$\underset{Sebastian M \ddot{u} ksch, v1, 2018/19}{Honours Complex Variables}$

Holomorphic Functions

Lemma 1.1.14.

Let $z, w \in \mathbb{C}$, then (i) $|z| = 0 \Leftrightarrow z = 0$; (ii) $|\overline{z}| = |z|$; (iii) |zw| = |z||w|; (iv) $\overline{\overline{z}} = z$; (v) $|z|^2 = z\overline{z}$ (vi) $\overline{z+w} = \overline{z} + \overline{w}$; (vii) $\overline{zw} = (\overline{z})(\overline{w})$; (viii) $|\operatorname{Re}(z)| \leq |z|$ and $|\operatorname{Im}(z)| \leq |z|$; (ix) $\operatorname{Re}(z) = \frac{z+\overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z-\overline{z}}{2i}$

Remark (unknown).

Let $z \in \mathbb{C}$. If |z| = 1, then $\overline{z} = \frac{1}{z}$.

Lemma 1.1.15 (Triangle Inequality). Let $z, w \in \mathbb{C}$, then

 $|z+w| \leq |z| + |w|$

Lemma 1.1.16 (Reverse Triangle Inequality). Let $z, w \in \mathbb{C}$, then

 $|z - w| \ge ||z| - |w||$

Proposition 1.1.19.

Let $z, w \in \mathbb{C} \setminus \{0\}$. Then

- (i) $\arg(zw) = \arg(z) + \arg(w)$ and $\arg(\overline{z}) = -\arg(z);$
- (ii) $\operatorname{Arg}(zw) = \operatorname{Arg}(z) + \operatorname{Arg}(w) + 2k\pi$ and $\operatorname{Arg}(\overline{z}) = -\operatorname{Arg}(z) + 2m\pi, k, m \in \mathbb{Z}.$

Theorem 1.4.5 (Cauchy-Riemann Equations). Let $z_0 = z_0 + iy_0 \in \mathbb{C}$, $U \subseteq \mathbb{C}$ a neighbourhood of z_0 and $f: U \to \mathbb{C}$ differentiable at z_0 , where f = u + iv. Then

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0),$$
$$\frac{\partial v}{\partial x}(x_0, y_0) = -\frac{\partial u}{\partial y}(x_0, y_0)$$

Theorem 1.4.6.

Let $z_0 = z_0 + iy_0 \in \mathbb{C}$, $U \subseteq \mathbb{C}$ a neighbourhood of z_0 and $f: U \to \mathbb{C}$ with f = u + iv. If u, v are **continuously differentiable**, i.e. derivatives exist and are continuous, on a neighbourhood of (x_0, y_0) and satisfy the Cauchy-Riemann equations at (x_0, y_0) , then f is differentiable at z_0 .

Example 1.4.11.

 $|z|^2$ is differentiable only at the origin and *nowhere* holomorphic.

Lemma 1.4.13.

Let $u, v : \mathbb{R}^2 \to \mathbb{R}$ be twice continuously differentiable, i.e. all second partial derivatives exist and are continuous. If f(x + iy) = u(x, y) + iv(x, y) is holomorphic on \mathbb{C} , then u, v are harmonic.

Lemma 1.5.6.

Let $P, Q: \mathbb{C} \to \mathbb{C}$ be polynomials. Then rational function R = P/Q is holomorphic on $\{z \in \mathbb{C} : Q(z) \neq 0\}.$

Lemma 1.6.6.

Let $z, w \in \mathbb{C}$. Then (i) $\sin(z + \pi/2) = \cos(z);$ (iii) $\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$

Lemma 1.6.7.

Let $z = x + iy \in \mathbb{C}$. Then

 $\sin(x + iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y),$ $\cos(x + iy) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$

Lemma 1.6.10.

 $\sinh(iz) = i\sin(z), \quad \cosh(iz) = \cos(z)$

Lemma 1.7.3.

Let $z, w \in \mathbb{C} \setminus \{0\}$. Then

- (i) $\log(z) = \ln |z| + i \arg(z) =$
- $\{\ln|z| + i\operatorname{Arg}(z) + 2\pi ik : k \in \mathbb{Z}\};\$
- (ii) $\log(zw) = \log(z) + \log(w);$
- (iii) $\log(1/z) = -\log(z)$

Lemma 1.8.2.

- We can rewrite z^{α} as:
- $z^{\alpha} = \{ \exp(\alpha \ln |z| + i\alpha \operatorname{Arg}(z) + i\alpha 2\pi k) : k \in \mathbb{Z} \}$ $= \{ \exp(\alpha \operatorname{Log}(z)) \exp(i\alpha 2\pi k) : k \in \mathbb{Z} \}$

Theorem 1.8.3.

- Let $\alpha, z \in \mathbb{C}, z \neq 0$. Then
- (i) $\alpha \in \mathbb{Z} \Rightarrow$ one value of z^{α} ;
- (ii) $\alpha = p/q$, with p, q coprime integers, $q \neq 0$ \Rightarrow exactly q values of z^{α} ;
- (iii) α irrational or non-real \Rightarrow infinitely many values of z^{α} .

Lemma 1.8.8.

Let $\alpha, \beta, z \in \mathbb{C}$, with $z \neq 0$. Then $z^{\alpha}z^{\beta} = z^{\alpha+\beta}$, where principal branch of logarithm is chosen for each power.

Exercise 1.8.11.

Let $z, w, \alpha \in \mathbb{C}$. It is not true in general that $(zw)^{\alpha} = z^{\alpha}w^{\alpha}$, where principal branch is chosen in each case. Consider

Remark (TopHat).

Let $f:\mathbb{C}\to\mathbb{C}$ be holomorphic. Then f maps bounded sets to bounded sets.

Remark (TopHat).

Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic. Then f **does not** map unbounded sets to unbounded sets, consider $f(z) = a_0 \in \mathbb{C}$, i.e. $f(\mathbb{C}) = \{a_0\}$.

Question Ws.1, Q.7. Let $z \in \mathbb{C}$, then

 $|z| \leq |\operatorname{Re}(z)| + |\operatorname{Im}(z)| \leq \sqrt{2}|z|$

Question Ws.2, Q.1 (De Moivre's Formula). Let $\theta \in \mathbb{R}, n \in \mathbb{Z}$. Then:

 $\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$

Question Ws.2, Q2. (b) Let $z \in \mathbb{C} \setminus \{0\}$, then $\arg(z^2) \neq 2 \arg(z)$ in general, e.g. z = -1.

Question Ws.2, Q.3. (b) Let $z \in \mathbb{C} \setminus \{0\}$, then $\arg(1/z) = \arg(\overline{z}) = -\arg(z)$.

Question Ws.2, Q.6. Let $z \in \mathbb{C}$ and $z \neq 1$, then

$$\sum_{k=0}^{m} z^k = \frac{1 - z^{m+1}}{1 - z}$$

Question Ws.3, Q.1. f(z) = |z| is continuous everywhere on \mathbb{C} , but nowhere holomorphic.

Question Ws.3, Q.6. Let f be real-valued and holomorphic. Then f is constant.

(i) $\sin(z + \pi/2) = \cos(z)$; (ii) $\sin(z + w) = \sin(z)\cos(w) + \cos(z)\sin(w)$; Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic. Then (a) $\overline{f(\overline{z})}$ is holomorphic;

- (b) if $\overline{f(z)}$ is holomorphic, f is constant;
- (c) if $f(\overline{z})$ is holomorphic, f is constant.

Conformal Maps and Möbius Transformations

Theorem 2.1.2.

Let $U \subseteq \mathbb{C}$ be open and $f: U \to \mathbb{C}$ holomorphic. Then f preserves angles at every $z_0 \in U$ where $f'(z_0) \neq 0$.

Remark 2.2.2.

If f is a Möbius transformation defined by $a, b, c, d \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, then $\lambda a, \lambda b, \lambda c, \lambda d$ define the same Möbius transformation:

$$\frac{\lambda az + \lambda b}{\lambda cz + \lambda d} = \frac{az + b}{cz + d}$$

i.e. we can impose condition ad - bc = 1.

Lemma 2.2.3.

Let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with determinant ad - bc = 1, then we associate the Möbius transformation $f_M(z) = \frac{az+b}{cz+d}$. Under this correspondence:

$$f_{M_1M_2} = f_{M_1} \circ f_{M_2}, \quad f_{M^{-1}} = f_M^{-1}$$

Theorem 2.4.2.

Let f be a Möbius transformation. Then f is a composition of a *finite* number of translations, rotations, dilations and if and only if f does **not** fix the point at infinity, one inversion.

Corollary 2.4.3.

Möbius transformations map circlines to circlines.

Lemma 2.5.1.

Let f be a Möbius transformation and $z_2, z_3, z_4 \in \tilde{\mathbb{C}}$ three **distinct** points s.t. $f(z_2) = z_2, f(z_3) = z_3, f(z_4) = z_4$. Then f is the identity.

Theorem 2.5.2.

Let $z_2, z_3, z_4 \in \tilde{\mathbb{C}}$ be three *distinct* points. Then there exists a *unique* Möbius transformation s.t. $f(z_2) = 1, f(z_3) = 0, f(z_4) = \infty.$

Corollary 2.5.3.

Let (z_2, z_3, z_4) , $(w_2, w_3, w_4) \in \tilde{\mathbb{C}}$ be two triplets of **distinct** points. Then there exists a **unique** Möbius transformation f s.t. $f(z_2) = w_2$, $f(z_3) = w_3$, $f(z_4) = w_4$.

Remark 2.5.6.

Let $z_1, z_2, z_3, z_4 \in \mathbb{C}$, then:

$$[z_1, z_2, z_3, z_4] = \frac{z_1 - z_3}{z_1 - z_4} \frac{z_2 - z_4}{z_2 - z_3}$$

If one of the z_i is ∞ , then all terms involving it disappear, e.g.:

$$[z_1, z_2, \infty, z_4] = \frac{z_2 - z_4}{z_1 - z_4}$$

Theorem 2.5.7.

Let $z_1, z_2, z_3, z_4 \in \tilde{\mathbb{C}}$ be distinct and f a Möbius transformation. Then

$$[f(z_1), f(z_2), f(z_3), f(z_4)] = [z_1, z_2, z_3, z_4]$$

Question Ws.5, Q.1.

(a)
$$f(z) = \frac{(z-1)}{(z+1)}$$
:
(i) $f(\{\operatorname{Re}(z) > 0\}) = D_1(0)$
(ii) $f(D_1(0)) = \{\operatorname{Re}(z) < 0\}$

(b) $f(z) = \exp(iz)$:

- (i) $f(\{0 < \operatorname{Re}(z) < \pi\}) = \{\operatorname{Im}(z) > 0\}$
- (ii) $f(\{-\pi/2 < \text{Re}(z) < \pi/2 \text{ and } \text{Im}(z) >$ 0) = { $|z|, -\pi/2 < \operatorname{Arg}(z) < \pi/2$ }

(c) $f(z) = z^{\frac{1}{2}}$:

- (i) $f(\{\operatorname{Re}(z) > 0\}) = \{-\pi/4 < \operatorname{Arg}(z) < 0\}$ $\pi/4$
- (ii) $f(D_{0,-\pi}) = \{ \operatorname{Re}(z) > 0 \}$ (preimage is cut plane)

Complex Integration

Lemma 3.2.8.

Let Γ be arc of a circle of radius r traced through angle θ . Then $\ell(\Gamma) = r\theta$.

Lemma 3.2.9 (M-L Lemma).

Let $\Gamma \in \mathbb{C}$ be a regular curve and let $f : \Gamma \to \mathbb{C}$ be *continuous*. Then

$$\left|\int_{\Gamma} f(z) \, dz\right| \leqslant \ell(\Gamma) \max_{z \in \Gamma} f(z)$$

Lemma 3.3.2.

Let $D \subseteq \mathbb{C}$ be a domain an suppose $u: D \to \mathbb{R}$ is differentiable and $\frac{\partial u}{\partial x} = 0 = \frac{\partial u}{\partial y}$ on D. Then u is constant on D.

Theorem 3.3.5 (Fundamental Theorem of Calculus).

Let $D \subseteq \mathbb{C}$ be a domain, $\Gamma \subseteq D$ contour joining $z_0, z_1 \in D, f: D \to \mathbb{C}$ with antiderivative F on D. Then

$$\int_{\Gamma} f(z) \, dz = F(z_1) - F(z_0)$$

Corollary 3.3.6.

Let $D \subseteq \mathbb{C}$ be a domain, f holomorphic on D with $\forall z \in D : f'(z) = 0$. Then f is constant.

Lemma 3.3.9 (Path-Independence Lemma). Let $D \subseteq \mathbb{C}$ be a domain. $f: D \to \mathbb{C}$ continuous. Then the following are equivalent:

- (i) f has an antiderivative on D;
- (ii) $\int_{\Gamma} f(z) dz = 0$ for all closed contours Γ on D;
- (iii) all $\int_{\Gamma} f(z) dz$ are independent of path.

Theorem 3.4.2 (Jordan Curve Theorem). Let $\Gamma \subseteq \mathbb{C}$ be a loop. Then Γ defines two regions, bounded domain $Int(\Gamma)$ and unbounded domain $\operatorname{Ext}(\Gamma)$, with common boundary Γ .

Theorem 3.4.8 (Cauchy Integral Theorem). Let f holomorphic inside and on loop Γ . Then

$$\int_{\Gamma} f(z) \, dz = 0$$

Corollary 3.4.9.

Let $D \subseteq \mathbb{C}$ be a *simply-connected* domain, fholomorphic on D. Then f has antiderivative on D.

Remark (unknown).

Due to Cauchy Integral Theorem, we can deform a contour without changing value of integral, provided we do not cross any point where f is not holomorphic.

Theorem 3.4.11.

Let $z_0 \in \mathbb{C}$ and $\Gamma \subseteq \mathbb{C}$ a loop s.t. it does not pass through z_0 . Then

$$\int_{\Gamma} \frac{1}{z - z_0} = \begin{cases} 2\pi i & z_0 \in \operatorname{Int}(\Gamma), \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 3.5.1 (Cauchy Integral Formula).

Let Γ be a loop, $z_0 \in \operatorname{Int} \Gamma$ and f holomorphic inside and on Γ . Then

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz.$$

Corollary 3.5.4.

Let $D \subseteq \mathbb{C}$ be a domain and f holomorphic on D. Then f is infinitely differentiable on D and all derivatives are holomorphic on D.

Theorem 3.5.5 (Generalized Cauchy Integral Formula).

Let Γ be a loop, $z_0 \in \operatorname{Int} \Gamma$ and f holomorphic inside and on Γ . Then f is infinitely differentiable at z_0 and $\forall n \in \mathbb{N}$:

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} \, dz.$$

Theorem 3.5.11 (Morera's Theorem). Let $D \subseteq \mathbb{C}$ be a domain, $f: D \to \mathbb{C}$ continuous s.t. $\int_{\Gamma} f(z) dz = 0$ for all loops $\Gamma \subseteq D$. Then fis holomorphic.

Hint: Antiderivative by Path-Independence & Corollary 3.5.4.

Theorem 3.6.1.

Let $D \subseteq \mathbb{C}$ be a domain, $z_0 \in D$ and R > 0 s.t. $\overline{D}_R(z_0) \subseteq D, f$ holomorphic on D and M > 0s.t. $\forall z \in D : |f(z)| \leq M$. Then $\forall n \in \mathbb{N}$: s.t. $\forall z \in D$: $|J(z_1)| \leq m$. $|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$. *Hint:* Generalized Cauchy Integral Formula and

Lemma 3.2.9.

Theorem 3.6.2 (Liouville's Theorem).

Let f be holomorphic on \mathbb{C} and bounded, i.e. there exists M > 0 s.t. $\forall z \in \mathbb{C} |f(z)| \leq M$. Then f is constant. *Hint:* Theorem 3.6.1 on circle $\Rightarrow f'(z) = 0 \Rightarrow f$ constant by Corollary 3.3.6.

Exercise 3.6.4.

Let P be a (monic) polynomial of degree N, then there exists R > 0 s.t. $|z| \ge R \Rightarrow |P(z)| \ge \frac{1}{2}|z|^N.$

Theorem 3.7.1.

Let $D \subseteq \mathbb{C}$ be a domain, $z_0 \in D$ and R > 0 s.t. $\overline{D}_R z_0 \subseteq D$ and f holomorphic on D. Then

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{it}) dt$$

Remark 3.7.2.

If there exists M > 0 s.t. $\forall z \in C_R(z_0) : |f(z)|$ with requirements of Theorem 3.7.1, then $|f(z_0)| \leqslant M.$

Lemma 3.7.3.

Let $D \subseteq \mathbb{C}$ be a domain, $z_0 \in D$ and R > 0 s.t. $\overline{D}_R(z_0) \subseteq D, f$ holomorphic on D s.t. $\max_{z\in\overline{D}_{R}(z_{0})}|f(z)|=|f(z_{0})|.$ Then |f(z)| is constant on $\overline{D}_R(z_0)$.

Exercise 3.7.4.

Let $D\subseteq \mathbb{C}$ be a domain, f holomorphic on Ds.t. |f(z)| is constant on D. Then f is constant on D.

Theorem 3.7.5 (Maximum Modulus Principle).

Let $D \subseteq \mathbb{C}$ be a domain, f holomorphic **and bounded** on D, i.e. $|f(z)| \leq M$ for M > 0. If |f(z)| achieves maximum at $z_0 \in D$, then f is constant.

Remark 3.7.6.

A holomorphic function on a bounded domain, continuous up to and including the boundary, attains maximum on the boundary.

Theorem 3.7.8 (Maximum/minimum Principle for Harmonic Functions).

Let $D\subseteq \mathbb{R}^2$ be a domain, $\phi:D\to \mathbb{R}$ be harmonic s.t. ϕ is bounded above or below on D by M > 0 and $\exists z_0 \in D : \phi(z_0) = M$. Then ϕ is constant on D.

Question Ws.7, Q.5.

Let f be holomorphic on $D_1(0)$ s.t. $\max_{z \in C_r(0)} |f(z)| \to 0 \text{ as } r \to 1, \text{ then } f = 0.$

Question Ws.8, Q.2.

Let f be holomorphic on \mathbb{C} s.t. $|f| \to 0$ as $|z| \to \infty$. Then $\forall z \in \mathbb{C} : f(z) = 0$.

Question Ws.8, Q.3.

Let f be holomorphic on \mathbb{C} and periodic in real and imaginary directions, i.e. $\exists a_0, b_0 > 0 \forall z \in \mathbb{C} : f(z) = f(z + z_0)$ and $f(z) = f(z + ib_0)$. Then f is constant. *Hint:* f is determined by values within rectangle, so bounded. Then Liouville's Theorem.

Question Ws.8, Q.4.

Let f be holomorphic on \mathbb{C} . If $\operatorname{Re}(f(z))$ or $\operatorname{Im}(f(z))$ are bound below **or** above for all $z \in \mathbb{C}$, then f is constant.

Question Ws.8, Q.5.

Let f be holomorphic on \mathbb{C} s.t. for some integer $N \ge 1$ there exists C > 0 s.t. $|f(z)| \le C|z|^N$ for all $z \in \mathbb{C}$. Then f(n)(z) = 0 for all $z \in \mathbb{C}$, for all $n \ge N+1.$

Question Ws.8, Q.6.

Suppose f is holomorphic on \mathbb{C} s.t. $|f(z)| \to \infty$ as $|z| \to \infty$. Then f is surjective.

Question Ws.9, Q.4.

Let f be holomorphic on \mathbb{C} s.t. there exists C>0 s.t. $|f(z)|\leqslant C|z|^2$ for all $z\in\mathbb{C}.$ Then $f(z) = cz^2$ for some $c \in \mathbb{C}$ s.t. $|c| \leq C$.

Infinite Series

Lemma 4.1.2.

Let $\sum_{j=0}^{\infty} z_j$ be a convergent series. Then $z_j \to 0$ as $j \to \infty$.

Lemma 4.1.6 (Comparison Test).

Let $z_n \in \mathbb{C}$ be a sequence s.t. $|z_n| \leq M_n$, for $M_n \ge 0$, for all $n \ge n_0$ for some $n_0 \in \mathbb{N}$, where $\sum_{j=0}^{\infty} M_j$ is convergent. Then $\sum_{j=0}^{\infty} z_j$ is convergent.

Lemma 4.1.7.

Let $c \in \mathbb{C}$. Then $\sum_{j=0}^{\infty} c^j$ is convergent if and only if |c| < 1.

Lemma 4.1.9 (Ratio Test).

Let $z_n \in \mathbb{C}$ be a sequence and suppose

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$$

Then

- (i) if L < 1, the series $\sum_{j=0}^{\infty} z_j$ is convergent;
- (ii) if L > 1, the series $\sum_{j=0}^{\infty} z_j$ is divergent;
- (iii) if L = 1, we can conclude nothing.

Example 4.1.15.

Let $f_n(z) = \exp(-nz^2)$ (holomorphic!), then $f_n \to f$ as $n \to \infty$ pointwise where

$$f(x) = \begin{cases} 1 & x = 0, \\ 0 & x \neq 0. \end{cases}$$

is *not* holomorphic.

Lemma 4.1.17.

Let $S \subseteq \mathbb{C}$ and suppose $f_n : S \to \mathbb{C}$, sequence of continuous functions, converge *uniformly* to f. Then f is continuous.

Lemma 4.1.19 (Weierstrass M-test).

Let $S \subseteq \mathbb{C}$, $f_n : S \to \mathbb{C}$ a sequence of functions and $M_n \ge 0$ a sequence of non-negative numbers s.t. for all $z \in S$ and for all $n \ge n_0 \in \mathbb{N}$, $|f_n(z) \le M_n|$ and $\sum_{j=0}^{\infty} M_j$ converges. Then $\sum_{j=0}^{\infty} f_j(z)$ converges uniformly on S.

Theorem 4.1.23.

Let $D \subseteq \mathbb{C}$ be a *simply-connected* domain, f_n holomorphic on D and converge uniformly to f. Then $f: D \to \mathbb{C}$ is holomorphic on D.

Theorem 4.2.4 (

). Let $\sum_{j=0}^{\infty} a_j (z-z_0)^j$ be a power series and suppose the sequence $\left|\frac{a_j}{a_{j+1}}\right|$ has a limit. Then the radius of convergence is equal to this limit.

Exercise 4.3.8.

The following Taylor series are centred at 0:

$$\exp(z) = \sum_{j=0}^{\infty} \frac{z^j}{j!}$$
$$\cos(z) = \sum_{j=0}^{\infty} (-1)^j \frac{z^{2j}}{(2j)!}$$
$$\sin(z) = \sum_{j=0}^{\infty} (-1)^j \frac{z^{2j+1}}{(2j+1)!}$$

Theorem 4.4.4 (Laurent Series).

Let $z_0 \in \mathbb{C}$, $0 \leq r < R \leq \infty$, f holomorphic on $A_{r,R}(z_0)$. Then f can be expressed as Laurent series centred at z_0 , convergent on $A_{r,R}(z_0)$ and **uniformly** convergent on $\overline{A}_{r_1,R_1}(z_0)$ for $r < r_1 \leq R_1 < R$. Moreover:

$$a_j = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{j+1}} \, dz$$

Proposition 4.5.4.

Let $z_0 \in \mathbb{C}$, $U \subseteq \mathbb{C}$ a neighbourhood of z_0 , f holomorphic on U with zero of finite order z_0 . Then z_0 is isolated.

Hint: Function with Zeros Trick, $g(z_0) \neq 0$ and continuity of g.

Corollary (Lecture).

Let f have finitely many zeros. Then all zeros are isolated.

Corollary 4.5.5.

Let $z_0 \in \mathbb{C}$, $U \subseteq \mathbb{C}$ a neighbourhood of z_0 , fholomorphic on U s.t. $f(z_n) = 0$ for sequence $z_n \in U$ s.t. $z_n \to z_0$ as $n \to \infty$. Then $\exists R > 0$ s.t. $\forall z \in D_R(z_0) : f(z) = 0$. *Hint:* Continuity of f and contrapositive of

Prop. 4.5.4.

Corollary 4.5.6.

Let $z_0 \in \mathbb{C}$ be singularity of rational function f = P/Q. Then z_0 is isolated.

Theorem 4.5.8.

Let $z_0 \in \mathbb{C}$ be a removable singularity of f, holomorphic on $D'_R(z_0)$ for some R > 0. Then $f(z_0)$ can be (re-)defined s.t. f is holomorphic on z_0 .

Lemma 4.5.11.

Let f, g be holomorphic at z_0 , where z_0 is zero of order m of g. Then

- (i) if z₀ is not zero of f, f/g has pole of order m at z₀;
- (ii) if z_0 is zero of order k of f, f/g has pole of order m - k at z_0 if m > k and removable singularity otherwise.

Hint: Function with Zeros Trick.

Theorem 4.6.4 (Identity Theorem).

Let $D \subseteq \mathbb{C}$, $z_0 \in D$, f holomorphic on D s.t. $\forall z \in D_R(z_0) : f(z) = 0$ for some R > 0. Then f(z) = 0 for all $z \in D$.

Corollary 4.6.5.

Let $D \subseteq \mathbb{C}$, f, g holomorphic on D s.t. $\forall z \in D_R(z_0) : f(z) = g(z)$ for some R > 0. Then f(z) = g(z) for all $z \in D$.

Corollary 4.6.7.

Let $D \subseteq \mathbb{C}$, $z_0 \in D$ and f holomorphic on D s.t. $f(z_n) = 0$ for a sequence of distinct $z_n \in D$ which converge to z_0 . Then f(z) = 0 for all $z \in D$.

Corollary 4.6.8.

Let $D \subseteq \mathbb{C}$, $z_0 \in D$ and f, g holomorphic on Ds.t. $f(z_n) = g(z_n)$ for a sequence of distinct $z_n \in D$ which converge to z_0 . Then f(z) = g(z)for all $z \in D$.

Question Ws.10, Q.5.

Let f be holomorphic on $D'_r(z_0)$ and $|f(z)| \leq M$ for all $z \in D'_r(z_0)$, for some M > 0. Then f can be (re-)defined at z_0 to make f holomorphic on $D_r(z_0)$.

Residue Calculus

Theorem 5.1.1.

Let $z_0 \in \mathbb{C}$, f holomorphic on $D'_R(z_0)$ for some R > 0 with z_0 being isolated singularity, Γ in $D'_R(z_0)$ and $z_0 \in \text{Int}(\Gamma)$. Then

$$\int_{\Gamma} f(z) \, dz = 2\pi i a_{-1}$$

where a_{-1} is coefficient from Laurent expansion.

Lemma 5.1.4.

Let $z_0 \in \mathbb{C}$, f holomorphic on $D'_R(z_0)$ for some R > 0, with **removable** singularity z_0 . Then $\operatorname{Res}(f, z_0) = 0$.

Lemma 5.1.5.

Let $z_0 \in \mathbb{C}$, f holomorphic on $D'_R(z_0)$ for some R > 0, with pole of order m at z_0 . Then

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)].$$

Hint:

Lemma 5.1.7.

Let $z_0 \in \mathbb{C}$, g and h holomorphic on $D'_R(z_0)$ for some R > 0, s.t. h has a **simple** zero at z_0 , while $g(z_0) \neq 0$. Then for f = g/h:

$$\operatorname{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}.$$

Theorem 5.1.11 (Cauchy Residue Theorem). Let f be holomorphic inside and on loop Γ except for *finitely* many isolated singularities $z_1, \ldots, z_k \in \text{Int}(\Gamma)$. Then

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f, z_j).$$

Theorem 5.2.5 (The Argument Principle). Let $\Gamma \subseteq \mathbb{C}$ be a loop, *f* non-zero on Γ , holomorphic inside and on Γ , except for *finitely* many poles in Γ (meromorphic). Then

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz =$$
$$\sum_{z_0 \in \text{Int}(\Gamma)} \text{order}(z_0) - \sum_{z_\infty \in \text{Int}(\Gamma)} \text{order}(z_\infty)$$

where z_0 is a zero of f and z_{∞} is a pole of f.

Corollary 5.2.6.

Let $\Gamma \subseteq \mathbb{C}$ be a loop, f non-zero on Γ , holomorphic inside and on Γ . Then

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = \sum_{z_0 \in \operatorname{Int}(\Gamma)} \operatorname{order}(z_0)$$

where z_0 is a zero of f.

Theorem 5.2.7 (Rouché's Theorem). Let Γ be a loop, f, g holomorphic inside and on Γ s.t. $\forall z \in \Gamma : |f(z) - g(z)| < |f(z)|$. Then

$$\sum_{z_0 \in \operatorname{Int}(\Gamma)} \operatorname{order}(z_0) = \sum_{z_0 \in \operatorname{Int}(\Gamma)} \operatorname{order}(w_0)$$

where z_0 is zero of f and w_0 is zero of g. N.B.: Number and order of zeros can be different, only total is equal.

Theorem 5.2.16 (Open Mapping Theorem). Let $D \subseteq \mathbb{C}$ be a domain and suppose $f : D \to \mathbb{C}$ is non-constant and holomorphic on D. Then f(D) is an open subset of \mathbb{C} .

Corollary 5.2.18.

Let $D \subseteq \mathbb{C}$ be a domain, f holomorphic on Ds.t. **any** of the values $\operatorname{Re}(f(z))$, $\operatorname{Im}(f(z))$, |f(z)|, or $\operatorname{Arg}(f(z))$ is constant. Then f is constant.

Exercise 5.2.19 (Schwarz's Lemma). Let f be holomorphic on $D_1(0)$ s.t. f(0) = 0and $\forall z \in D_1(0) : |f(z)| \leq 1$. Then $|f(z)| \leq |z|$.

Remark (unknown). Let $z = e^{i\theta}$, i.e. $z \in D_1(0)$, then

$$\cos \theta = \operatorname{Re}(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$$
$$\sin \theta = \operatorname{Im}(z) = \frac{1}{2i} \left(z - \frac{1}{z} \right)$$

Remark (Trigonometric Integrals).

Let $\Gamma = C_1(0)$, parametrized by $\gamma : [0, 2\pi] \to \mathbb{C}$; $\theta \mapsto \exp(i\theta)$ and let $R(\cos \theta, \sin \theta)$ be a rational function of cosines and sines, then

$$\int_{0}^{2\pi} R(\cos\theta, \sin\theta) \, d\theta =$$
$$\int_{\Gamma} \frac{1}{iz} R\left(\frac{z+\frac{1}{z}}{2}, \frac{z-\frac{1}{z}}{2i}\right) \, dz$$

i.e. trigonometric integral can be evaluated as contour integral on unit circle by replacing $\cos \theta$ with $\frac{z+1/z}{2}$ and $\sin \theta$ with $\frac{z-1/z}{2i}$ and multiplying integrand by $\frac{1}{iz}$.

Lemma 5.4.6 (Jordan Lemma). Let P, Q be polynomials s.t.

 $\deg(Q) \ge \deg(P) + 1$ and $a \in \mathbb{R} \setminus \{0\}$. Then

$$\lim_{\rho \to \infty} \int_{C_{\rho}^{+}} \exp(iaz) \frac{P(z)}{Q(z)} dz = 0, \quad \text{if } a > 0;$$
$$\lim_{\rho \to \infty} \int_{C_{\rho}^{-}} \exp(iaz) \frac{P(z)}{Q(z)} dz = 0, \quad \text{if } a < 0$$

where C_{ρ}^{+} , C_{ρ}^{-} are semicircular arcs from $-\rho$ to ρ in upper/lower half-plane.

Lemma 5.5.3.

Let $D \subseteq \mathbb{C}$ be a domain, $c \in D$, f holomorphic on D except at possibly finitely many singularities with *simple* pole at c. Let S_r be circular arc parametrized by $\gamma(\theta) = c + r \exp(i\theta)$ for $\theta \in [\theta_0, \theta_1]$ for some $0 \leq \theta_0 < \theta_1 \leq 2\pi$. Then

$$\lim_{r \to 0} \int_{S_r} f(z) \, dz = i(\theta_1 - \theta_0) \operatorname{Res}(f, c)$$

Lemma 5.6.4.

Let $0 \leq k \leq n$ be non-negative integers, let $\binom{n}{k}$ be the usual binomial coefficient and Γ a loop with 0 in interior. Then

$$\binom{n}{k} = \frac{1}{2\pi i} \int_{\Gamma} \frac{(1+z)^n}{z^{k+1}} \, dz$$

Miscellaneous

Example (Circle Parametrization).

Circle $C_r(z_0), z_0 \in \mathbb{C}, r > 0$ can be parametrized by $\gamma : [0, 2\pi] \to \mathbb{C}; t \mapsto z_0 + r \exp(it).$

Remark (Contour Integral Checklist).

- \Box Accounted for orientation of contour?
- $\Box \quad \text{Accounted for } \frac{n!}{2\pi i} \text{ factor in} \\ \text{(Generalized) Cauchy Integral Formula?}$

Remark (Classifying Singularities).

- \Box Isolated or not?
- \Box If isolated, what order? (Lemma 4.5.11)

Remark (Function with Zeros Trick).

Let f be holomorphic with z_0 , zero of order m. Then

$$f(z) = (z - z_0)^m g(z)$$

where $g(z) = \sum_{j=0}^{\infty} \frac{f^{(j+m)}(z_0)}{(j+m)!} (z-z_0)^j$, $g(z_0) \neq 0$.

Remark (Function with Poles Trick). Let f be holomorphic except at z_0 , pole of order k. Then

$$f(z) = (z - z_0)^{-k} H(z)$$

where $H(z) = \sum_{j=0}^{\infty} a_{j-k} (z - z_0)^j$,
holomorphic.

Definitions

Definition 1.2.2.

A *neighbourhood* of $z_0 \in \mathbb{C}$ is an open set containing z_0 .

Lemma 1.3.8.

Let $f : \mathbb{C} \to \mathbb{C}$. The f is continuous \Leftrightarrow the preimage $f^{-1}(U)$ is open for all open $U \subseteq \mathbb{C}$.

Definition 1.4.12.

Let $h: \mathbb{R} \to \mathbb{R}$. Then h is *harmonic* if it satisfies for all $(x, y) \in \mathbb{R}^2$ Laplace's equation:

$$\frac{\partial^2 h}{\partial x^2}(x,y) + \frac{\partial^2 h}{\partial y^2} = 0.$$

Definition 1.4.14.

Let $U \subseteq \mathbb{R}^2$ be open, $u: U \to \mathbb{R}$ harmonic. The function $v: U \to \mathbb{R}$ is the *harmonic conjugate* of u if f = u + iv is holomorphic on U.

Definition 1.6.4.

$$\cos(z) \coloneqq \frac{\exp(iz) + \exp(-iz)}{2},$$
$$\sin(z) \coloneqq \frac{\exp(iz) - \exp(-iz)}{2i}$$

Remark (Trigonometric Functions).

$$\tan := \frac{\sin}{\cos}, \quad \cot := \frac{1}{\tan},$$
 $\sec := \frac{1}{\cos}, \quad \csc := \frac{1}{\sin}$

Definition 1.6.9.

$$\cosh(z) \coloneqq \frac{\exp(z) + \exp(-z)}{2},$$
$$\sinh(z) \coloneqq \frac{\exp(z) - \exp(-z)}{2},$$

Definition 1.7.6.

A **branch cut** L is a subset of complex plane removed s.t. multivalued function can be defined holomorphic on $\mathbb{C} \setminus L$. An endpoint of a branch cut is a **branch point**.

The set $L_{z_0,\phi} = \{z \in \mathbb{C} : z = z_0 + re^{i\pi}, r \ge 0\}$ denotes a *half-line*.

The set $D_{z_0,\phi} = \mathbb{C} \setminus L_{z_0,\phi}$ denotes the cut plane with branch point z_0 and along angle line at angle ϕ .

Definition 1.7.8.

Let $\phi \in \mathbb{R}$. We define the branch $\operatorname{Arg}_{\phi}(z)$ of the argument function s.t. $\phi < \operatorname{Arg}_{\phi}(z) \leq \phi + 2\pi$. This defines a branch of logarithm: $\operatorname{Log}_{\phi}(z) = \ln |z| + i \operatorname{Arg}_{\phi}(z)$. N.B.: The *principal branch* is when $\phi = -\pi$.

Definition 1.8.1.

Let $\alpha, z \in \mathbb{C}, z \neq 0$. Then we define the α -power of z by $z^{\alpha} = \{\exp(\alpha w) : w \in \log(z)\}.$

Definition 1.8.4.

Let $q \in \mathbb{N}$, then the q values:

 $1^{1/q} = \{1, \omega, \omega^2, \dots, \omega^{q-1}\}$

where $\omega \coloneqq \exp(i2\pi/q)$, are the q roots of unity.

Definition 1.8.7.

The principal branch of logarithm defines the principal branch of z^{α} by $z^{\alpha} = \exp(\alpha \operatorname{Log}(z))$.

Definition 2.1.2. Let $U \subseteq \mathbb{C}$ and $f: U \to \mathbb{C}$. f is *conformal* if f preserves angles.

Definition 2.2.1. A *Möbius transformation* is a function of form

$$f(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$ and $ad \neq bc$.

Definition 2.3.1. The *extended complex plane* is the set $\tilde{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. where for $a \in \mathbb{C}$ and $b \in \mathbb{C} \setminus \{0\}$:

$$a + \infty = \infty, \quad b \cdot \infty = \infty, \quad \frac{b}{0} = \infty, \quad \frac{b}{\infty} = 0$$

For $f(z) = \frac{az+b}{cz+d}$ we define $f(-d/c) = \infty$ and $f(\infty) = a/c$.

Definition 2.4.1.

- (i) **Translation:** $f(z) = z + b, b \in \mathbb{C}$ with matrix $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$;
- (ii) **Rotation:** $f(z) = az, a = e^{i\theta} \in \mathbb{C}$ s.t. |a| = 1 with matrix $\begin{pmatrix} e^{i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{pmatrix}$;
- (iii) **Dilation:** f(z) = rz, where r > 0 with matrix $\begin{pmatrix} \sqrt{\tau} & 0\\ 0 & 1/\sqrt{\tau} \end{pmatrix}$;
- (iv) **Inversion:** f(z) = 1/z with matrix $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

A Möbius transformation *fixes the point at infinity* if $f(\infty) = \infty$. Only inversion does *not* fix the point at infinity.

Definition 2.5.5.

Let $z_1, z_2, z_3, z_4 \in \tilde{\mathbb{C}}$ be *distinct* points. The *cross-ratio* $[z_1, z_2, z_3, z_4]$ is the image z_1 under the Möbius transformation sending z_2, z_3, z_4 to $(1, 0, \infty)$.

Definition 3.2.7.

Let $\Gamma \subseteq \mathbb{C}$ be a regular curve. We define *arclength* $\ell(\Gamma)$ by:

$$\ell(\Gamma) := \int_{t_0}^{t_1} |\gamma'(t)| \, dt = \int_{t_0}^{t_1} \sqrt{x'(t)^2 + y'(t)^2} \, dt$$

Definition 3.3.1.

Let $D \in \mathbb{C}$. We say D is a **domain** if D is **open** and any two points in D can be connected by a contour entirely in D.

Definition 3.4.1.

Let $\Gamma \subseteq \mathbb{C}$ be a contour. Then Γ is *simple* if it has no self-intersections.

Definition 3.4.6.

Let D be a domain. Then D is *simply-connected* if for all loops $\Gamma \in D$ we have $Int(\Gamma) \subseteq D$.

Definition 4.3.1.

Let $z_0 \in \mathbb{C}$ and f holomorphic at z_0 . The **Taylor series** of f centred at z_0 is:

$$\sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^j$$

Definition .

Let $z_0 \in \mathbb{C}$. A *Laurent series* centred at z_0 is a series of the form:

$$\sum_{j=-\infty}^{\infty} a_j (z-z_0)^j$$

Definition 4.5.1.

Let $D \subseteq \mathbb{C}$ be a domain, $f: D \to \mathbb{C}$, $z_0 \in \mathbb{C}$. We say z_0 is a *singularity* if f is **not** holomorphic at z_0 . Singularity z_0 is *isolated*, if $\exists R > 0$ s.t. f is holomorphic on $D'_R(z_0)$.

Definition 4.5.3.

Let $z_0 \in \mathbb{C}, U \subseteq \mathbb{C}$ be a neighbourhood of z_0, f holomorphic on U. Then z_0 is a **zero** of f if $f(z_0) = 0$.

Zero z_0 is *zero of finite order* if $\exists m \in \mathbb{N}$ s.t.

$$f(z_0) = f'(z_0) = \ldots = f^{(m-1)}(z_0) = 0$$

but $f^{(m)}(z_0) \neq 0$.

Singularity z_0 is *isolated*, if $\exists R > 0$ s.t. $f(z) \neq 0$ for $z_0 \in D'_R(z_0)$.

Definition 4.5.7.

Let $z_0 \in \mathbb{C}$ be an isolated singularity of f, holomorphic on $D'_R(z_0)$ for some R > 0. Then $f(z) = \sum_{j=-\infty}^{\infty} a_j (z - z_0)^j$ on $A_{0,R}(z_0)$ (Laurent Series. If

- (i) $\forall j < 0 : a_j = 0$, then z_0 is *removable*;
- (ii) $\forall j < -m : a_j = 0$ for some $m \in \mathbb{N}$ and $a_{-m} \neq 0$, then z_0 is **pole of order** m;
- (iii) $a_j \neq 0$ for infinitely many j, z_0 is essential.

Definition 4.6.1.

Let $D \subseteq \tilde{D} \subseteq \mathbb{C}$ be domains, $f: D \to \mathbb{C}$ holomorphic. $F: \tilde{D} \to \mathbb{C}$ is an *analytic* continuation of f if $\forall z \in D : F(z) = f(z)$.

Definition 5.1.2.

Let $z_0 \in \mathbb{C}$ and f holomorphic on $D'_R(z_0)$ for some R > 0, with *isolated* singularity z_0 . Then *residue of* f *at* z_0 is $\operatorname{Res}(f, z_0) = a_{-1}$, where a_{-1} is from Laurent Expansion of f.

Definition 5.2.1.

Let $D \subseteq \mathbb{C}$ be a domain. Function f is *meromorphic* on D if for all $z \in D$ either f has a pole of finite order or f is holomorphic at z.