theorem. Let f : DR(z0)→ C be holomorphic and bounded by M.
Then

| f (n)(z0)| ≤
n!M
Rn .

Theorem. Liouville: Let f be holomorphic on C and bounded, then
f is constant.

Theorem. Maximum modulus principle: Let D⊆ C be a domain on
which f is holomorphic and bounded by M. If f achieves its maximum
inside D the f is constant on D.
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Chapter Four - Series expansions

Theorem. Convergence tests

• Comparison test: Suppose ∀n : |zn| ≤Mn with ∑
∞
j=0 M j conver-

gent, then ∑
∞
j=0 z j converges.

• The series ∑
∞
j=0 c j converges iff |c|< 1.

• Ratio Test: Let L := limn→∞ | f raczn+1zn|, then zn converges if
L < 1 and diverges if L > 1.

• Weierstrass M: If fn is a sequence of functions ∀ j : | f j| ≤ M j
and ∑

∞
j=0 M j converges then fn converges uniformly.

Definition. Let ( fn)n∈N be a sequence of functions, fn converges
pointwise to f if ∀ε > 0 : ∃N ∈ N : ∀n≥ N : | fn(z)− f (z)|< ε .

Definition. Let ( fn)n∈N be a sequence of functions, fn converges uni-
formly to f if ∀ε > 0 : ∃N ∈ N : ∀n≥ N : ∀z : | fn(z)− f (z)|< ε .

Theorem (4.1.21,4.1.22). If fn converges uniformly we may commute
limits with integrals (4.1.21) and integrals with sums (4.1.22).

Theorem (4.1.23). If every fn is holomorphic and fn → f uniformly
then f is holomorphic.

Theorem (4.2.2). Let P = ∑
∞
j=0 a j(z− z0)

j be a power-series then
∃R ∈ [0,∞] : (called the radius of convregence) such that:

• P converges on DR(z0),

• P converges uniformly on Dr(z0) for any r < R,

• P diverges on C\DR(z0).

Theorem (4.2.4). If r := lim j→∞

∣∣∣ a j
a j+1

∣∣∣ exists then it’s the radius of

convergence of ∑
∞
j=0 a j(z− z0)

j.

Theorem (4.2.6). The power series ∑
∞
j=0 a j(z− z0)

j with radius of
convergence R is holomorphic on DR(z0).

Definition. The Taylor seires of f , for holomorphic f , is

∞

∑
j=0

f ( j)(z0)

j!
(z− z0)

j.

Theorem (4.3.2). If f is holomorphic on DR(z0) then it admits a Tay-
lor ∑

∞
j=0 a j(z− z0)

j series which converges uniformly with radius of
convergence R.

Definition. A function f is analytic if it admits a convergent power-
series.

Theorem (4.3.5). Every holomorphic function is analytic.

Theorem (4.3.9). The Taylor series of f ′(z) is the term-by-term
derivative of the Taylor series of f (z) (since Taylor series converge
uniformly).

Theorem (4.3.12). Taylor series are unique, specifically; the Taylor
series of a function is equal to any valid power-series.

Definition. The Laurent series expansion of a function f is
∑

∞
j=−∞ a j(z− z0)

j = ∑
∞
j=0 a j(z− z0)

j +∑
∞
j=1 a− j(z− z0)

− j.

Definition. The open annulus of radii r and R is Ar,R(z0) = DR(z0)\
Dr(z0).

Theorem. The coefficients of a Laurent series for a holomorphic func-
tion f are given by

a j =
1

2πi

∫
Γ

f (z)
(z− z0) j+1 dz,

for Γ ∈ Ar,R(z0).

Theorem (4.4.7). The Laurent series expansion of holomorphic f is
unique.

Definition. We say z0 is a singularity of f if f isn’t holomorphic at
z0. It is isolated if ∃R > 0 : f is holomorphic on D′(z0), and of order
m if f (z0) = · · ·= f (m−1)(z0) = 0 6= f (m)(z0).

Theorem (4.5.5). If zn→ z0 and ∀n : zn ∈D which is a neighbourhood
domain of z0 and f (z0) = 0 then f (z) = 0 for all z ∈ D.

Definition. Let z0 be a singularity of a function f , then

• z0 is removable if ∀ j < 0 : a j = 0,

• of order m if ∀ j <−m : a j = 0 but a j 6= 0,

• essential if there are infinitely many a j 6= 0 with j < 0.

Theorem (4.5.8). Let f =∑
∞
j=0 a j(z−z0)

j have removable singularity
z0 then re-defining f (z0) = a0 makes f holomorphic at z0.

Theorem (4.5.11). Let f ,g be holomorphic at z0 with z0 a zero of
order m of g then

• if z0 isn’t a zero of f then f/g has a pole of order m at z0,

• if z0 is a zero of order k of f then f/g has a pole of order m− k
at z0 if m > k and removable singularity otherwise.

Definition. We say F : D̃→C is an analytic continuation of f : D→
C with D̃⊆ D⊆ C if F(z) = f (z) for z ∈ D and F is holomorphic.

Theorem (4.6.4). Identity theorem: Let D ⊆ C be a domain with f
holomorphic on D and f (z) = 0 for all z ∈ DR(z0)⊆ D then f (z) = 0
for all z ∈ D.

Theorem (4.6.5). Let D⊆C be a domain with f ,g : D→C holomor-
phic with ∀z ∈ DR(z0) : f (z) = g(z) then f (z) = g(z) for all z ∈ D.

Theorem (4.6.7). Let zn→ z0 and ∀n : f (zn) = 0 with f : D→C holo-
morphic, then ∀z ∈ D : f (z) = 0.

Theorem (4.5.8). Let D⊆C be a domain with f ,g : D→C holomor-
phic with and zn → z0, f (zn) = g(zn) then ∀z ∈ D : f (z) = g(z) (use
this to prove that sin2(z)+cos2(z) = 1 holds for complex sin,cos since
f = g on the real axis).

NOTE:
∞

∑
j=0

z j is convergent on D1(0). sin(z) =
∞

∑
j=0

z2 j+1

(2 j+1)!

cos(z) =
∞

∑
j=0

z2 j

(2 j)!
exp(z) =

∞

∑
j=0

z j

j!
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Chapter Five - Residue calculus

Definition. The residue of a function f at isolated singularity z0 is
Res( f ,z0) = a−1, the coefficient of 1

z−z0
in the Laurent series expan-

sion of f .

Theorem (5.1.4). Let f be holomorphic on D′R(z0) with removable
singularity z0, then Res( f ,z0) = 0.

Theorem (5.1.5). Let f be holomorphic on D′R(z0) where z0 is a pole
of order m, then

Res( f ,z0) = lim
z→z0

1
(m−1)!

dm−1

dzm−1 ((z− z0)
m f (z)).

Theorem (5.1.7). Let g,h be holomorphic on D′R(z0) where z0 is a
simple zero of h and g(z0) 6= 0, then

Res( f ,z0) =
g(z0)

h′(z0)
.

Theorem. Cauchy Residue Theorem: Let Γ be a loop with f holo-
morphic on Int(Γ) \ {z1, . . . ,zk} for isolated singularities z1, . . . ,zk.
Then ∫

γ

f (z)dz = 2πi
k

∑
j=1

Res( f ,z j).

Definition. A function f is meromorphic on a domain D if ∀z ∈D, f
has a pole of finite order or is holomorphic.

Theorem. The Argument Principle: Let Γ be a loop in C and f mer-
emorphic on Int(Γ) and holomorphic on Γ, then

1
2πi

∫
Γ

f ′(z)
f (z)

dz = N0( f )−N∞( f ),

where N0( f ) = ∑
l
j=1 ord(w j) is the sum of the orders of the zeros of

f and N∞( f ) = ∑
k
j=1 ord(z j) is the sum of the orders of the poles of f

(the number of poles in Int(Γ), counted with multiplicity).

Theorem. Rouché’s Theorem: Let Γ be a loop and f ,g be holomor-
phic inside and on Γ with

∀z ∈ Γ : | f (z)−g(z)|< | f (z)|

then N0( f ) = N0(g).

Theorem. Open-Mapping theorem: Let D⊆C be a domain and f is
non-constant and holomorphic on D, then the image f (D) is open.

Theorem. Maximum Modulus: Let D ⊆ C be a domain and f be
holomorphic and non-constant, then | f (z)| doesn’t attain its maximum
on D.

Theorem (5.2.18). Suppose f is holomorphic on domain D, if any
of Re( f ), Im( f ), | f |, or Arg( f ) are constant functions then f is also
constant.

Theorem. Jordan Lemma: Let P/Q be rational with deg(Q) ≥
deg(P)+1 then

lim
ρ→∞

∫
C

exp(iaz)
P(z)
Q(z)

dz = 0 where C =

{
C+

ρ for a > 0
C−ρ for a < 0

Theorem (5.5.3). Let D be a domain with f meromorphic on D with
simple pole c ∈ D, if γ : [θ0,θ1] ⊆ [0,2π] → C,θ 7→ c + r exp(iθ)
parametrizes the arc Sr then

lim
r→0+

∫
Sr

f (z)dz = i(θ1−θ0)Res( f ,c).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sample questions

For infinite series:∫
Γ

cot(πz)
z2 dz = ∑

n
Res( f ,n) =

∞

∑
j=0

1
r2 =

π

6
.

For finding series expansions:

1
1− f (z)

=
∞

∑
j=0

f (z) j for | f (z)|< 1,

1
(1− z)2 =

d
dz

1
1− z

1
z− k

=
1
z
· 1

1− k/z
=

∞

∑
j=0

(
k
z

) j

.

For maps to the unit disc: The function

f (z) =
z−1
z+1

,

maps the imaginary axis (equation |z−1|= |z+1|) to the unit circle.
On any disc: On z ∈ Dr(z0) notice that zz = |z|2 =⇒ z = r2

z and
so

Re(z) =
z+ z

2
=

z+ r2/z
2

.

WORKSHOP 4; QUESTION 6: The function f (z) = (z2 +1)1/2 has
branches given by exp( 1

2 g(z)) for g(z) ∈ log(z2 + 1) = log(z + i) +
log(z− i) a branch og the logarithm. Thus the branch of f holomorh-
pic on the unit disc D1(0) is given by:

f (z) = exp
(

1
2

(
Log−π/2(z+ i)+Logπ/2(z− i)

))
.

WORKSHOP 5; QUESTION 2:

f1(z) =
z− i
z+ i

: U1 = {z ∈ C : Im(z)> 0}→ D1(0),

f2(z) =
exp(πz)− i
exp(πz)+ i

: U2 = {z ∈ C : 0 < Im(z)< 1}→ D1(0),

f3(z) =
z2− i
z2 + i

: U3 = {z ∈ C : Im(z),Re(z)> 0}→ D1(0),

f4(z) =
z2−1
z2 +1

: U4 =
{

z ∈ C : Arg(z) ∈
(
−π

4
,

π

4

)}
→ D1(0).

WORKSHOP 6; QUESTION 3:

R 3
∣∣∣∣∫

Γ

f (z)dz
∣∣∣∣ 6= ∫

Γ

| f (z)|dz ∈ C
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Useful Formulae

sin(a±b) = sin(a)cos(b)± cos(a)sin(b)
cos(a±b) = cos(a)cos(b)∓ sin(a)sin(b)

sin(z) =
exp(iz)− exp(−iz)

2i

cos(z) =
exp(iz)+ exp(−iz)

2

sin(iz) = isinh(z)
cos(iz) = cosh(z)

cosh2(z)− sinh2(z) = 1

Trigonometric Integral example

Theorem. ∫ 2π

0
R(cosθ ,sinθ)dθ =

∫
Γ

f (z)dz, where f (z) =
R(cosθ ,sinθ)

iexp(iθ)
.

Example. Consider the integral

I =
∫ 2π

0

sin2
θ

5+4cosθ
dθ .

Noting that z = eiθ = cosθ + isinθ and so cosθ = Re(eiθ ) = z+z
2 which on the unit circle becomes cosθ =

z+ 1
z

2 (since 1 = |z|2 = zz), then:

f (z) =
1
iz

( 1
2i

(
z− 1

z

))2

5+4 · 1
2

(
z+ 1

z

) = i
8

(z2−1)2

z2(z+ 1
2 )(z+2)

,

with poles at − 1
2 ,−2 and 0, of which only 0 and − 1

2 lie inside D1(0) and so we calculate their residues:

Res( f ,0) = lim
z→0

d
dz

(
i
8

(z2−1)2

(z+ 1
2 )(z+2)

)
=
−5i
16

Res( f ,1/2) = lim
z→ 1

2

d
dz

(
i
8
(z2−1)2

z2(z+2)

)
=

3i
16

giving that

I = 2πi ∑
z j is a pole

z j = 2πi
(
−5i
16

+
3i
16

)
=

π

4
.
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