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Holomorphic Functions

Lemma 1.1.14.
Let z, w ∈ C, then

(i) |z| = 0⇔ z = 0;

(ii) |z| = |z|;
(iii) |zw| = |z||w|;
(iv) z = z;

(v) |z|2 = zz

(vi) z + w = z + w;

(vii) zw = (z)(w);

(viii) |Re(z)| 6 |z| and | Im(z)| 6 |z|;

(ix) Re(z) =
z + z

2
and Im(z) =

z − z
2i

Remark (unknown).

Let z ∈ C. If |z| = 1, then z =
1

z
.

Lemma 1.1.15 (Triangle Inequality).
Let z, w ∈ C, then

|z + w| 6 |z|+ |w|

Lemma 1.1.16 (Reverse Triangle Inequality).
Let z, w ∈ C, then

|z − w| > ||z| − |w||

Proposition 1.1.19.
Let z, w ∈ C \ {0}. Then

(i) arg(zw) = arg(z) + arg(w) and
arg(z) = − arg(z);

(ii) Arg(zw) = Arg(z) +Arg(w) + 2kπ and
Arg(z) = −Arg(z) + 2mπ, k,m ∈ Z.

Theorem 1.4.5 (Cauchy-Riemann Equations).
Let z0 = z0 + iy0 ∈ C, U ⊆ C a neighbourhood
of z0 and f : U → C differentiable at z0, where
f = u+ iv. Then

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂v

∂x
(x0, y0) = −

∂u

∂y
(x0, y0)

Theorem 1.4.6.
Let z0 = z0 + iy0 ∈ C, U ⊆ C a neighbourhood
of z0 and f : U → C with f = u+ iv. If u, v are
continuously differentiable, i.e. derivatives
exist and are continuous, on a neighbourhood of
(x0, y0) and satisfy the Cauchy-Riemann
equations at (x0, y0), then f is differentiable at
z0.

Example 1.4.11.
|z|2 is differentiable only at the origin and
nowhere holomorphic.

Lemma 1.4.13.
Let u, v : R2 → R be twice continuously
differentiable, i.e. all second partial derivatives
exist and are continuous. If
f(x+ iy) = u(x, y) + iv(x, y) is holomorphic on
C, then u, v are harmonic.

Lemma 1.5.6.
Let P,Q : C→ C be polynomials. Then rational
function R = P/Q is holomorphic on
{z ∈ C : Q(z) 6= 0}.

Lemma 1.6.6.
Let z, w ∈ C. Then

(i) sin(z + π/2) = cos(z);

(ii) sin(z + w) = sin(z) cos(w) + cos(z) sin(w);

(iii) cos(z + w) = cos(z) cos(w)− sin(z) sin(w)

Lemma 1.6.7.
Let z = x+ iy ∈ C. Then

sin(x+ iy) = sin(x) cosh(y) + i cos(x) sinh(y),

cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y)

Lemma 1.6.10.

sinh(iz) = i sin(z), cosh(iz) = cos(z)

Lemma 1.7.3.
Let z, w ∈ C \ {0}. Then

(i) log(z) = ln |z|+ i arg(z) =
{ln |z|+ iArg(z) + 2πik : k ∈ Z};

(ii) log(zw) = log(z) + log(w);

(iii) log(1/z) = − log(z)

Lemma 1.8.2.
We can rewrite zα as:

zα = {exp(α ln |z|+ iαArg(z) + iα2πk) : k ∈ Z}
= {exp(αLog(z)) exp(iα2πk) : k ∈ Z}

Theorem 1.8.3.
Let α, z ∈ C, z 6= 0. Then

(i) α ∈ Z ⇒ one value of zα;

(ii) α = p/q, with p, q coprime integers, q 6= 0
⇒ exactly q values of zα;

(iii) α irrational or non-real ⇒ infinitely many
values of zα.

Lemma 1.8.8.
Let α, β, z ∈ C, with z 6= 0. Then zαzβ = zα+β ,
where principal branch of logarithm is chosen
for each power.

Exercise 1.8.11.
Let z, w, α ∈ C. It is not true in general that
(zw)α = zαwα, where principal branch is
chosen in each case. Consider

Remark (TopHat).
Let f : C→ C be holomorphic. Then f maps
bounded sets to bounded sets.

Remark (TopHat).
Let f : C→ C be holomorphic. Then f does
not map unbounded sets to unbounded sets,
consider f(z) = a0 ∈ C, i.e. f(C) = {a0}.

Question Ws.1, Q.7.
Let z ∈ C, then

|z| 6 |Re(z)|+ | Im(z)| 6
√

2|z|

Question Ws.2, Q.1 (De Moivre’s Formula).
Let θ ∈ R, n ∈ Z. Then:

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n

Question Ws.2, Q2.
(b) Let z ∈ C \ {0}, then arg(z2) 6= 2 arg(z) in
general, e.g. z = −1.

Question Ws.2, Q.3.
(b) Let z ∈ C \ {0}, then arg(1/z) = arg(z) =
− arg(z).

Question Ws.2, Q.6.
Let z ∈ C and z 6= 1, then

m∑
k=0

zk =
1− zm+1

1− z

Question Ws.3, Q.1.
f(z) = |z| is continuous everywhere on C, but
nowhere holomorphic.

Question Ws.3, Q.6.
Let f be real-valued and holomorphic. Then f
is constant.

Question Ws.3, Q.7.
Let f : C→ C be holomorphic. Then

(a) f(z) is holomorphic;

(b) if f(z) is holomorphic, f is constant;

(c) if f(z) is holomorphic, f is constant.

Conformal Maps and Möbius
Transformations

Theorem 2.1.2.
Let U ⊆ C be open and f : U → C holomorphic.
Then f preserves angles at every z0 ∈ U where
f ′(z0) 6= 0.

Remark 2.2.2.
If f is a Möbius transformation defined by
a, b, c, d ∈ C and λ ∈ C, then λa, λb, λc, λd
define the same Möbius transformation:

λaz + λb

λcz + λd
=
az + b

cz + d

i.e. we can impose condition ad− bc = 1.

Lemma 2.2.3.
Let M =

(
a b
c d

)
with determinant ad− bc = 1,

then we associate the Möbius transformation
fM (z) = az+b

cz+d
. Under this correspondence:

fM1M2
= fM1

◦ fM2
, fM−1 = f−1

M

Theorem 2.4.2.
Let f be a Möbius transformation. Then f is a
composition of a finite number of translations,
rotations, dilations and if and only if f does not
fix the point at infinity, one inversion.

Corollary 2.4.3.
Möbius transformations map circlines to
circlines.

Lemma 2.5.1.
Let f be a Möbius transformation and
z2, z3, z4 ∈ C̃ three distinct points s.t.
f(z2) = z2, f(z3) = z3, f(z4) = z4. Then f is
the identity.

Theorem 2.5.2.
Let z2, z3, z4 ∈ C̃ be three distinct points.
Then there exists a unique Möbius
transformation s.t. f(z2) = 1, f(z3) = 0,
f(z4) =∞.

Corollary 2.5.3.
Let (z2, z3, z4), (w2, w3, w4) ∈ C̃ be two triplets
of distinct points. Then there exists a unique
Möbius transformation f s.t. f(z2) = w2,
f(z3) = w3, f(z4) = w4.

Remark 2.5.6.
Let z1, z2, z3, z4 ∈ C, then:

[z1, z2, z3, z4] =
z1 − z3
z1 − z4

z2 − z4
z2 − z3

If one of the zi is ∞, then all terms involving it
disappear, e.g.:

[z1, z2,∞, z4] =
z2 − z4
z1 − z4

Theorem 2.5.7.
Let z1, z2, z3, z4 ∈ C̃ be distinct and f a Möbius
transformation. Then

[f(z1), f(z2), f(z3), f(z4)] = [z1, z2, z3, z4]

Question Ws.5, Q.1.

(a) f(z) =
(z − 1)

(z + 1)
:

(i) f({Re(z) > 0}) = D1(0)

(ii) f(D1(0)) = {Re(z) < 0}

(b) f(z) = exp(iz):



(i) f({0 < Re(z) < π}) = {Im(z) > 0}
(ii) f({−π/2 < Re(z) < π/2 and Im(z) >

0}) = {|z|,−π/2 < Arg(z) < π/2}

(c) f(z) = z
1
2 :

(i) f({Re(z) > 0}) = {−π/4 < Arg(z) <
π/4}

(ii) f(D0,−π) = {Re(z) > 0} (preimage is
cut plane)

Complex Integration

Lemma 3.2.8.
Let Γ be arc of a circle of radius r traced
through angle θ. Then `(Γ) = rθ.

Lemma 3.2.9 (M-L Lemma).
Let Γ ∈ C be a regular curve and let f : Γ→ C
be continuous. Then∣∣∣∣∫

Γ
f(z) dz

∣∣∣∣ 6 `(Γ) max
z∈Γ

f(z)

Lemma 3.3.2.
Let D ⊆ C be a domain an suppose u : D → R
is differentiable and ∂u

∂x
= 0 = ∂u

∂y
on D. Then

u is constant on D.

Theorem 3.3.5 (Fundamental Theorem of
Calculus).
Let D ⊆ C be a domain, Γ ⊆ D contour joining
z0, z1 ∈ D, f : D → C with antiderivative F on
D. Then ∫

Γ
f(z) dz = F (z1)− F (z0)

Corollary 3.3.6.
Let D ⊆ C be a domain, f holomorphic on D
with ∀z ∈ D : f ′(z) = 0. Then f is constant.

Lemma 3.3.9 (Path-Independence Lemma).
Let D ⊆ C be a domain, f : D → C
continuous. Then the following are equivalent:

(i) f has an antiderivative on D;

(ii)
∫
Γ f(z) dz = 0 for all closed contours Γ on
D;

(iii) all
∫
Γ f(z) dz are independent of path.

Theorem 3.4.2 (Jordan Curve Theorem).
Let Γ ⊆ C be a loop. Then Γ defines two
regions, bounded domain Int(Γ) and unbounded
domain Ext(Γ), with common boundary Γ.

Theorem 3.4.8 (Cauchy Integral Theorem).
Let f holomorphic inside and on loop Γ. Then∫

Γ
f(z) dz = 0

Corollary 3.4.9.
Let D ⊆ C be a simply-connected domain, f
holomorphic on D. Then f has antiderivative
on D.

Remark (unknown).
Due to Cauchy Integral Theorem, we can
deform a contour without changing value of
integral, provided we do not cross any point
where f is not holomorphic.

Theorem 3.4.11.
Let z0 ∈ C and Γ ⊆ C a loop s.t. it does not
pass through z0. Then∫

Γ

1

z − z0
=

{
2πi z0 ∈ Int(Γ),

0 otherwise.

Theorem 3.5.1 (Cauchy Integral Formula).

Let Γ be a loop, z0 ∈ Int Γ and f holomorphic
inside and on Γ. Then

f(z0) =
1

2πi

∫
Γ

f(z)

z − z0
dz.

Corollary 3.5.4.
Let D ⊆ C be a domain and f holomorphic on
D. Then f is infinitely differentiable on D and
all derivatives are holomorphic on D.

Theorem 3.5.5 (Generalized Cauchy Integral
Formula).
Let Γ be a loop, z0 ∈ Int Γ and f holomorphic
inside and on Γ. Then f is infinitely
differentiable at z0 and ∀n ∈ N:

f (n)(z0) =
n!

2πi

∫
Γ

f(z)

(z − z0)n+1
dz.

Theorem 3.5.11 (Morera’s Theorem).
Let D ⊆ C be a domain, f : D → C continuous
s.t.

∫
Γ f(z) dz = 0 for all loops Γ ⊆ D. Then f

is holomorphic.
Hint: Antiderivative by Path-Independence &
Corollary 3.5.4.

Theorem 3.6.1.
Let D ⊆ C be a domain, z0 ∈ D and R > 0 s.t.
DR(z0) ⊆ D, f holomorphic on D and M > 0
s.t. ∀z ∈ D : |f(z)| 6M . Then ∀n ∈ N:

|f (n)(z0)| 6
n!M

Rn
.

Hint: Generalized Cauchy Integral Formula and
Lemma 3.2.9.

Theorem 3.6.2 (Liouville’s Theorem).
Let f be holomorphic on C and bounded, i.e.
there exists M > 0 s.t. ∀z ∈ C|f(z)| 6M . Then
f is constant.
Hint: Theorem 3.6.1 on circle ⇒ f ′(z) = 0⇒ f
constant by Corollary 3.3.6.

Exercise 3.6.4.
Let P be a (monic) polynomial of degree N ,
then there exists R > 0 s.t.
|z| > R⇒ |P (z)| > 1

2
|z|N .

Theorem 3.7.1.
Let D ⊆ C be a domain, z0 ∈ D and R > 0 s.t.
DRz0 ⊆ D and f holomorphic on D. Then

f(z0) =
1

2π

∫ 2π

0
f(z0 +Reit) dt

Remark 3.7.2.
If there exists M > 0 s.t. ∀z ∈ CR(z0) : |f(z)|
with requirements of Theorem 3.7.1, then
|f(z0)| 6M .

Lemma 3.7.3.
Let D ⊆ C be a domain, z0 ∈ D and R > 0 s.t.
DR(z0) ⊆ D, f holomorphic on D s.t.
maxz∈DR(z0) |f(z)| = |f(z0)|. Then |f(z)| is

constant on DR(z0).

Exercise 3.7.4.
Let D ⊆ C be a domain, f holomorphic on D
s.t. |f(z)| is constant on D. Then f is constant
on D.

Theorem 3.7.5 (Maximum Modulus
Principle).
Let D ⊆ C be a domain, f holomorphic and
bounded on D, i.e. |f(z)| 6M for M > 0. If
|f(z)| achieves maximum at z0 ∈ D, then f is
constant.

Remark 3.7.6.
A holomorphic function on a bounded domain,
continuous up to and including the boundary,
attains maximum on the boundary.

Theorem 3.7.8 (Maximum/minimum
Principle for Harmonic Functions).

Let D ⊆ R2 be a domain, φ : D → R be
harmonic s.t. φ is bounded above or below on
D by M > 0 and ∃z0 ∈ D : φ(z0) = M . Then φ
is constant on D.

Question Ws.7, Q.5.

Let f be holomorphic on D1(0) s.t.
maxz∈Cr(0) |f(z)| → 0 as r → 1, then f = 0.

Question Ws.8, Q.2.

Let f be holomorphic on C s.t. |f | → 0 as
|z| → ∞. Then ∀z ∈ C : f(z) = 0.

Question Ws.8, Q.3.

Let f be holomorphic on C and periodic in real
and imaginary directions, i.e.
∃a0, b0 > 0∀z ∈ C : f(z) = f(z + z0) and
f(z) = f(z + ib0). Then f is constant.

Hint: f is determined by values within
rectangle, so bounded. Then Liouville’s
Theorem.

Question Ws.8, Q.4.

Let f be holomorphic on C. If Re(f(z)) or
Im(f(z)) are bound below or above for all
z ∈ C, then f is constant.

Question Ws.8, Q.5.

Let f be holomorphic on C s.t. for some integer
N > 1 there exists C > 0 s.t. |f(z)| 6 C|z|N for
all z ∈ C. Then f (n)(z) = 0 for all z ∈ C, for all
n > N + 1.

Question Ws.8, Q.6.

Suppose f is holomorphic on C s.t. |f(z)| → ∞
as |z| → ∞. Then f is surjective.

Question Ws.9, Q.4.

Let f be holomorphic on C s.t. there exists
C > 0 s.t. |f(z)| 6 C|z|2 for all z ∈ C. Then
f(z) = cz2 for some c ∈ C s.t. |c| 6 C.

Infinite Series

Lemma 4.1.2.

Let
∑∞
j=0 zj be a convergent series. Then

zj → 0 as j →∞.

Lemma 4.1.6 (Comparison Test).

Let zn ∈ C be a sequence s.t. |zn| ≤Mn, for
Mn ≥ 0, for all n ≥ n0 for some n0 ∈ N, where∑∞
j=0 Mj is convergent. Then

∑∞
j=0 zj is

convergent.

Lemma 4.1.7.

Let c ∈ C. Then
∑∞
j=0 c

j is convergent if and

only if |c| < 1.

Lemma 4.1.9 (Ratio Test).

Let zn ∈ C be a sequence and suppose

lim
n→∞

∣∣∣∣ zn+1

zn

∣∣∣∣ = L

Then

(i) if L < 1, the series
∑∞
j=0 zj is convergent;

(ii) if L > 1, the series
∑∞
j=0 zj is divergent;

(iii) if L = 1, we can conclude nothing.



Example 4.1.15.
Let fn(z) = exp (−nz2) (holomorphic!), then
fn → f as n→∞ pointwise where

f(x) =

{
1 x = 0,

0 x 6= 0.

is not holomorphic.

Lemma 4.1.17.
Let S ⊆ C and suppose fn : S → C, sequence of
continuous functions, converge uniformly to f .
Then f is continuous.

Lemma 4.1.19 (Weierstrass M-test).
Let S ⊆ C, fn : S → C a sequence of functions
and Mn ≥ 0 a sequence of non-negative
numbers s.t. for all z ∈ S and for all
n ≥ n0 ∈ N, |fn(z) ≤Mn| and

∑∞
j=0 Mj

converges. Then
∑∞
j=0 fj(z) converges

uniformly on S.

Theorem 4.1.23.
Let D ⊆ C be a simply-connected domain, fn
holomorphic on D and converge uniformly to f .
Then f : D → C is holomorphic on D.

Theorem 4.2.4 (
). Let

∑∞
j=0 aj(z − z0)j be a power series and

suppose the sequence
∣∣∣ aj
aj+1

∣∣∣ has a limit. Then

the radius of convergence is equal to this limit.

Exercise 4.3.8.
The following Taylor series are centred at 0:

exp(z) =

∞∑
j=0

zj

j!

cos(z) =
∞∑
j−0

(−1)j
z2j

(2j)!

sin(z) =

∞∑
j−0

(−1)j
z2j+1

(2j + 1)!

Theorem 4.4.4 (Laurent Series).
Let z0 ∈ C, 0 6 r < R 6∞, f holomorphic on
Ar,R(z0). Then f can be expressed as Laurent
series centred at z0, convergent on Ar,R(z0) and

uniformly convergent on Ar1,R1 (z0) for
r < r1 6 R1 < R. Moreover:

aj =
1

2πi

∫
Γ

f(z)

(z − z0)j+1
dz

Proposition 4.5.4.
Let z0 ∈ C, U ⊆ C a neighbourhood of z0, f
holomorphic on U with zero of finite order z0.
Then z0 is isolated.
Hint: Function with Zeros Trick, g(z0) 6= 0 and
continuity of g.

Corollary (Lecture).
Let f have finitely many zeros. Then all zeros
are isolated.

Corollary 4.5.5.
Let z0 ∈ C, U ⊆ C a neighbourhood of z0, f
holomorphic on U s.t. f(zn) = 0 for sequence
zn ∈ U s.t. zn → z0 as n→∞. Then ∃R > 0
s.t. ∀z ∈ DR(z0) : f(z) = 0.
Hint: Continuity of f and contrapositive of
Prop. 4.5.4.

Corollary 4.5.6.
Let z0 ∈ C be singularity of rational function
f = P/Q. Then z0 is isolated.

Theorem 4.5.8.
Let z0 ∈ C be a removable singularity of f ,
holomorphic on D′R(z0) for some R > 0. Then

f(z0) can be (re-)defined s.t. f is holomorphic
on z0.

Lemma 4.5.11.
Let f, g be holomorphic at z0, where z0 is zero
of order m of g. Then

(i) if z0 is not zero of f , f/g has pole of order
m at z0;

(ii) if z0 is zero of order k of f , f/g has pole
of order m− k at z0 if m > k and
removable singularity otherwise.

Hint: Function with Zeros Trick.

Theorem 4.6.4 (Identity Theorem).
Let D ⊆ C, z0 ∈ D, f holomorphic on D s.t.
∀z ∈ DR(z0) : f(z) = 0 for some R > 0. Then
f(z) = 0 for all z ∈ D.

Corollary 4.6.5.
Let D ⊆ C, f, g holomorphic on D s.t.
∀z ∈ DR(z0) : f(z) = g(z) for some R > 0.
Then f(z) = g(z) for all z ∈ D.

Corollary 4.6.7.
Let D ⊆ C, z0 ∈ D and f holomorphic on D s.t.
f(zn) = 0 for a sequence of distinct zn ∈ D
which converge to z0. Then f(z) = 0 for all
z ∈ D.

Corollary 4.6.8.
Let D ⊆ C, z0 ∈ D and f, g holomorphic on D
s.t. f(zn) = g(zn) for a sequence of distinct
zn ∈ D which converge to z0. Then f(z) = g(z)
for all z ∈ D.

Question Ws.10, Q.5.
Let f be holomorphic on D′r(z0) and
|f(z)| 6M for all z ∈ D′r(z0), for some M > 0.
Then f can be (re-)defined at z0 to make f
holomorphic on Dr(z0).

Residue Calculus

Theorem 5.1.1.
Let z0 ∈ C, f holomorphic on D′R(z0) for some
R > 0 with z0 being isolated singularity, Γ in
D′R(z0) and z0 ∈ Int(Γ). Then∫

Γ
f(z) dz = 2πia−1

where a−1 is coefficient from Laurent expansion.

Lemma 5.1.4.
Let z0 ∈ C, f holomorphic on D′R(z0) for some
R > 0, with removable singularity z0. Then
Res(f, z0) = 0.

Lemma 5.1.5.
Let z0 ∈ C, f holomorphic on D′R(z0) for some
R > 0, with pole of order m at z0. Then

Res(f, z0) = lim
z→z0

1
(m−1)!

dm−1

dzm−1 [(z − z0)mf(z)].

Hint:

Lemma 5.1.7.
Let z0 ∈ C, g and h holomorphic on D′R(z0) for
some R > 0, s.t. h has a simple zero at z0,
while g(z0) 6= 0. Then for f = g/h:

Res(f, z0) =
g(z0)

h′(z0)
.

Theorem 5.1.11 (Cauchy Residue Theorem).
Let f be holomorphic inside and on loop Γ
except for finitely many isolated singularities
z1, . . . , zk ∈ Int(Γ). Then∫

Γ
f(z) dz = 2πi

k∑
j=1

Res(f, zj).

Theorem 5.2.5 (The Argument Principle).
Let Γ ⊆ C be a loop, f non-zero on Γ,
holomorphic inside and on Γ, except for finitely
many poles in Γ (meromorphic). Then

1

2πi

∫
Γ

f ′(z)

f(z)
dz =∑

z0∈Int(Γ)

order(z0)−
∑

z∞∈Int(Γ)

order(z∞)

where z0 is a zero of f and z∞ is a pole of f .

Corollary 5.2.6.
Let Γ ⊆ C be a loop, f non-zero on Γ,
holomorphic inside and on Γ. Then

1

2πi

∫
Γ

f ′(z)

f(z)
dz =

∑
z0∈Int(Γ)

order(z0)

where z0 is a zero of f .

Theorem 5.2.7 (Rouché’s Theorem).
Let Γ be a loop, f, g holomorphic inside and on
Γ s.t. ∀z ∈ Γ : |f(z)− g(z)| < |f(z)|. Then∑

z0∈Int(Γ)

order(z0) =
∑

z0∈Int(Γ)

order(w0)

where z0 is zero of f and w0 is zero of g. N.B.:
Number and order of zeros can be different,
only total is equal.

Theorem 5.2.16 (Open Mapping Theorem).
Let D ⊆ C be a domain and suppose f : D → C
is non-constant and holomorphic on D. Then
f(D) is an open subset of C.

Corollary 5.2.18.
Let D ⊆ C be a domain, f holomorphic on D
s.t. any of the values Re(f(z)), Im(f(z)),
|f(z)|, or Arg(f(z)) is constant. Then f is
constant.

Exercise 5.2.19 (Schwarz’s Lemma).
Let f be holomorphic on D1(0) s.t. f(0) = 0
and ∀z ∈ D1(0) : |f(z)| 6 1. Then |f(z)| 6 |z|.
Remark (unknown).
Let z = eiθ, i.e. z ∈ D1(0), then

cos θ = Re(z) =
1

2

(
z +

1

z

)
sin θ = Im(z) =

1

2i

(
z −

1

z

)
Remark (Trigonometric Integrals).
Let Γ = C1(0), parametrized by γ : [0, 2π]→ C;
θ 7→ exp(iθ) and let R(cos θ, sin θ) be a rational
function of cosines and sines, then

2π∫
0

R(cos θ, sin θ) dθ =

∫
Γ

1

iz
R

(
z + 1

z

2
,
z − 1

z

2i

)
dz

i.e. trigonometric integral can be evaluated as
contour integral on unit circle by replacing cos θ

with
z+1/z

2
and sin θ with

z−1/z
2i

and

multiplying integrand by 1
iz

.

Lemma 5.4.6 (Jordan Lemma).
Let P,Q be polynomials s.t.
deg (Q) > deg (P ) + 1 and a ∈ R \ {0}. Then

lim
ρ→∞

∫
C+
ρ

exp(iaz)
P (z)

Q(z)
dz = 0, if a > 0;

lim
ρ→∞

∫
C−ρ

exp(iaz)
P (z)

Q(z)
dz = 0, if a < 0

where C+
ρ , C−ρ are semicircular arcs from −ρ to

ρ in upper/lower half-plane.

Lemma 5.5.3.
Let D ⊆ C be a domain, c ∈ D, f holomorphic
on D except at possibly finitely many



singularities with simple pole at c. Let Sr be
circular arc parametrized by γ(θ) = c+ r exp(iθ)
for θ ∈ [θ0, θ1] for some 0 6 θ0 < θ1 6 2π. Then

lim
r→0

∫
Sr

f(z) dz = i(θ1 − θ0)Res(f, c)

Lemma 5.6.4.
Let 0 6 k 6 n be non-negative integers, let

(n
k

)
be the usual binomial coefficient and Γ a loop
with 0 in interior. Then(n

k

)
=

1

2πi

∫
Γ

(1 + z)n

zk+1
dz

Miscellaneous

Example (Circle Parametrization).
Circle Cr(z0), z0 ∈ C, r > 0 can be
parametrized by
γ : [0, 2π]→ C; t 7→ z0 + r exp(it).

Remark (Contour Integral Checklist).

� Accounted for orientation of contour?

� Accounted for n!
2πi

factor in
(Generalized) Cauchy Integral Formula?

Remark (Classifying Singularities).

� Isolated or not?

� If isolated, what order? (Lemma 4.5.11)

Remark (Function with Zeros Trick).
Let f be holomorphic with z0, zero of order m.
Then

f(z) = (z − z0)mg(z)

where g(z) =
∑∞
j=0

f(j+m)(z0)
(j+m)!

(z − z0)j ,

g(z0) 6= 0.

Remark (Function with Poles Trick).
Let f be holomorphic except at z0, pole of
order k. Then

f(z) = (z − z0)−kH(z)

where H(z) =
∑∞
j=0 aj−k(z − z0)j ,

holomorphic.

Definitions

Definition 1.2.2.
A neighbourhood of z0 ∈ C is an open set
containing z0.

Lemma 1.3.8.
Let f : C→ C. The f is continuous ⇔ the
preimage f−1(U) is open for all open U ⊆ C.

Definition 1.4.12.
Let h : R→ R. Then h is harmonic if it
satisfies for all (x, y) ∈ R2 Laplace’s equation:

∂2h

∂x2
(x, y) +

∂2h

∂y2
= 0.

Definition 1.4.14.
Let U ⊆ R2 be open, u : U → R harmonic. The
function v : U → R is the harmonic conjugate
of u if f = u+ iv is holomorphic on U .

Definition 1.6.4.

cos(z) :=
exp(iz) + exp(−iz)

2
,

sin(z) :=
exp(iz)− exp(−iz)

2i

Remark (Trigonometric Functions).

tan :=
sin

cos
, cot :=

1

tan
,

sec :=
1

cos
, csc :=

1

sin

Definition 1.6.9.

cosh(z) :=
exp(z) + exp(−z)

2
,

sinh(z) :=
exp(z)− exp(−z)

2

Definition 1.7.6.
A branch cut L is a subset of complex plane
removed s.t. multivalued function can be
defined holomorphic on C \ L. An endpoint of a
branch cut is a branch point.
The set Lz0,φ = {z ∈ C : z = z0 + reiπ , r > 0}
denotes a half-line.
The set Dz0,φ = C \Lz0,φ denotes the cut plane
with branch point z0 and along angle line at
angle φ.

Definition 1.7.8.
Let φ ∈ R. We define the branch Argφ(z) of the
argument function s.t. φ < Argφ(z) 6 φ+ 2π.
This defines a branch of logarithm:
Logφ(z) = ln |z|+ iArgφ(z). N.B.: The
principal branch is when φ = −π.

Definition 1.8.1.
Let α, z ∈ C, z 6= 0. Then we define the
α-power of z by zα = {exp(αw) : w ∈ log(z)}.

Definition 1.8.4.
Let q ∈ N, then the q values:

11/q = {1, ω, ω2, . . . , ωq−1}
where ω := exp(i2π/q), are the q roots of unity.

Definition 1.8.7.
The principal branch of logarithm defines the
principal branch of zα by zα = exp(αLog(z)).

Definition 2.1.2.
Let U ⊆ C and f : U → C. f is conformal if f
preserves angles.

Definition 2.2.1.
A Möbius transformation is a function of
form

f(z) =
az + b

cz + d

where a, b, c, d ∈ C and ad 6= bc.

Definition 2.3.1.
The extended complex plane is the set
C̃ = C ∪ {∞}. where for a ∈ C and b ∈ C \ {0}:

a+∞ =∞, b · ∞ =∞,
b

0
=∞,

b

∞
= 0

For f(z) = az+b
cz+d

we define f(−d/c) =∞ and

f(∞) = a/c.

Definition 2.4.1.

(i) Translation: f(z) = z + b, b ∈ C with
matrix

(
1 b
0 1

)
;

(ii) Rotation: f(z) = az, a = eiθ ∈ C s.t.

|a| = 1 with matrix
(
eiθ/2 0

0 eiθ/2

)
;

(iii) Dilation: f(z) = rz, where r > 0 with

matrix
(√

r 0

0 1/
√
r

)
;

(iv) Inversion: f(z) = 1/z with matrix
(

0 i
i 0

)
.

A Möbius transformation fixes the point at
infinity if f(∞) =∞. Only inversion does not
fix the point at infinity.

Definition 2.5.5.
Let z1, z2, z3, z4 ∈ C̃ be distinct points. The
cross-ratio [z1, z2, z3, z4] is the image z1 under
the Möbius transformation sending z2, z3, z4 to
(1, 0,∞).

Definition 3.2.7.
Let Γ ⊆ C be a regular curve. We define
arclength `(Γ) by:

`(Γ) :=

∫ t1

t0

|γ′(t)| dt =

∫ t1

t0

√
x′(t)2 + y′(t)2 dt

Definition 3.3.1.
Let D ∈ C. We say D is a domain if D is open
and any two points in D can be connected by a
contour entirely in D.

Definition 3.4.1.
Let Γ ⊆ C be a contour. Then Γ is simple if it
has no self-intersections.

Definition 3.4.6.
Let D be a domain. Then D is
simply-connected if for all loops Γ ∈ D we
have Int(Γ) ⊆ D .

Definition 4.3.1.
Let z0 ∈ C and f holomorphic at z0. The
Taylor series of f centred at z0 is:

∞∑
j=0

f (j)(z0)

j!
(z − z0)j

Definition .
Let z0 ∈ C. A Laurent series centred at z0 is a
series of the form:

∞∑
j=−∞

aj(z − z0)j

Definition 4.5.1.
Let D ⊆ C be a domain, f : D → C, z0 ∈ C. We
say z0 is a singularity if f is not holomorphic
at z0.
Singularity z0 is isolated, if ∃R > 0 s.t. f is
holomorphic on D′R(z0).

Definition 4.5.3.
Let z0 ∈ C, U ⊆ C be a neighbourhood of z0, f
holomorphic on U . Then z0 is a zero of f if
f(z0) = 0.
Zero z0 is zero of finite order if ∃m ∈ N s.t.

f(z0) = f ′(z0) = . . . = f (m−1)(z0) = 0

but f (m)(z0) 6= 0.
Singularity z0 is isolated, if ∃R > 0 s.t.
f(z) 6= 0 for z0 ∈ D′R(z0).

Definition 4.5.7.
Let z0 ∈ C be an isolated singularity of f ,
holomorphic on D′R(z0) for some R > 0. Then

f(z) =
∑∞
j=−∞ aj(z − z0)j on A0,R(z0)

(Laurent Series. If

(i) ∀j < 0 : aj = 0, then z0 is removable;

(ii) ∀j < −m : aj = 0 for some m ∈ N and
a−m 6= 0, then z0 is pole of order m ;

(iii) aj 6= 0 for infinitely many j, z0 is
essential.

Definition 4.6.1.
Let D ⊆ D̃ ⊆ C be domains, f : D → C
holomorphic. F : D̃ → C is an analytic
continuation of f if ∀z ∈ D : F (z) = f(z).

Definition 5.1.2.
Let z0 ∈ C and f holomorphic on D′R(z0) for
some R > 0, with isolated singularity z0. Then
residue of f at z0 is Res(f, z0) = a−1, where
a−1 is from Laurent Expansion of f .

Definition 5.2.1.
Let D ⊆ C be a domain. Function f is
meromorphic on D if for all z ∈ D either f has
a pole of finite order or f is holomorphic at z.
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