Chapter One - Holomorphicity

Theorem (Triangle Inequality).

$$
\begin{aligned}
|z+w| & \leq|z|+|w| \\
||z|-|w|| & \leq|z-w|
\end{aligned}
$$

Definition. The argument of $z \in \mathbb{C}$ is $\arg (z):=\left\{\theta: z=|z| e^{i \theta}\right\}$, the principle argument is $\operatorname{Arg}(z) \in \arg (z) \cap(-\pi, \pi]$ and is unique.

Theorem (1.1.19). Let $z, w \in \mathbb{C}$ be non-zero. Then $\arg (z w)=\arg (z)+$ $\arg (w)$ and $\operatorname{Arg}(z w)=\operatorname{Arg}(z)+\operatorname{Arg}(w)$.

Definition. The open (resp. closed) ε-disk centred at z_{0} is $D_{\varepsilon}\left(z_{0}\right):=$ $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\varepsilon\right\}\left(\right.$ resp. $\overline{D_{\varepsilon}\left(z_{0}\right)}:=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq \varepsilon\right\}$). The puntured disk is $D_{\varepsilon}^{\prime}\left(z_{0}\right):=D_{\varepsilon}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.

Definition. A subset $D \subseteq \mathbb{C}$ is open if $\forall z \in D: \exists \varepsilon>0: D_{\mathcal{\varepsilon}}(z) \subseteq D$ (or it's a union of open disks) and is closed if $\mathbb{C} \backslash D$ is open. If $z \in D$ is open we say D is a neighbourhood of z.

Definition. Let $S \subseteq \mathbb{C}$ then $z_{0} \in \mathbb{C}$ is a limit-point of S if $\forall \varepsilon>0$: $D_{\varepsilon}^{\prime}\left(z_{0}\right) \cap S \neq \emptyset$. If L_{S} is the set of limit points of S then $\bar{S}:=S \cup L_{S}$ is the closure of S.

Theorem (1.2.9). A complex sequence z_{n} converges iff $\operatorname{Re}\left(z_{n}\right)$ and $\operatorname{Im}\left(z_{n}\right)$ converge.

Theorem. The complex plane \mathbb{C} is complete, namely z_{n} is convergent $\Leftrightarrow z_{n}$ is Cauchy.

Theorem (Bolzano-Weierstrass). If z_{n} is a bounded sequence then it has a convergent subsequence.

Theorem (1.3.3). Let $f: S \subseteq \mathbb{C} \rightarrow \mathbb{C}$ and $z_{0}=x_{0}+i y_{0} \in \bar{S}$ and $z=$ $x+i y, a_{0} \in \mathbb{C}$, then $\exists u(x, y), v(x, y)$ such that $f(z)=u(x, y)+i v(x, y)$. Then $a_{0}=\lim _{z \rightarrow z_{0}} f(z)$ iff $\operatorname{Re}(z)=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)$ and $\operatorname{Im}(z)=$ $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)$.
Definition. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is continuous if $f^{-1}(U)$ is open for all $U \subseteq \mathbb{C}$, equally if $\forall \varepsilon>0: \exists \delta>0:\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$ whenever $\left|z-z_{0}\right|<\delta$ then f is continuous at z_{0}.

Theorem. If $S \subseteq \mathbb{C}$ is compact (i.e. closed and bounded) then $f(S)$ is compact.

Definition. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is differentiable at z_{0} if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=0$. Furthermore differentiability gives continuity.

Theorem. Let $z_{0}=x_{0}+i y_{0} \in \mathbb{C}$ and $U \subseteq \mathbb{C}$ be a neighbourhood of z_{0} with $f: U \rightarrow \mathbb{C}, f=u+i v$ differentiable at z_{0}. The Cauchy-Riemann equations are

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} .
$$

Definition. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic at z_{0} if it's differentiable on an open neighbourhood of z_{0}.

Definition. If $u: U \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is harmonic (i.e. $u_{x x}+u_{y y}=0$) and $f=u+i v$ is holomorphic, then v is the harmonic conjugate of u.

Definition. The complex exponential is $\exp (z)=e^{x}(\cos (y)+i \sin (y))$ where $z=x+i y$. It is holomorphic on all of \mathbb{C} (prop 1.6.2).

Theorem. Let $z, w \in \mathbb{C}$, then

$$
\exp (z+w)=\exp (z) \exp (w) \quad \text { and } \quad \exp (z+2 \pi i)=\exp (z)
$$

Definition. The complex logarithm for $z \in \mathbb{C}$ is $\log (z):=\{w \in \mathbb{C}$: $\exp (w)=z\}$.

Theorem (1.7.3). Let $z, w \in \mathbb{C}$, then

$$
\begin{gathered}
\log (z)=\ln |z|+i \arg (z), \quad \log (z w)=\log (z)+\log (w) \\
\text { and } \log (1 / z)=-\log (z)
\end{gathered}
$$

Definition. The principle $\operatorname{logarithm}$ is $\log (z):=\ln |z|+i \operatorname{Arg}(z)$.
Definition. A branch cut is $L_{z_{0}, \theta}:=\left\{z \in \mathbb{C}: z=z_{0}+r e^{i \theta}, r \geq 0\right\}$, giving the cut plane $D_{0, \pi}:=\mathbb{C} \backslash L_{0, \pi}$. If we let $\operatorname{Arg}_{\theta}(z):=\arg (z) \cap$ $(\theta, \theta+2 \pi]$ then $\log _{\theta}:=\ln |z|+i \operatorname{Arg}_{\theta}(z)$.

Theorem (1.7.10). Let $\theta \in \mathbb{R}$ and $U \subseteq \mathbb{C}$ with $g: U \rightarrow \mathbb{C}$ holomorphic, then $\log (g(z))$ is holomorhpic on $\bar{U} \cap g^{-1}\left(D_{0, \theta}\right)$. Particularly, if g is hol. on \mathbb{C} then $\log (g(z))$ is holomorhpic on $g^{-1}\left(D_{0, \theta}\right)$.

Chapter Two - Möbius transformations

Theorem. Let $f: U \rightarrow \mathbb{C}$ be holomorphic with $U \subseteq \mathbb{C}$ open, then f is conformal (preserves angles) at $z_{0} \in U$ iff $f^{\prime}\left(z_{0}\right) \neq 0$.

Definition. A Möbius transformation is any function of the form $f(z)=\frac{a x+b}{c z+d}$ where $a d-b d \neq 0$. This forms a group $\mathscr{M} \cong \operatorname{SL}(2 ; \mathbb{C})$.
Definition. The Riemann sphere is $S^{2}:=\left\{(X, Y, Z) \in \mathbb{R}^{3}: X^{2}+Y^{2}+\right.$ $\left.Z^{2}=1\right\}$. The extended complex plane is $\widetilde{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$ where $\frac{1}{\infty}=0$ and $z \cdot \infty=\infty \cdot z=\infty=\frac{1}{0}$ for any $z \in \mathbb{C}$.
Theorem. Möbius transformations are holomorphic and conformal on $\widetilde{\mathbb{C}}$.

Theorem. Let $z=x+i y$. Stereographic projection is the pair of in-
verse bijections $\left(\varphi: S^{2} \rightarrow \tilde{\mathbb{C}}, \psi: \widetilde{\mathbb{C}} \rightarrow S^{2}\right)$ given by:
$\varphi(X, Y, Z):=\frac{X+i Y}{1-Z} \quad$ and $\quad \psi(z):=\left(\frac{2 x}{|z|^{2}+1}, \frac{2 y}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right)$
Theorem (2.4.3). A Möbius transformation maps circlines (circles and lines) to circlines.

Theorem. The cross-ratio is the unique Möbius transformation which sends $\left(z_{2}, z_{3}, z_{4}\right) \mapsto(1,0, \infty)$. The image of z under this is given by

$$
\left[z, z_{2}, z_{3}, z_{4}\right]=\frac{z-z_{3}}{z-z_{4}} \frac{z_{2}-z_{4}}{z_{2}-z_{3}}
$$

Theorem (2.5.7). Let M be a Möbius transformation, then $\left[M z_{1}, M z_{2}, M z_{3}, M z_{4}\right]=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$.

Chapter Three - Complex integration

Definition. Let $[a, b] \subseteq \mathbb{R}$ be a closed interval and $f:[a, b] \rightarrow \mathbb{C}$ be of the form $f=u+i v$, then f is integrable if u and v are in the real sense. Then $\int_{[a, b]} f(t) d t=\int_{[a, b]} u(t) d t+i \int_{[a, b]} v(t) d t$.
Theorem (3.1.2). Integration in \mathbb{C} is linear, and $\int_{a}^{b} \frac{d F}{d t} d t=F(b)-$ $F(a)$. One estimate for integration is $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$.
Definition. A parametrized curve Γ from z_{0} to z_{1} (distinct) is a continuous function $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{C}$ with $\gamma\left(t_{0}\right)=z_{0}$ and $\gamma\left(t_{1}\right)=z_{1}$. It is regular if $\gamma^{\prime}(t)$ exists, is continuous and non-zero.

Definition. Let Γ be a regular curve and $f: \Gamma \rightarrow \mathbb{C}$ continuous. The integral of f along Γ is $\int_{\Gamma} f(z) d z=\int_{t_{0}}^{t_{1}} f(\gamma(t)) \gamma^{\prime}(t) d t$.
Definition. The arc-length of Γ is $l(\Gamma):=\int_{t_{0}}^{t_{1}}\left|\gamma^{\prime}(t)\right| d t$.
Theorem (3.2.9,ML Lemma). Let Γ be regular and $f: \Gamma \rightarrow \mathbb{C}$ continuous, then

$$
\left|\int_{\Gamma} f(z) d z\right| \leq \max _{z \in \Gamma}|f(z)| l(\Gamma)
$$

Definition. $D \subseteq \mathbb{C}$ is a domain if it's open and $\forall z, w \in D: \exists \Gamma$, a contour connecting z to w.

Theorem. Fundamental Theorem of Calculus: Let D be a domain and $\Gamma \subseteq D$ a contour connecting $z_{0}, z_{1} \in D$ and $F^{\prime}=f$ then $\int_{\Gamma} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)$.
Definition. Let $\Gamma \subseteq D$ be a contour in domain $D \subseteq \mathbb{C}, \Gamma$ is a closed contour if it has equal endpoints $\left(\gamma\left(t_{0}\right)=\gamma\left(t_{1}\right)\right.$).

Theorem. Path-independence: Let $D \subseteq \mathbb{C}$ be a domain with continuous $f: D \rightarrow \mathbb{C}$ then the following are equivalent:

- f has an anti-derivative F on D,
- $\int_{\Gamma} f(z) d z=0$ for all closed contours $\Gamma \subseteq D$,
- all contour integrals $\int_{\Gamma} f(z) d z$ are independent of path, thus depend only on the end-points.

Definition. A contour Γ is simple if it has no self-intersections, if it is also closed then we call it a loop. A loop is positively-oriented if a parametrisation γ goes around anti-clockwise.

Definition. Let Γ be a loop, then $\operatorname{Int}(\Gamma)$ is the interior, and $\operatorname{Ext}(\Gamma)$ is the exterior so that $\mathbb{C}=\operatorname{Int}(\Gamma) \cup \Gamma \cup \operatorname{Ext}(\Gamma)$.

Definition. A domain D is simply-connected if for any loop Γ : $\operatorname{Int}(\Gamma) \subseteq D$.

Theorem. Cauchy-Integral: Let Γ be a loop and f be holomorphic inside and on Γ, then the following hold:

$$
\begin{aligned}
\int_{\Gamma} f(z) d z & =0 \\
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{z-z_{0}} d z & =f\left(z_{0}\right) \\
\frac{n!}{2 \pi i} \int_{\Gamma} \frac{f(w)}{(w-z)^{n+1}} d z & =f^{(n)}(z) .
\end{aligned}
$$

Theorem (3.4.11). Let Γ be a loop not passing through z_{0}, then

$$
\int_{\Gamma} \frac{1}{z-z_{0}} d z= \begin{cases}2 \pi i & \text { if } z_{0} \in \operatorname{Int}(\Gamma) \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (3.4.12). Let Γ_{1}, Γ_{2} be loops with f holomorphic on both then $\int_{\Gamma_{1}} f(z) d z=\int_{\Gamma_{2}} f(z) d z$, i.e. the two loops can freely be deformed into each other.

Theorem (3.5.2). Let f be holomorphic on a domain D, then f has infinitely many derivatives, all of which are holomorphic.

Theorem (Morera). Let $D \subseteq \mathbb{C}$ be a domain and f is continuous with $\int_{\Gamma} f(z) d z=0$ for all loops Γ, then f is holomorphic on D.

Theorem. Let $f: \overline{D_{R}}\left(z_{0}\right) \rightarrow \mathbb{C}$ be holomorphic and bounded by M. Then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}
$$

Theorem. Liouville: Let f be holomorphic on \mathbb{C} and bounded, then f is constant.

Theorem. Maximum modulus principle: Let $D \subseteq \mathbb{C}$ be a domain on which f is holomorphic and bounded by M. If f achieves its maximum inside D the f is constant on D.

Chapter Four - Series expansions

Theorem. Convergence tests

- Comparison test: Suppose $\forall n:\left|z_{n}\right| \leq M_{n}$ with $\sum_{j=0}^{\infty} M_{j}$ convergent, then $\sum_{j=0}^{\infty} z_{j}$ converges.
- The series $\sum_{j=0}^{\infty} c^{j}$ converges iff $|c|<1$.
- Ratio Test: Let $L:=\lim _{n \rightarrow \infty} \mid$ fracz $z_{n+1} z_{n} \mid$, then z_{n} converges if $L<1$ and diverges if $L>1$.
- Weierstrass M: If f_{n} is a sequence of functions $\forall j:\left|f_{j}\right| \leq M_{j}$ and $\sum_{j=0}^{\infty} M_{j}$ converges then f_{n} converges uniformly.

Definition. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions, f_{n} converges pointwise to f if $\forall \varepsilon>0: \exists N \in \mathbb{N}: \forall n \geq N:\left|f_{n}(z)-f(z)\right|<\varepsilon$.

Definition. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions, f_{n} converges uniformly to f if $\forall \varepsilon>0: \exists N \in \mathbb{N}: \forall n \geq N: \forall z:\left|f_{n}(z)-f(z)\right|<\varepsilon$.

Theorem (4.1.21,4.1.22). If f_{n} converges uniformly we may commute limits with integrals (4.1.21) and integrals with sums (4.1.22).

Theorem (4.1.23). If every f_{n} is holomorphic and $f_{n} \rightarrow f$ uniformly then f is holomorphic.

Theorem (4.2.2). Let $P=\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}$ be a power-series then $\exists R \in[0, \infty]:$ (called the radius of convregence) such that:

- P converges on $D_{R}\left(z_{0}\right)$,
- P converges uniformly on $D_{r}\left(z_{0}\right)$ for any $r<R$,
- P diverges on $\mathbb{C} \backslash \bar{D}_{R}\left(z_{0}\right)$.

Theorem (4.2.4). If $r:=\lim _{j \rightarrow \infty}\left|\frac{a_{j}}{a_{j+1}}\right|$ exists then it's the radius of convergence of $\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}$.
Theorem (4.2.6). The power series $\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}$ with radius of convergence R is holomorphic on $D_{R}\left(z_{0}\right)$.

Definition. The Taylor seires of f, for holomorphic f, is

$$
\sum_{j=0}^{\infty} \frac{f^{(j)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j}
$$

Theorem (4.3.2). If f is holomorphic on $D_{R}\left(z_{0}\right)$ then it admits a Taylor $\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}$ series which converges uniformly with radius of convergence R.

Definition. A function f is analytic if it admits a convergent powerseries.

Theorem (4.3.5). Every holomorphic function is analytic.
Theorem (4.3.9). The Taylor series of $f^{\prime}(z)$ is the term-by-term derivative of the Taylor series of $f(z)$ (since Taylor series converge uniformly).

Theorem (4.3.12). Taylor series are unique, specifically; the Taylor series of a function is equal to any valid power-series.

Definition. The Laurent series expansion of a function f is $\sum_{j=-\infty}^{\infty} a_{j}\left(z-z_{0}\right)^{j}=\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}+\sum_{j=1}^{\infty} a_{-j}\left(z-z_{0}\right)^{-j}$.

Definition. The open annulus of radii r and R is $A_{r, R}\left(z_{0}\right)=D_{R}\left(z_{0}\right) \backslash$ $D_{r}\left(z_{0}\right)$.

Theorem. The coefficients of a Laurent series for a holomorphic function f are given by

$$
a_{j}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{j+1}} d z
$$

for $\Gamma \in A_{r, R}\left(z_{0}\right)$.
Theorem (4.4.7). The Laurent series expansion of holomorphic f is unique.

Definition. We say z_{0} is a singularity of f if f isn't holomorphic at z_{0}. It is isolated if $\exists R>0: f$ is holomorphic on $D^{\prime}\left(z_{0}\right)$, and of order m if $f\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)=0 \neq f^{(m)}\left(z_{0}\right)$.

Theorem (4.5.5). If $z_{n} \rightarrow z_{0}$ and $\forall n: z_{n} \in D$ which is a neighbourhood domain of z_{0} and $f\left(z_{0}\right)=0$ then $f(z)=0$ for all $z \in D$.

Definition. Let z_{0} be a singularity of a function f, then

- z_{0} is removable if $\forall j<0: a_{j}=0$,
- of order m if $\forall j<-m: a_{j}=0$ but $a_{j} \neq 0$,
- essential if there are infinitely many $a_{j} \neq 0$ with $j<0$.

Theorem (4.5.8). Let $f=\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}$ have removable singularity z_{0} then re-defining $f\left(z_{0}\right)=a_{0}$ makes f holomorphic at z_{0}.

Theorem (4.5.11). Let f, g be holomorphic at z_{0} with z_{0} a zero of order m of g then

- if z_{0} isn't a zero of f then f / g has a pole of order m at z_{0},
- if z_{0} is a zero of order k of f then f / g has a pole of order $m-k$ at z_{0} if $m>k$ and removable singularity otherwise.

Definition. We say $F: \tilde{D} \rightarrow \mathbb{C}$ is an analytic continuation of $f: D \rightarrow$ \mathbb{C} with $\tilde{D} \subseteq D \subseteq \mathbb{C}$ if $F(z)=f(z)$ for $z \in D$ and F is holomorphic.

Theorem (4.6.4). Identity theorem: Let $D \subseteq \mathbb{C}$ be a domain with f holomorphic on D and $f(z)=0$ for all $z \in D_{R}\left(z_{0}\right) \subseteq D$ then $f(z)=0$ for all $z \in D$.

Theorem (4.6.5). Let $D \subseteq \mathbb{C}$ be a domain with $f, g: D \rightarrow \mathbb{C}$ holomorphic with $\forall z \in D_{R}\left(z_{0}\right): f(z)=g(z)$ then $f(z)=g(z)$ for all $z \in D$.

Theorem (4.6.7). Let $z_{n} \rightarrow z_{0}$ and $\forall n: f\left(z_{n}\right)=0$ with $f: D \rightarrow \mathbb{C}$ holomorphic, then $\forall z \in D: f(z)=0$.

Theorem (4.5.8). Let $D \subseteq \mathbb{C}$ be a domain with $f, g: D \rightarrow \mathbb{C}$ holomorphic with and $z_{n} \rightarrow z_{0}, f\left(z_{n}\right)=g\left(z_{n}\right)$ then $\forall z \in D: f(z)=g(z)$ (use this to prove that $\sin ^{2}(z)+\cos ^{2}(z)=1$ holds for complex \sin , \cos since $f=g$ on the real axis).

$$
\begin{aligned}
& \sin (z)=\sum_{j=0}^{\infty} \frac{z^{2 j+1}}{(2 j+1)!} \\
& \exp (z)=\sum_{j=0}^{\infty} \frac{z^{j}}{j!}
\end{aligned}
$$

Chapter Five - Residue calculus

Definition. The residue of a function f at isolated singularity z_{0} is $\operatorname{Res}\left(f, z_{0}\right)=a_{-1}$, the coefficient of $\frac{1}{z-z_{0}}$ in the Laurent series expansion of f.

Theorem (5.1.4). Let f be holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ with removable singularity z_{0}, then $\operatorname{Res}\left(f, z_{0}\right)=0$.

Theorem (5.1.5). Let f be holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ where z_{0} is a pole of order m, then

$$
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{0}\right)^{m} f(z)\right)
$$

Theorem (5.1.7). Let g, h be holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ where z_{0} is a simple zero of h and $g\left(z_{0}\right) \neq 0$, then

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

Theorem. Cauchy Residue Theorem: Let Γ be a loop with f holomorphic on $\operatorname{Int}(\Gamma) \backslash\left\{z_{1}, \ldots, z_{k}\right\}$ for isolated singularities z_{1}, \ldots, z_{k}. Then

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{j=1}^{k} \operatorname{Res}\left(f, z_{j}\right)
$$

Definition. A function f is meromorphic on a domain D if $\forall z \in D, f$ has a pole of finite order or is holomorphic.

Theorem. The Argument Principle: Let Γ be a loop in \mathbb{C} and f meremorphic on $\operatorname{Int}(\Gamma)$ and holomorphic on Γ, then

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=N_{0}(f)-N_{\infty}(f)
$$

where $N_{0}(f)=\sum_{j=1}^{l} \operatorname{ord}\left(w_{j}\right)$ is the sum of the orders of the zeros of f and $N_{\infty}(f)=\sum_{j=1}^{k} \operatorname{ord}\left(z_{j}\right)$ is the sum of the orders of the poles of f (the number of poles in $\operatorname{Int}(\Gamma)$, counted with multiplicity).

Theorem. Rouché's Theorem: Let Γ be a loop and f, g be holomorphic inside and on Γ with

$$
\forall z \in \Gamma:|f(z)-g(z)|<|f(z)|
$$

then $N_{0}(f)=N_{0}(g)$.
Theorem. Open-Mapping theorem: Let $D \subseteq \mathbb{C}$ be a domain and f is non-constant and holomorphic on D, then the image $f(D)$ is open.

Theorem. Maximum Modulus: Let $D \subseteq \mathbb{C}$ be a domain and f be holomorphic and non-constant, then $|f(z)|$ doesn't attain its maximum on D.

Theorem (5.2.18). Suppose f is holomorphic on domain D, if any of $\operatorname{Re}(f), \operatorname{Im}(f),|f|$, or $\operatorname{Arg}(f)$ are constant functions then f is also constant.

Theorem. Jordan Lemma: Let P / Q be rational with $\operatorname{deg}(Q) \geq$ $\operatorname{deg}(P)+1$ then

$$
\lim _{\rho \rightarrow \infty} \int_{C} \exp (\text { iaz }) \frac{P(z)}{Q(z)} d z=0 \quad \text { where } C= \begin{cases}C_{\rho}^{+} & \text {for } a>0 \\ C_{\rho}^{-} & \text {for } a<0\end{cases}
$$

Theorem (5.5.3). Let D be a domain with f meromorphic on D with simple pole $c \in D$, if $\gamma:\left[\theta_{0}, \theta_{1}\right] \subseteq[0,2 \pi] \rightarrow \mathbb{C}, \theta \mapsto c+r \exp (i \theta)$ parametrizes the arc S_{r} then

$$
\lim _{r \rightarrow 0^{+}} \int_{S_{r}} f(z) d z=i\left(\theta_{1}-\theta_{0}\right) \operatorname{Res}(f, c)
$$

WORKSHOP 4; QUESTION 6: The function $f(z)=\left(z^{2}+1\right)^{1 / 2}$ has branches given by $\exp \left(\frac{1}{2} g(z)\right)$ for $g(z) \in \log \left(z^{2}+1\right)=\log (z+i)+$ $\log (z-i)$ a branch og the logarithm. Thus the branch of f holomorhpic on the unit disc $D_{1}(0)$ is given by:

$$
f(z)=\exp \left(\frac{1}{2}\left(\log _{-\pi / 2}(z+i)+\log _{\pi / 2}(z-i)\right)\right)
$$

WORKSHOP 5; QUESTION 2:

$f_{1}(z)=\frac{z-i}{z+i}: \quad U_{1}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\} \rightarrow D_{1}(0)$,
$f_{2}(z)=\frac{\exp (\pi z)-i}{\exp (\pi z)+i}: \quad U_{2}=\{z \in \mathbb{C}: 0<\operatorname{Im}(z)<1\} \rightarrow D_{1}(0)$,
$f_{3}(z)=\frac{z^{2}-i}{z^{2}+i}: \quad U_{3}=\{z \in \mathbb{C}: \operatorname{Im}(z), \operatorname{Re}(z)>0\} \rightarrow D_{1}(0)$,
$f_{4}(z)=\frac{z^{2}-1}{z^{2}+1}: \quad U_{4}=\left\{z \in \mathbb{C}: \operatorname{Arg}(z) \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)\right\} \rightarrow D_{1}(0)$.

WORKSHOP 6; QUESTION 3:

$$
\mathbb{R} \ni\left|\int_{\Gamma} f(z) d z\right| \neq \int_{\Gamma}|f(z)| d z \in \mathbb{C}
$$

Useful Formulae

$$
\begin{aligned}
\sin (a \pm b) & =\sin (a) \cos (b) \pm \cos (a) \sin (b) \\
\cos (a \pm b) & =\cos (a) \cos (b) \mp \sin (a) \sin (b) \\
\sin (z) & =\frac{\exp (i z)-\exp (-i z)}{2 i} \\
\cos (z) & =\frac{\exp (i z)+\exp (-i z)}{2}
\end{aligned}
$$

Trigonometric Integral example

Theorem.

$$
\int_{0}^{2 \pi} R(\cos \theta, \sin \theta) d \theta=\int_{\Gamma} f(z) d z, \text { where } f(z)=\frac{R(\cos \theta, \sin \theta)}{i \exp (i \theta)} .
$$

Example. Consider the integral

$$
I=\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{5+4 \cos \theta} d \theta
$$

Noting that $z=e^{i \theta}=\cos \theta+i \sin \theta$ and so $\cos \theta=\operatorname{Re}\left(e^{i \theta}\right)=\frac{z+\bar{z}}{2}$ which on the unit circle becomes $\cos \theta=\frac{z+\frac{1}{z}}{2}$ (since $\left.1=|z|^{2}=z \bar{z}\right)$, then:

$$
f(z)=\frac{1}{i z} \frac{\left(\frac{1}{2 i}\left(z-\frac{1}{z}\right)\right)^{2}}{5+4 \cdot \frac{1}{2}\left(z+\frac{1}{z}\right)}=\frac{i}{8} \frac{\left(z^{2}-1\right)^{2}}{z^{2}\left(z+\frac{1}{2}\right)(z+2)}
$$

with poles at $-\frac{1}{2},-2$ and 0 , of which only 0 and $-\frac{1}{2}$ lie inside $D_{1}(0)$ and so we calculate their residues:

$$
\begin{aligned}
\operatorname{Res}(f, 0) & =\lim _{z \rightarrow 0} \frac{d}{d z}\left(\frac{i}{8} \frac{\left(z^{2}-1\right)^{2}}{\left(z+\frac{1}{2}\right)(z+2)}\right)=\frac{-5 i}{16} \\
\operatorname{Res}(f, 1 / 2) & =\lim _{z \rightarrow \frac{1}{2}} \frac{d}{d z}\left(\frac{i}{8} \frac{\left(z^{2}-1\right)^{2}}{z^{2}(z+2)}\right)=\frac{3 i}{16}
\end{aligned}
$$

giving that

$$
I=2 \pi i \sum_{z_{j} \text { is a pole }} z_{j}=2 \pi i\left(\frac{-5 i}{16}+\frac{3 i}{16}\right)=\frac{\pi}{4} .
$$

