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Holomorphic Functions

Lemma 1.1.14.
Let z,w € C, then

(i) |2|=0<2=0;
(i) [ = |2;
(i) 2] = [#l wl;
(iv) z = z;
v) |z]* =22z
vi) z+w=Z+w;
(vii) 7B = (2)(@);
(viii) |Re(z)| < |2| and |Im(2)| < |z|;
(ix) Re(z) = z ;r ® and Im(z) = z

Remark (unknown).

1
Let z € C. If |2| =1, then z = —.

z
Lemma 1.1.15 (Triangle Inequality).
Let z,w € C, then

|z + w| < 2] + [w]

Lemma 1.1.16 (Reverse Triangle Inequality).
Let z,w € C, then

|z —w| > [[z] — [wl|

Proposition 1.1.19.
Let z,w € C\ {0}. Then

(i) arg(zw) = arg(z) + arg(w) and
arg(7) = — arg(s);

(ii) Arg(zw) = Arg(z) + Arg(w) + 2km and
Arg(z) = — Arg(z) + 2mm, k,m € Z.

Theorem 1.4.5 (Cauchy-Riemann Equations).
Let z0 = 20 + tyo € C, U C C a neighbourhood
of zg and f: U — C differentiable at zp, where
f =u+iv. Then

ou

ov
a(xo,yo) = Fy(ﬂvo,yo),

1o] 19]
l(ﬂcoyyo) = —%(@0,0)
9y

ox
Theorem 1.4.6.
Let zo0 = zp + iyo € C, U C C a neighbourhood
of zo and f: U — C with f =u 4+ . If u,v are
continuously differentiable, i.e. derivatives
exist and are continuous, on a neighbourhood of
(z0,yo0) and satisfy the Cauchy-Riemann
equations at (zg,yo), then f is differentiable at
20.

Example 1.4.11.
|2|2 is differentiable only at the origin and
nowhere holomorphic.

Lemma 1.4.13.

Let u,v : R? — R be twice continuously
differentiable, i.e. all second partial derivatives
exist and are continuous. If

f(x +iy) = u(z,y) + iv(z,y) is holomorphic on
C, then u, v are harmonic.

Lemma 1.5.6.

Let P,Q : C — C be polynomials. Then rational
function R = P/Q is holomorphic on

{z € C:Q(z) #0}.

Lemma 1.6.6.
Let z,w € C. Then

(i) sin(z + 7/2) = cos(z);
(ii) sin(z + w) = sin(z) cos(w) + cos(z) sin(w);

(iii) cos(z + w) = cos(z) cos(w) — sin(z) sin(w)

Lemma 1.6.7.
Let z =z + iy € C. Then

sin(x + 4y) = sin(x) cosh(y) + ¢ cos(x) sinh(y),
cos(x + iy) = cos(x) cosh(y) — i sin(z) sinh(y)
Lemma 1.6.10.

sinh(iz) = isin(z), cosh(iz) = cos(z)

Lemma 1.7.3.
Let z,w € C\ {0}. Then

(i) log(z) = In|z| 4+ iarg(z) =
{In |z| + ¢ Arg(z) + 2mik : k € Z};
(i) log(w) = log(2) + log(w);
(iii) log(1/z) = —log(z)
Lemma 1.8.2.
We can rewrite 2z as:

2% = {exp(aln|z| + ia Arg(z) + ia27k) : k € Z}
= {exp(aLog(z)) exp(ia2nk) : k € Z}
Theorem 1.8.3.
Let a,z € C, z # 0. Then
(i) o € Z = one value of z%;
(ii) a =p/q, with p, g coprime integers, ¢ # 0
= exactly ¢ values of z%;

(iii) o irrational or non-real = infinitely many
values of z¢.

Lemma 1.8.8.

Let a, 8,z € C, with z # 0. Then 2%28 = zo+8
where principal branch of logarithm is chosen
for each power.

Exercise 1.8.11.

Let z,w,a € C. It is not true in general that
(zw)® = z*w®, where principal branch is
chosen in each case. Consider

Remark (TopHat).

Let f: C — C be holomorphic. Then f maps
bounded sets to bounded sets.

Remark (TopHat).

Let f : C — C be holomorphic. Then f does
not map unbounded sets to unbounded sets,
consider f(z) =agp € C, i.e. f(C) = {ao}.

Question Ws.1, Q.7.
Let z € C, then

2| < |Re(2)] + [Im(2)| < V2[2]

Question Ws.2, Q.1 (De Moivre’s Formula).
Let 6 € R,n € Z. Then:

cos(nf) + isin(nf) = (cosf + isinH)"
Question Ws.2, Q2.

(b) Let z € C\ {0}, then arg(z?) # 2arg(z) in
general, e.g. z = —1.
Question Ws.2, Q.3.
(b) Let z € C\ {0}, then arg(1l/z) = arg(z) =
—arg(z).
Question Ws.2, Q.6.
Let z € C and z # 1, then
m+1

izkfl_z
k=0

1—=z

Question Ws.3, Q.1.
f(2) = |z| is continuous everywhere on C, but
nowhere holomorphic.

Question Ws.3, Q.6.
Let f be real-valued and holomorphic. Then f
is constant.

Question Ws.3, Q.7.
Let f : C — C be holomorphic. Then

(a) f(%) is holomorphic;

(b) if f(2) is holomorphic, f is constant;
(c) if f(Z) is holomorphic, f is constant.

Conformal Maps and Mdobius
Transformations

Theorem 2.1.2.
Let U C C be open and f : U — C holomorphic.
Then f preserves angles at every zg € U where

f'(20) # 0.

Remark 2.2.2.

If f is a Mobius transformation defined by
a,b,c,d € C and X € C, then Aa, A\b, Ac, Ad
define the same Mobius transformation:

Aaz +Ab  az+b
Aez+Ad cz+d
i.e. we can impose condition ad — bc = 1.

Lemma 2.2.3.

Let M = (‘; fl) with determinant ad — bc = 1,
then we associate the M6bius transformation
fu(z) = ZZZIZ Under this correspondence:

-1
Fv-1 =T

fyms = fag © f,s

Theorem 2.4.2.

Let f be a Mobius transformation. Then f is a
composition of a finite number of translations,
rotations, dilations and if and only if f does not
fix the point at infinity, one inversion.

Corollary 2.4.3.
Moébius transformations map circlines to
circlines.

Lemma 2.5.1.

Let f be a Mé&bius transformation and

29,23, 24 € C three distinct points s.t.

f(z2) = z2, f(23) = 23, f(24) = za. Then f is
the identity.

Theorem 2.5.2.

Let z2,23,24 € C be three distinct points.
Then there exists a unique Mobius
transformation s.t. f(z2) =1, f(z3) =0,

J(z4) = oo.

Corollary 2.5.3. ~

Let (22, 23, z4), (w2, w3, ws) € C be two triplets
of distinct points. Then there exists a unique
Mobius transformation f s.t. f(z2) = wa,
f(z3) = w3, f(z1) = wa.

Remark 2.5.6.
Let z1, 22, 23,24 € C, then:
21 — 23 22 — 24

[21,22,23,24] = —— ——

21 — 24 22 — 23

If one of the z; is 0o, then all terms involving it

disappear, e.g.:

z2 — 24

21,22,00,24| =
Z1 — 24

Theorem 2.5.7.
Let 21, 22, 23, 24 € C be distinct and f a Mdbius
transformation. Then

[f(21), f(22), f(23), f(24)] = [21, 22, 23, 24]
Question Ws.5, Q.1.

_ (-1,
@ 16)= oy

(i) F({Re(z) > 0}) = D1(0)
(i) f(D1(0)) = {Re(2) < 0}

(b) f(z) = exp(iz):




() ({0 < Re(z) < 7}) = {Im(z) > 0}
(ii) f({—7/2 < Re(z) < 7/2 and Im(z) >
0}) = {l=], —m/2 < Arg(2) < 7/2}

(© f(z)=22:
(i) f({Re(z) > 0}) = {—m/4 < Arg(z) <
m/4}
(ii) f(Do,—x) = {Re(z) > 0} (preimage is
cut plane)

Complex Integration

Lemma 3.2.8.
Let T’ be arc of a circle of radius r traced
through angle 6. Then ¢(T") = r6.

Lemma 3.2.9 (M-L Lemma).
Let I € C be a regular curve and let f: I' — C
be continuous. Then

/I“ f(z)dz

Lemma 3.3.2.
Let D C C be a domain an suppose u : D — R

is differentiable and % =0= 2% on D. Then
T Jy

S T) max f(2)

u is constant on D.

Theorem 3.3.5 (Fundamental Theorem of
Calculus).

Let D C C be a domain, I' C D contour joining
20,21 € D, f: D — C with antiderivative F' on
D. Then

/ f(z)dz = F(z1) — F(z0)
r

Corollary 3.3.6.
Let D C C be a domain, f holomorphic on D
with Vz € D : f/(z) = 0. Then f is constant.

Lemma 3.3.9 (Path-Independence Lemma).
Let D C C be a domain, f: D — C
continuous. Then the following are equivalent:

(i) f has an antiderivative on D;

(ii) fp f(2)dz =0 for all closed contours I on
D;

(iii) all . f(2)dz are independent of path.

Theorem 3.4.2 (Jordan Curve Theorem).

Let I' C C be a loop. Then I' defines two
regions, bounded domain Int(I') and unbounded
domain Ext(T"), with common boundary T

Theorem 3.4.8 (Cauchy Integral Theorem).
Let f holomorphic inside and on loop I". Then

/Ff(z) dz =0

Corollary 3.4.9.

Let D C C be a simply-connected domain, f
holomorphic on D. Then f has antiderivative
on D.

Remark (unknown).

Due to Cauchy Integral Theorem, we can
deform a contour without changing value of
integral, provided we do not cross any point
where f is not holomorphic.

Theorem 3.4.11.
Let z0 € C and T C C a loop s.t. it does not
pass through zp. Then

/ 1 J2m
rz—2zo o

Theorem 3.5.1 (Cauchy Integral Formula).

zo € Int(T),
otherwise.

Let I be a loop, z9 € IntI" and f holomorphic
inside and on I'. Then
1 z
Flz0) = — RION dz.
21 Jr 2 — 20

Corollary 3.5.4.
Let D C C be a domain and f holomorphic on
D. Then f is infinitely differentiable on D and
all derivatives are holomorphic on D.

Theorem 3.5.5 (Generalized Cauchy Integral
Formula).

Let I" be a loop, zp € IntI" and f holomorphic
inside and on I'. Then f is infinitely
differentiable at zp and Vn € N:

() (z0) = ()
™ (z0) = Py /F = 20 dz

Theorem 3.5.11 (Morera’s Theorem).

Let D C C be a domain, f: D — C continuous
s.t. Jp f(2)dz =0 for all loops I' C D. Then f
is holomorphic.

Hint: Antiderivative by Path-Independence &
Corollary 3.5.4.

Theorem 3.6.1.
Let D C C be a domain, zop € D and R > 0 s.t.
Dgr(z0) C D, f holomorphic on D and M > 0
st. Vz€ D :|f(z)] < M. Then Vn € N:

n!M
15 z0)] < L
Hint: Generalized Cauchy Integral Formula and
Lemma 3.2.9.

Theorem 3.6.2 (Liouville’s Theorem).

Let f be holomorphic on C and bounded, i.e.
there exists M > 0 s.t. Vz € C|f(z)| < M. Then
f is constant.

Hint: Theorem 3.6.1 on circle = f/(2) =0= f
constant by Corollary 3.3.6.

Exercise 3.6.4.

Let P be a (monic) polynomial of degree N,
then there exists R > 0 s.t.

|21 > R = |P(2)| > 12|V,

Theorem 3.7.1.
Let D C C be a domain, zg € D and R > 0 s.t.
Dprzo C D and f holomorphic on D. Then
1 27 .
f(z0) = — f(zo0 + Relt) dt
2
Remark 3.7.2.
If there exists M > 0 s.t. Vz € Cr(20) : |f(2)]

with requirements of Theorem 3.7.1, then
[f(z0)] < M.

Lemma 3.7.3.

Let D C C be a domain, zp € D and R > 0 s.t.
Dgr(z0) € D, f holomorphic on D s.t.
max, o35, ooy 1 ()| = |F(z0)|: Then |£()| is

constant on Dg(z0).

Exercise 3.7.4.

Let D C C be a domain, f holomorphic on D
s.t. |f(2)| is constant on D. Then f is constant
on D.

Theorem 3.7.5 (Maximum Modulus
Principle).

Let D C C be a domain, f holomorphic and
bounded on D, ie. |f(z)] < M for M > 0. If
|f(2)| achieves maximum at zg € D, then f is
constant.

Remark 3.7.6.

A holomorphic function on a bounded domain,
continuous up to and including the boundary,
attains maximum on the boundary.

Theorem 3.7.8 (Maximum/minimum
Principle for Harmonic Functions).

Let D C R? be a domain, ¢ : D — R be
harmonic s.t. ¢ is bounded above or below on
Dby M >0and 3z0 € D : ¢(z0) = M. Then ¢
is constant on D.

Question Ws.7, Q.5.

Let f be holomorphic on D1(0) s.t.
max,cc,.(0) [f(2)] = 0 asr — 1, then f = 0.

Question Ws.8, Q.2.

Let f be holomorphic on C s.t. |f| — 0 as
|z]| = co. Then Vz € C: f(2) =0.

Question Ws.8, Q.3.

Let f be holomorphic on C and periodic in real
and imaginary directions, i.e.

Jag,bo > 0Vz € C: f(z) = f(z + 20) and

f(2) = f(z +ibg). Then f is constant.

Hint: f is determined by values within
rectangle, so bounded. Then Liouville’s
Theorem.

Question Ws.8, Q.4.

Let f be holomorphic on C. If Re(f(z)) or
Im(f(z)) are bound below or above for all
z € C, then f is constant.

Question Ws.8, Q.5.

Let f be holomorphic on C s.t. for some integer
N > 1 there exists C > 0 s.t. |f(2)] < C|z|V for
all z € C. Then f(n)(z) =0 for all z € C, for all
n> N+ 1.

Question Ws.8, Q.6.

Suppose f is holomorphic on C s.t. |f(z)] = oo
as |z| — co. Then f is surjective.

Question Ws.9, Q.4.

Let f be holomorphic on C s.t. there exists
C > 0s.t. |f(2)] < C|z|? for all z € C. Then
f(z) = cz? for some c € C s.t. |c| < C.

Infinite Series

Lemma 4.1.2.

Let Z;’;O z;j be a convergent series. Then
zj — 0 as j — oo.

Lemma 4.1.6 (Comparison Test).

Let z, € C be a sequence s.t. |z,| < My, for
My, > 0, for all n > ng for some ng € N, where
>-520 Mj is convergent. Then 3377 z; is
convergent.

Lemma 4.1.7.
Let c € C. Then 3272 ¢¥ is convergent if and
only if |c| < 1.

Lemma 4.1.9 (Ratio Test).

Let z,, € C be a sequence and suppose

Zn+1
Zn

lim

n—oo

=L

Then

(i) if L <1, the series 377 z; is convergent;
(ii) if L > 1, the series Z;io z; is divergent;

(iii) if L =1, we can conclude nothing.



Example 4.1.15.
Let fn(2) = exp (—nz2) (holomorphic!), then
fn — f as n — oo pointwise where

L

is mot holomorphic.

Lemma 4.1.17.

Let S C C and suppose fr : S — C, sequence of
continuous functions, converge uniformly to f.
Then f is continuous.

Lemma 4.1.19 (Weierstrass M-test).

Let SCC, fn : S — C a sequence of functions
and M, > 0 a sequence of non-negative
numbers s.t. for all z € S and for all

n>no €N, |fn(z) < My| and Z;io M;
converges. Then 3722 f;(2) converges
uniformly on S.

Theorem 4.1.23.

Let D C C be a simply-connected domain, fy
holomorphic on D and converge uniformly to f.
Then f: D — C is holomorphic on D.

Theorem 4.2.4 (
). Let 3725 a;(z — z0)? be a power series and
aj

suppose the sequence

‘ has a limit. Then
aj41

the radius of convergence is equal to this limit.

Exercise 4.3.8.
The following Taylor series are centred at 0:

exp(z) = T

j=0 7"

e L2
cos(z) = ;}(—1)3 @

ol 251
sin(z) = ;}(71)9 m

Theorem 4.4.4 (Laurent Series).

Let z0 € C, 0 < r < R < 00, f holomorphic on
Ay r(20). Then f can be expressed as Laurent
series centred at zp, convergent on A, r(zo) and
uniformly convergent on Zrl, R, (20) for

r <r; < Ri1 < R. Moreover:

1 f(z)
= o /p (z — 20)7 11

Proposition 4.5.4.

Let z0 € C, U C C a neighbourhood of zg, f
holomorphic on U with zero of finite order zp.
Then zg is isolated.

Hint: Function with Zeros Trick, g(z0) # 0 and
continuity of g.

dz

Corollary (Lecture).
Let f have finitely many zeros. Then all zeros
are isolated.

Corollary 4.5.5.

Let zo € C, U C C a neighbourhood of zg, f
holomorphic on U s.t. f(zn) = 0 for sequence
zn €U st. zp — z0 asn — oo. Then IR >0
s.t. Vz € Dr(z0) : f(2) =0.

Hint: Continuity of f and contrapositive of
Prop. 4.5.4.

Corollary 4.5.6.
Let zp € C be singularity of rational function
f = P/Q. Then 2z is isolated.

Theorem 4.5.8.
Let zo € C be a removable singularity of f,
holomorphic on D% (z0) for some R > 0. Then

f(z0) can be (re-)defined s.t. f is holomorphic
on 20.

Lemma 4.5.11.
Let f, g be holomorphic at zg, where zg is zero
of order m of g. Then

(i) if 2o is not zero of f, f/g has pole of order
m at zo;

(ii) if 2o is zero of order k of f, f/g has pole
of order m — k at zg if m > k and
removable singularity otherwise.

Hint: Function with Zeros Trick.

Theorem 4.6.4 (Identity Theorem).

Let D C C, z9 € D, f holomorphic on D s.t.
Vz € Dg(20) : f(z) =0 for some R > 0. Then
f(z) =0forall z€ D.

Corollary 4.6.5.

Let D C C, f, g holomorphic on D s.t.

Vz € Dg(20) : f(2) = g(2) for some R > 0.
Then f(z) = g(z) for all z € D.

Corollary 4.6.7.

Let D C C, z9 € D and f holomorphic on D s.t.
f(zn) = 0 for a sequence of distinct z, € D
which converge to zg. Then f(z) =0 for all
z€D.

Corollary 4.6.8.

Let D CC, zp € D and f, g holomorphic on D
s.t. f(zn) = g(2zn) for a sequence of distinct

zn € D which converge to zg. Then f(z) = g(z)
for all z € D.

Question Ws.10, Q.5.

Let f be holomorphic on D}.(z9) and

|f(z)] < M for all z € D}(20), for some M > 0.
Then f can be (re-)defined at zg to make f
holomorphic on Dy (zp).

Residue Calculus

Theorem 5.1.1.

Let zo € C, f holomorphic on D', (z0) for some
R > 0 with zp being isolated singularity, I' in
D', (z0) and zo € Int(T"). Then

/ f(z)dz = 2mia_1
r
where a_1 is coefficient from Laurent expansion.

Lemma 5.1.4.

Let zp € C, f holomorphic on D',(z0) for some
R > 0, with removable singularity zg. Then
Res(f, z0) = 0.

Lemma 5.1.5.
Let zo € C, f holomorphic on D', (20) for some
R > 0, with pole of order m at zg. Then

. m—1 m
Res(f, z0) = Z1i>nz10 ﬁ%[(z — 20) f(Z)]

Hint:

Lemma 5.1.7.

Let zo € C, g and h holomorphic on D (zq) for
some R > 0, s.t. h has a simple zero at zo,
while g(z0) # 0. Then for f = g/h:

9(zo0)
R , = .
S0 )
Theorem 5.1.11 (Cauchy Residue Theorem).
Let f be holomorphic inside and on loop I'
except for finitely many isolated singularities
Z1,...,2k € Int(T"). Then

k
/ f(z)dz = 2mi Z Res(f, zj).
r =

Theorem 5.2.5 (The Argument Principle).
Let I C C be a loop, f non-zero on T,
holomorphic inside and on I', except for finitely
many poles in I" (meromorphic). Then

1 f'(2)

_— dz =
2mi Jr f(2) ?

Z order(zg) — Z order(zoo)
zo €Int(T") Zoo €EInt(T")

where zg is a zero of f and z~ is a pole of f.

Corollary 5.2.6.
Let I C C be a loop, f non-zero on T,
holomorphic inside and on I". Then

1 !
T/ r') dz = Z
mJr f(Z) zo€Int(T")
where zg is a zero of f.

Theorem 5.2.7 (Rouché’s Theorem).
Let T" be a loop, f,g holomorphic inside and on
[s.t. Vz €T :|f(z) —g(z)|] <|f(z)|]. Then

> >

zo €Int(T") zo €Int(T")

order(zp)

order(zg) = order(wp)

where zg is zero of f and wg is zero of g. N.B.:
Number and order of zeros can be different,
only total is equal.

Theorem 5.2.16 (Open Mapping Theorem).
Let D C C be a domain and suppose f: D — C
is non-constant and holomorphic on D. Then
f(D) is an open subset of C.

Corollary 5.2.18.

Let D C C be a domain, f holomorphic on D
s.t. any of the values Re(f(z)), Im(f(2)),
|f(2)], or Arg(f(2)) is constant. Then f is
constant.

Exercise 5.2.19 (Schwarz’s Lemma).
Let f be holomorphic on D1(0) s.t. f(0) =0
and Vz € D1(0) : |[f(2)] < 1. Then |f(2)| < |z|.

Remark (unknown).
Let z = €'’ i.e. z € D1(0), then

1 1
cosf = Re(z) = = (z + 7)
z

2
1 1
sinf = Im(z) = % (z — 7>
i z

Remark (Trigonometric Integrals).

Let I' = C1(0), parametrized by v : [0, 27] — C;
0 — exp(i0) and let R(cos,sinf) be a rational
function of cosines and sines, then

27
/R(Cos 0,sin6) do =
0

1 z+L -1
/R( Z,‘z>d2
r iz 2 21

i.e. trigonometric integral can be evaluated as
contour integral on unit circle by replacing cos 6
with L;/Z and sin § with Z_TIZ/Z and

multiplying integrand by i

Lemma 5.4.6 (Jordan Lemma).
Let P,Q be polynomials s.t.
deg (Q) > deg (P)+ 1 and a € R\ {0}. Then

P
(2) dz =0,

pango ot exp(iaz) e if a > 0;
P
lim exp(iaz) (2) dz=0, ifa<0
p=o0 Jor Q(z)

where C’;, C, are semicircular arcs from —p to
p in upper/lower half-plane.

Lemma 5.5.3.
Let D C C be a domain, ¢ € D, f holomorphic
on D except at possibly finitely many



singularities with simple pole at c. Let S, be
circular arc parametrized by v(0) = ¢+ 7 exp(if)
for 6 € [0p,01] for some 0 < 6y < 01 < 2w. Then

f(z)dz =i(61 — 6p)Res(f, c)

lim
—0J/g,

Lemma 5.6.4.

Let 0 < k < n be non-negative integers, let (Z)
be the usual binomial coefficient and I" a loop
with 0 in interior. Then

ny 1 1+=2)"
(o) = 21 . et 2
Miscellaneous

Example (Circle Parametrization).
Circle Cr(z0), z0 € C,r > 0 can be
parametrized by

v :[0,27] = C;t — 20 + rexp(it).

Remark (Contour Integral Checklist).

O Accounted for orientation of contour?
O Accounted for 2"—721 factor in
(Generalized) Cauchy Integral Formula?

Remark (Classifying Singularities).
O Isolated or not?
O If isolated, what order? (Lemma 4.5.11)

Remark (Function with Zeros Trick).
Let f be holomorphic with zg, zero of order m.
Then

f(z) = (z = 20)"g(2)

Z?O f(jﬁ.»m)(zo)(zizo)]"

where g(z) = 3272 Gt

g(20) # 0.

Remark (Function with Poles Trick).
Let f be holomorphic except at zg, pole of
order k. Then

f(z) = (2= 20) " H(2)
where H(z) = 352 a; (2 — 20)7,
holomorphic.
Definitions

Definition 1.2.2.
A neighbourhood of zy € C is an open set
containing zg.

Lemma 1.3.8.
Let f: C — C. The f is continuous <> the
preimage f~1(U) is open for all open U C C.

Definition 1.4.12.
Let h: R — R. Then h is harmonic if it
satisfies for all (z,y) € R? Laplace’s equation:
0%h (.9) Tl 62h —0
92 Y o

Definition 1.4.14.

Let U C R? be open, u : U — R harmonic. The
function v : U — R is the harmonic conjugate
of w if f = u + tv is holomorphic on U.

Definition 1.6.4.
exp(iz) + exp(—iz)

cos(z) = ,
=) -
sin(z) i exp(iz) — fsxp(—zz)
27
Remark (Trigonometric Functions).
sin
tan == —, cot = —,
cos tan
sec = —, csci= —
cos sin

Definition 1.6.9.

exp(z) + exp(~2)
2 b

exp(z) — exp(—2)
2

cosh(z) ==
sinh(z) ==

Definition 1.7.6.

A branch cut L is a subset of complex plane
removed s.t. multivalued function can be
defined holomorphic on C\ L. An endpoint of a
branch cut is a branch point.

The set L,y 6 = {2z € C: 2=z +re™,r >0}
denotes a half-line.

The set D, 4 = C\ L,,, 4 denotes the cut plane
with branch point zp and along angle line at
angle ¢.

Definition 1.7.8.

Let ¢ € R. We define the branch Arg,(z) of the
argument function s.t. ¢ < Arg,(z) < ¢ + 2.
This defines a branch of logarithm:

Log,(2) = In|z| +4Arg,(z). N.B.: The
principal branch is when ¢ = —.

Definition 1.8.1.
Let a,z € C, z # 0. Then we define the

a-power of z by z* = {exp(aw) : w € log(z)}.
Definition 1.8.4.
Let ¢ € N, then the g values:

119 = {1,w,w2, .,wqfl}

where w = exp(i27/q), are the ¢ roots of unity.

Definition 1.8.7.
The principal branch of logarithm defines the
principal branch of z® by z% = exp(a Log(z)).

Definition 2.1.2.
Let UCCand f: U — C. fis conformal if f
preserves angles.

Definition 2.2.1.
A Moébius transformation is a function of
form
az+b
z) =
& =g

where a,b,c,d € C and ad # bc.

Definition 2.3.1.
The extended complex plane is the set
C = CU {o0}. where for a € C and b € C\ {0}:

b b
a+o00o =00, b-oo=00, 6:00, — =0
For f(z) = Zzzig we define f(—d/c) = oo and

f(0) =a/ec.
Definition 2.4.1.
(i) Translation: f(z) =z +b, b € C with

matrix (3%);

(i) Rotation: f(z) =az, a =€ € Cs.t.

— 1 wi i /2 o .
|a] =1 with matrix (‘3 0 oi0/2 ),
Dilation: f(z) = rz, where r > 0 with
vro0o.
0 1/vr

0

Inversion: f(z) =1/z with matrix (9 2).

matrix (

(iv)
A Mobbius transformation fizes the point at
infinity if f(oco) = co. Only inversion does not
fix the point at infinity.

Definition 2.5.5.

Let 21, 22,23,24 € C be distinct points. The
cross-ratio [z1, 22, 23, z4] is the image 21 under
the M&bius transformation sending z2, 23, 24 to
(1,0, 00).

Definition 3.2.7.
Let I' C C be a regular curve. We define
arclength ¢(T") by:

t1 t1
(r) = / I (&) dt = / 2 +y 2 a

Definition 3.3.1.

Let D € C. We say D is a domain if D is open
and any two points in D can be connected by a
contour entirely in D.

Definition 3.4.1.
Let I' C C be a contour. Then I is simple if it
has no self-intersections.

Definition 3.4.6.

Let D be a domain. Then D is
simply-connected if for all loops I' € D we
have Int(I') C D .

Definition 4.3.1.
Let 29 € C and f holomorphic at zg. The
Taylor series of f centred at zg is:

Zf(])(zo) )
7=0

Definition .
Let zo € C. A Laurent series centred at zg is a
series of the form:

Definition 4.5.1.

Let D C C be a domain, f: D — C, zg € C. We
say zo is a singularity if f is not holomorphic
at zg.

Singularity zo is i¢solated, if 3R > 0 s.t. f is
holomorphic on D', (20).

Definition 4.5.3.

Let zg € C,U C C be a neighbourhood of zg, f
holomorphic on U. Then zg is a zero of f if
J(z0) = 0.

Zero zg is zero of finite order if Im € N s.t.
f(z0) = f'(z0) = ... = (" (z0) = 0

but (™) (z9) # 0.
Singularity zg is ¢solated, if 3R > 0 s.t.
f(z) # 0 for z0 € D;(20).

Definition 4.5.7.

Let zo € C be an isolated singularity of f,
holomorphic on D/, (20) for some R > 0. Then
f(2) =3272 o aj(z— z0)” on Ag,r(20)
(Laurent Series. If

(i) Vj < 0:a; =0, then zg is removable;

(ii) Vj < —m :aj =0 for some m € N and

a—m # 0, then zg is pole of order m;

(iii) aj # 0 for infinitely many j, zg is
essential.

Definition 4.6.1.

Let D C D C C be domains, f: D — C
holomorphic. F : D — C is an analytic
continuation of f if Vz € D : F(z) = f(z).

Definition 5.1.2.

Let zo € C and f holomorphic on D' (zq) for
some R > 0, with isolated singularity zg. Then
residue of f at zo is Res(f,2z0) = a—1, where
a—1 is from Laurent Expansion of f.

Definition 5.2.1.

Let D C C be a domain. Function f is
meromorphic on D if for all z € D either f has
a pole of finite order or f is holomorphic at z.
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