Complex Variables Formula Sheet
William Bevington

Chapter One - Holomorphicity
Theorem (Triangle Inequality).

|+ wl| <z + |wl
[zl = [wl| <z —w|

Definition. The argument of z € C is arg(z) := {0 : z = |z]¢!}, the
principle argument is Arg(z) € arg(z) N (—m, ] and is unique.

Theorem (1.1.19). Let z,w € C be non-zero. Then arg(zw) = arg(z) +
arg(w) and Arg(zw) = Arg(z) + Arg(w).

Definition. The open (resp. closed) e-disk centred at zg is De(z0) :=
{z€C: |z—z0| < €} (resp. De(z0) :={z€ C : |z—2z0| < €}). The
puntured disk is D} (z0) := D¢ (20) \ {z0}-

Definition. A subset D C CisopenifVze D:3e>0:D.(z) CD (or
it’s a union of open disks) and is closed if C\ D is open. If z € D is
open we say D is a neighbourhood of z.

Definition. Let S C C then zg € C is a limit-point of SifvVe>0:
D/ (z0) NS # 0. If Lg is the set of limit points of S then S := SU Ly is
the closure of S.

Theorem (1.2.9). A complex sequence z, converges iff Re(z,) and
Im(z,) converge.

Theorem. The complex plane C is complete, namely z,, is convergent
&z, is Cauchy.

Theorem (Bolzano-Weierstrass). If z, is a bounded sequence then it
has a convergent subsequence.

Theorem (1.3.3). Let f: SCC — Cand zo =xo+iyo € S and z =
x+iy,ap € C, then Ju(x,y),v(x,y) such that f(z) = u(x,y) +iv(x,y).
Then ap = lim,_,, f(z) iff Re(z) = lim(, y)_(x,y) #(x,¥) and Im(z) =
B0 ) ) VX )-

Definition. A function f: C — C is continuous if f~!(U) is open for
all U C C, equally if Ve > 0:38 > 0:|f(z) — f(z0)| < € whenever
|z—z0| < & then f is continuous at zp.

Chapter Two - Mobius transformations

Theorem. Let f: U — C be holomorphic with U C C open, then f is
conformal (preserves angles) at zo € U iff f'(z0) # 0.

Definition. A Mobius transformation is any function of the form

flz)= Z;‘is where ad — bd # 0. This forms a group .# =2 SL(2;C).

Definition. The Riemann sphere is $? := {(X,Y,Z) € R3 : X?> 4 Y2 +
7? = 1}. The extended complex plane is C := CU {c} where 1 =0
and z-c0 =00z =00 = é for any z € C.

Theorem. Mobius transformations are holomorphic and conformal
on C.

Theorem. Let z = x+ iy. Stereographic projection is the pair of in-

Theorem. IfS C C is compact (i.e. closed and bounded) then f(S) is
compact.

Definition. A function f : C — C is differentiable at 7 if

f&=1@) _ (. Furthermore differentiability gives continu-

lim,_, P

ity.
Theorem. Let zo =xg+1iyg € C and U C C be a neighbourhood of 7

with f: U — C, f = u+iv differentiable at zg. The Cauchy-Riemann

equations are

8u:ﬂ and @:_814

dx  dy ox dy’

Definition. A function f : C — C is holomorphic at z if it’s differ-
entiable on an open neighbourhood of z.

Definition. If u : U C R? — R is harmonic (i.e. uy + uy, = 0) and
f = u+ivis holomorphic, then v is the harmonic conjugate of u.

Definition. The complex exponential is exp(z) = e*(cos(y) +isin(y))
where z = x+ iy. It is holomorphic on all of C (prop 1.6.2).

Theorem. Let z,w € C, then

exp(z+w) =exp(z)exp(w) and exp(z+2mi) =exp(z).

Definition. The complex logarithm for z € C is log(z) ;== {w € C :
exp(w) = z}.
Theorem (1.7.3). Let z,w € C, then
log(z) = In|z|+iarg(z), log(zw)=log(z)+1log(w),
and log(1/z) = —log(z).
Definition. The principle logarithm is Log(z) := In|z| + iArg(z).

Definition. A branch cutis L, g := {zeC:z=20+ reie,r >0},
giving the cut plane Do ; := C\ L z. If we let Argy(z) := arg(z) N
(6,0 + 27 then Logy :=In|z| +iArgg(2).

Theorem (1.7.10). Let 6 € R and U C C with g : U — C holomor-
phic, then Log(g(z)) is holomorhpic on UNg~1(Dy g). Particularly, if
g is hol. on C then Log(g(z)) is holomorhpic on g~ (Dy g).

verse bijections (¢ : S> — C,y : C — S?) given by:

X+iY
1-Z

2x 2y Jz*-1
d =
and - (2) <|z2+1 JEO N

Theorem (2.4.3). A Mobius transformation maps circlines (circles
and lines) to circlines.

o(X,Y,Z):=

Theorem. The cross-ratio is the unique Mobius transformation which
sends (z2,23,24) > (1,0,00). The image of z under this is given by

Z2—7322— 24
I—422—73

[Z7Z2,Z3,Z4] =

Theorem (2.5.7). Let M be a Mobius transformation, then

[Mz1,Mz2,Mz3,Mz4] = [21,22,23,24]-



Chapter Three - Complex integration

Definition. Let [a,b] C R be a closed interval and f : [a,b] — C be
of the form f = u+iv, then f is integrable if u and v are in the real
sense. Then [, , f(t)dt = [, yyu(t)dt +1i [i, , v(t)dt.

Theorem (3.1.2). Integration in C is linear, and ff a4t = F(b) —
12 £w)de| < [21£(0) .

Definition. A parametrized curve I" from z to z; (distinct) is a con-
tinuous function y : [to,#1] — C with y(tp) = zo and ¥(f;) = z;. Itis
regular if ¥ (1) exists, is continuous and non-zero.

F(a). One estimate for integration is

Definition. Let I" be a regular curve and f : I’ — C continuous. The
integral of f along I'is [ f(z)dz = ti)l fy@)y (¢)dr.

Definition. The arc-length of I"is /() := [! |Y/(¢)|dt.
Theorem (3.2.9 ML Lemma). Let I" be regular and f :T" — C con-

tinuous, then
‘ / f(z)dz
r

Definition. D C C is a domain if it’s open and Vz,w € D : 9T, a con-
tour connecting z to w.

< max | ()(T)

Theorem. Fundamental Theorem of Calculus: Let D be a do-
main and T C D a contour connecting z9,z1 € D and F' = f then

Jrf(2)dz=F(z1) = F(20).

Definition. Let I' C D be a contour in domain D C C, I' is a closed
contour if it has equal endpoints (y(fy) = y(t1)).

Theorem. Path-independence: Let D C C be a domain with contin-
uous f : D — C then the following are equivalent:

e f has an anti-derivative F on D,
o | f(z)dz =0 for all closed contours T" C D,

e all contour integrals [ f(z)dz are independent of path, thus de-
pend only on the end-points.

Definition. A contour I" is simple if it has no self-intersections, if it
is also closed then we call it a loop. A loop is positively-oriented if a
parametrisation ¥ goes around anti-clockwise.

Definition. Let I" be a loop, then Int(T") is the interior, and Ext(T) is
the exterior so that C = Int(I") UT UExt(T").

Definition. A domain D is simply-connected if for any loop I :
Int(I") C D.

Theorem. Cauchy-Integral: Let I" be a loop and f be holomorphic
inside and on T, then the following hold:

/rf(Z)dz:O,

1 7 fl@ ,

Gy rﬁdZ—f(ZO)a
f(w)

n!
A B G ()
27ri/r (w—z)ntl dz=f"G).

Theorem (3.4.11). Let I" be a loop not passing through zo, then

1 2mi
/ dZZ{ b4
rz—20 0

Theorem (3.4.12). Let I'1,I"y be loops with f holomorphic on both
then [r, f(z)dz= [, f(2)dz, i.e. the two loops can freely be deformed
into each other.

if zo € Int(I")
otherwise '

Theorem (3.5.2). Let f be holomorphic on a domain D, then f has
infinitely many derivatives, all of which are holomorphic.

Theorem (Morera). Let D C C be a domain and f is continuous with
Jr f(2)dz =0 for all loops T, then f is holomorphic on D.

Theorem. Let f : Dg(z0) — C be holomorphic and bounded by M.
Then

n!'M
0| < S

Theorem. Liouville: Let | be holomorphic on C and bounded, then
f is constant.

Theorem. Maximum modulus principle: Let D C C be a domain on
which f is holomorphic and bounded by M. If f achieves its maximum
inside D the f is constant on D.



Chapter Four - Series expansions

Theorem. Convergence tests

o Comparison test: Suppose Vn : |z,| < My, with }.7_oM; conver-
gent, then Z;":O Zj converges.

e The series Y7 ¢/ converges iff |c| < 1.

e Ratio Test: Let L := lim, . |fracz,+1zal,
L < 1 and diverges if L > 1.

n converges if

o Weierstrass M: If f, is a sequence of functions Vj : |fj| < M;
and Y5y Mj converges then f, converges uniformly.

Definition. Let (f,),en be a sequence of functions, f,, converges
pointwise to fif Ve >0:INeN:Vn>N: |f,(z) — f(z)| < €.

Definition. Let (f,),cn be a sequence of functions, f, converges uni-
formly to fifVe >0:3INeN:Vn>N:Vz:|f,(z) — f(2)] < €.

Theorem (4.1.21,4.1.22). If f, converges uniformly we may commute
limits with integrals (4.1.21) and integrals with sums (4.1.22).

Theorem (4.1.23). If every f, is holomorphic and f, — f uniformly
then f is holomorphic.

Theorem (4.2.2). Let P = Y7 ya i(z— 20)) be a power-series then
3R € [0, 0| : (called the radius of convregence) such that:

e P converges on Dg(zp),

e P converges uniformly on D,(z9) for any r <R,

e P diverges on C\ Dg(z0).
Theorem (4.2.4). If r := lim; ;o

convergence of Y.7_ga;(z— 20).

%’ exists then it’s the radius of
J

Theorem (4.2.6). The power series .7 aj(z— 20)’ with radius of
convergence R is holomorphic on Dg(zp).

Definition. The Taylor seires of f, for holomorphic f, is

oo f(/)
L
j=0

Theorem (4.3.2). If f is holomorphic on D (20) then it admits a Tay-
lor Y.5_gaj(z—z0)’ series which converges uniformly with radius of
convergence R.

U (z—z0).

Definition. A function f is analytic if it admits a convergent power-
series.

Theorem (4.3.5). Every holomorphic function is analytic.

Theorem (4.3.9). The Taylor series of f'(z) is the term-by-term
derivative of the Taylor series of f(z) (since Taylor series converge
uniformly).

Theorem (4.3.12). Taylor series are unique, specifically; the Taylor
series of a function is equal to any valid power-series.

NOTE:
) 7/ is convergent on D (0).
j=0
cos

Definition. The Laurent series expansion of a function f is
Y7 waj(z—20)) = X7 0aj(z—z20) + L7 1a-j(z—20) 7.

Definition. The open annulus of radii » and R is A,.r(z0) = Dr(z0) \

Dr(ZO).

Theorem. The coefficients of a Laurent series for a holomorphic func-
tion f are given by
il
4= —
T omi Jr

f(z)

T
forT € A r(z0).

Theorem (4.4.7). The Laurent series expansion of holomorphic f is
unique.

Definition. We say z¢ is a singularity of f if f isn’t holomorphic at
20 It is isolated if IR > 0 : f is holomorphic on D’(z9), and of order
mif f(z) == f""(z0) = 0# ") (20).

Theorem (4.5.5). Ifz, — zo and V'n : z,, € D which is a neighbourhood
domain of zo and f(z0) = 0 then f(z) =0 for all z € D.

Definition. Let zo be a singularity of a function f, then
e 7pisremovableif Vj < 0:a; =0,
e of order mifVj < —m:a; =0buta; #0,
o essential if there are infinitely many a; # 0 with j < 0.

Theorem (4.5.8). Let f =Y7 ga i(z—20)! have removable singularity
20 then re-defining f(z0) = ap makes f holomorphic at zy.

Theorem (4.5.11). Let f,g be holomorphic at zo with zo a zero of
order m of g then

e ifzg isn’t a zero of f then f/g has a pole of order m at z,

e ifzo is a zero of order k of f then f/g has a pole of order m —k
at zo if m > k and removable singularity otherwise.

Definition. We say F : D — C is an analytic continuation of f: D —
C with D C D C Cif F(z) = f(z) for z € D and F is holomorphic.

Theorem (4.6.4). Identity theorem: Let D C C be a domain with f
holomorphic on D and f(z) = 0 for all z € Dg(zo) C D then f(z) =0
forall z € D.

Theorem (4.6.5). Let D C C be a domain with f,g : D — C holomor-
phic withVz € Dg(z0) : f(z) = g(z) then f(z) = g(z) for all z € D.

Theorem (4.6.7). Let z, — zo and Vn : f(z,)
morphic, thenVz € D : f(z) =

=0with f: D — C holo-

Theorem (4.5.8). Let D C C be a domain with f,g : D — C holomor-
phic with and z, — zo, f(2n) = §(z) then ¥z € D : f(z) = g(2) (use
this to prove that sin’(z) + cos?(z) = 1 holds for complex sin, cos since
f = g on the real axis).

2]+1

sm 2] T 1
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exp(z) =

||
‘Mz T‘DMS

~
Il
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~



Chapter Five - Residue calculus

Definition. The residue of a function f at isolated singularity zg is
Res(f,z0) = a_1, the coefficient of ﬁ in the Laurent series expan-
sion of f.

Theorem (5.1.4). Let f be holomorphic on Di(zo) with removable
singularity zo, then Res(f,zo) = 0.

Theorem (5.1.5). Let f be holomorphic on Di(z0) where zg is a pole
of order m, then

) 1 dm—l
Res(f,20) = lim =57 o

((z—20)"f(2))-

Theorem (5.1.7). Let g,h be holomorphic on Di(zo) where zg is a
simple zero of h and g(zo) # 0, then

8(z0)
W(z0)

Theorem. Cauchy Residue Theorem: Let I" be a loop with f holo-
morphic on Int(I') \ {z1,...,2x} for isolated singularities zy,..., 7.
Then

Res(f,z0) =

/f(z)dz =27i Zk: Res(f,z;).
Y

J=1

Definition. A function f is meromorphic on a domain D if Vz € D, f
has a pole of finite order or is holomorphic.

Theorem. The Argument Principle: Let I be a loop in C and f mer-
emorphic on Int(T') and holomorphic on T, then

1 [ f(2)
%/r 70

No(f) — Nes(f),

Sample questions

For infinite series:

/ cot(
r

For finding series expansions:

d —ZRes fin) —2:%

Zf Y for |f(z)] < 1,

1 d 1
(1—22 dzl—z

1 11 = (k\’
zk:z'lk/z:jzo(z> '

For maps to the unit disc: The function

z—1

f(Z):m7

maps the imaginary axis (equation |z — 1| = |z+ 1|) to the unit circle.
. . _ _ 2
On any disc: On z € D,(zo) notice that 2z = |z]> — z=Z and
s0
+7  z+r¥/z

Re(z) = 7 =3

where No(f) = ZJ yord(w;) is the sum of the orders of the zeros of

f and No(f) = Z/=1 ord(z;) is the sum of the orders of the poles of f
(the number of poles in Int(T'), counted with multiplicity).

Theorem. Rouché’s Theorem: Let I be a loop and f,g be holomor-
phic inside and on T" with

Vzel:|f(z) —g(2)| < |f(2)]

then No(f) = No(g)

Theorem. Open-Mapping theorem: Let D C C be a domain and f is
non-constant and holomorphic on D, then the image f(D) is open.

Theorem. Maximum Modulus: Let D C C be a domain and f be
holomorphic and non-constant, then | f(z)| doesn’t attain its maximum
on D.

Theorem (5.2.18). Suppose f is holomorphic on domain D, if any
of Re(f),Im(f),|f|, or Arg(f) are constant functions then f is also
constant.

Theorem. Jordan Lemma:
deg(P) + 1 then

Let P/Q be rational with deg(Q) >

P Cct >0
lim | exp(iaz) ﬁdz =0 whereC=<{ P Jora
p— Jc 0(z) G fora <0

Theorem (5.5.3). Let D be a domain with f meromorphic on D with
simple pole ¢ € D, if y: [6y,6;] C [0,27] — C,0 +— ¢+ rexp(if)
parametrizes the arc S, then

lim
r—07t

f( )dz = i(61 — 6p)Res(f,c).

WORKSHOP 4; QUESTION 6: The function f(z) = (24 1)'/2 has
branches given by exp(3g(z)) for g(z) € log(z> + 1) = log(z +i) +
log(z — i) a branch og the logarithm. Thus the branch of f holomorh-
pic on the unit disc D;(0) is given by:

70 =exp 5 (Log a4+ Logeale—1) ).

WORKSHOP 5; QUESTION 2:

@)= —{z€C : Im(z) > 0} = D (0),

7o) = e Ty (= (€€ 0<In@) < 1) Di(0),
BO=5rt = (e CiIm() Re@) > 0} - Di(0),
po=5m:  w={recian@e (-5 )} 00

WORKSHOP 6; QUESTION 3:

/Ff(z)dz

R>

# [Ir@zec



Useful Formulae

sin(iz) = isinh(z)

sin(a £ b) = sin(a) cos(b) £ cos(a) sin(b) cos(iz) = cosh(z)
cos(a+b) = cos(a) cos(b) Fsin(a) sin(b) cosh?(z) — sinh?(z) =
sin(z) = 2P - pr( iz)
cos(z) = exp(iz) +26XP( iz)

Trigonometric Integral example

Theorem.
R(cos 6,sin0)

2T "
/0 R(cos 0,sin 0)d6 = /r fla)dz, where f(z) = == oy

Example. Consider the integral
27 sin’ @

- 5—|—4cosG

Noting that z = e® = cos @ +isin 6 and so cos @ = Re(e'®) = <12 which on the unit circle becomes cos 6 = = |z|*> = z2), then:

L GE-D) i @y
&= e T+ D) 826+ Dir2)’

Z

with poles at — %, —2 and 0, of which only 0 and f% lie inside D;(0) and so we calculate their residues:

(@12 ) s
Res(f,0) = lim - <8 (z+§)(z+2)> 6

i(z2—1)2>_3i

Res(f,1/2) = hm 4 (8 i) " 16

] 1 dz
giving that

; (=50 3\ m
1—27” Z 21—27171<16 16>_4

zj is a pole



