Holomorphic Functions

Lemma 1.1.14.
Let $z, w \in \mathbb{C}$, then
(i) $|z|=0 \Leftrightarrow z=0$;
(ii) $|\bar{z}|=|z|$;
(iii) $|z w|=|z||w|$;
(iv) $\overline{\bar{z}}=z$;
(v) $|z|^{2}=z \bar{z}$
(vi) $\overline{z+w}=\bar{z}+\bar{w}$;
(vii) $\overline{z w}=(\bar{z})(\bar{w})$;
(viii) $|\operatorname{Re}(z)| \leqslant|z|$ and $|\operatorname{Im}(z)| \leqslant|z|$;
(ix) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$

Remark (unknown).
Let $z \in \mathbb{C}$. If $|z|=1$, then $\bar{z}=\frac{1}{z}$.
Lemma 1.1.15 (Triangle Inequality).
Let $z, w \in \mathbb{C}$, then

$$
|z+w| \leqslant|z|+|w|
$$

Lemma 1.1.16 (Reverse Triangle Inequality) Let $z, w \in \mathbb{C}$, then

$$
|z-w| \geqslant||z|-|w||
$$

Proposition 1.1.19.
Let $z, w \in \mathbb{C} \backslash\{0\}$. Then
(i) $\arg (z w)=\arg (z)+\arg (w)$ and $\arg (\bar{z})=-\arg (z) ;$
(ii) $\operatorname{Arg}(z w)=\operatorname{Arg}(z)+\operatorname{Arg}(w)+2 k \pi$ and $\operatorname{Arg}(\bar{z})=-\operatorname{Arg}(z)+2 m \pi, k, m \in \mathbb{Z}$.

Theorem 1.4.5 (Cauchy-Riemann Equations). Let $z_{0}=z_{0}+i y_{0} \in \mathbb{C}, U \subseteq \mathbb{C}$ a neighbourhood of z_{0} and $f: U \rightarrow \mathbb{C}$ differentiable at z_{0}, where $f=u+i v$. Then

$$
\begin{aligned}
& \frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \\
& \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=-\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Theorem 1.4.6.

Let $z_{0}=z_{0}+i y_{0} \in \mathbb{C}, U \subseteq \mathbb{C}$ a neighbourhood of z_{0} and $f: U \rightarrow \mathbb{C}$ with $f=u+i v$. If u, v are continuously differentiable, i.e. derivatives exist and are continuous, on a neighbourhood of (x_{0}, y_{0}) and satisfy the Cauchy-Riemann equations at $\left(x_{0}, y_{0}\right)$, then f is differentiable at z_{0}.

Example 1.4.11.

$|z|^{2}$ is differentiable only at the origin and nowhere holomorphic.

Lemma 1.4.13.

Let $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be twice continuously
differentiable, i.e. all second partial derivatives exist and are continuous. If
$f(x+i y)=u(x, y)+i v(x, y)$ is holomorphic on \mathbb{C}, then u, v are harmonic.

Lemma 1.5.6.
Let $P, Q: \mathbb{C} \rightarrow \mathbb{C}$ be polynomials. Then rational function $R=P / Q$ is holomorphic on
$\{z \in \mathbb{C}: Q(z) \neq 0\}$.

Lemma 1.6.6.

Let $z, w \in \mathbb{C}$. Then
(i) $\sin (z+\pi / 2)=\cos (z)$;
(ii) $\sin (z+w)=\sin (z) \cos (w)+\cos (z) \sin (w)$;
(iii) $\cos (z+w)=\cos (z) \cos (w)-\sin (z) \sin (w)$

Lemma 1.6.7.
Let $z=x+i y \in \mathbb{C}$. Then
$\sin (x+i y)=\sin (x) \cosh (y)+i \cos (x) \sinh (y)$,
$\cos (x+i y)=\cos (x) \cosh (y)-i \sin (x) \sinh (y)$
Lemma 1.6.10.

$$
\sinh (i z)=i \sin (z), \quad \cosh (i z)=\cos (z)
$$

Lemma 1.7.3.
Let $z, w \in \mathbb{C} \backslash\{0\}$. Then
(i) $\log (z)=\ln |z|+i \arg (z)=$
$\{\ln |z|+i \operatorname{Arg}(z)+2 \pi i k: k \in \mathbb{Z}\}$;
(ii) $\log (z w)=\log (z)+\log (w)$;
(iii) $\log (1 / z)=-\log (z)$

Lemma 1.8.2.

We can rewrite z^{α} as:
$z^{\alpha}=\{\exp (\alpha \ln |z|+i \alpha \operatorname{Arg}(z)+i \alpha 2 \pi k): k \in \mathbb{Z}\}$

$$
=\{\exp (\alpha \log (z)) \exp (i \alpha 2 \pi k): k \in \mathbb{Z}\}
$$

Theorem 1.8.3.

Let $\alpha, z \in \mathbb{C}, z \neq 0$. Then
(i) $\alpha \in \mathbb{Z} \Rightarrow$ one value of z^{α};
(ii) $\alpha=p / q$, with p, q coprime integers, $q \neq 0$ \Rightarrow exactly q values of z^{α};
(iii) α irrational or non-real \Rightarrow infinitely many values of z^{α}.

Lemma 1.8.8.

Let $\alpha, \beta, z \in \mathbb{C}$, with $z \neq 0$. Then $z^{\alpha} z^{\beta}=z^{\alpha+\beta}$, where principal branch of logarithm is chosen for each power.

Exercise 1.8.11.

Let $z, w, \alpha \in \mathbb{C}$. It is not true in general that $(z w)^{\alpha}=z^{\alpha} w^{\alpha}$, where principal branch is chosen in each case. Consider

Remark (TopHat).

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. Then f maps bounded sets to bounded sets.

Remark (TopHat).
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. Then f does not map unbounded sets to unbounded sets, consider $f(z)=a_{0} \in \mathbb{C}$, i.e. $f(\mathbb{C})=\left\{a_{0}\right\}$.

Question Ws.1, Q.7.
Let $z \in \mathbb{C}$, then

$$
|z| \leqslant|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \leqslant \sqrt{2}|z|
$$

Question Ws.2, Q. 1 (De Moivre's Formula). Let $\theta \in \mathbb{R}, n \in \mathbb{Z}$. Then:

$$
\cos (n \theta)+i \sin (n \theta)=(\cos \theta+i \sin \theta)^{n}
$$

Question Ws.2, Q2.
(b) Let $z \in \mathbb{C} \backslash\{0\}$, then $\arg \left(z^{2}\right) \neq 2 \arg (z)$ in general, e.g. $z=-1$.
Question Ws.2, Q.3.
(b) Let $z \in \mathbb{C} \backslash\{0\}$, then $\arg (1 / z)=\arg (\bar{z})=$ $-\arg (z)$.
Question Ws.2, Q.6.
Let $z \in \mathbb{C}$ and $z \neq 1$, then

$$
\sum_{k=0}^{m} z^{k}=\frac{1-z^{m+1}}{1-z}
$$

Question Ws.3, Q.1.
$f(z)=|z|$ is continuous everywhere on \mathbb{C}, but nowhere holomorphic.

Question Ws.3, Q.6.

Let f be real-valued and holomorphic. Then f is constant.

Question Ws.3, Q.7.
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. Then
(a) $\overline{f(\bar{z})}$ is holomorphic;
(b) if $\overline{f(z)}$ is holomorphic, f is constant;
(c) if $f(\bar{z})$ is holomorphic, f is constant.

Conformal Maps and Möbius Transformations

Theorem 2.1.2.
Let $U \subseteq \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ holomorphic. Then f preserves angles at every $z_{0} \in U$ where $f^{\prime}\left(z_{0}\right) \neq 0$.

Remark 2.2.2.

If f is a Möbius transformation defined by $a, b, c, d \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, then $\lambda a, \lambda b, \lambda c, \lambda d$ define the same Möbius transformation:

$$
\frac{\lambda a z+\lambda b}{\lambda c z+\lambda d}=\frac{a z+b}{c z+d}
$$

i.e. we can impose condition $a d-b c=1$.

Lemma 2.2.3.

Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with determinant $a d-b c=1$,
then we associate the Möbius transformation
$f_{M}(z)=\frac{a z+b}{c z+d}$. Under this correspondence:

$$
f_{M_{1} M_{2}}=f_{M_{1}} \circ f_{M_{2}}, \quad f_{M-1}=f_{M}^{-1}
$$

Theorem 2.4.2

Let f be a Möbius transformation. Then f is a composition of a finite number of translations, rotations, dilations and if and only if f does not fix the point at infinity, one inversion.

Corollary 2.4.3.

Möbius transformations map circlines to circlines.

Lemma 2.5.1.

Let f be a Möbius transformation and $z_{2}, z_{3}, z_{4} \in \tilde{\mathbb{C}}$ three distinct points s.t. $f\left(z_{2}\right)=z_{2}, f\left(z_{3}\right)=z_{3}, f\left(z_{4}\right)=z_{4}$. Then f is the identity.

Theorem 2.5.2

Let $z_{2}, z_{3}, z_{4} \in \mathbb{C}$ be three distinct points.
Then there exists a unique Möbius
transformation s.t. $f\left(z_{2}\right)=1, f\left(z_{3}\right)=0$,
$f\left(z_{4}\right)=\infty$.

Corollary 2.5.3.

Let $\left(z_{2}, z_{3}, z_{4}\right),\left(w_{2}, w_{3}, w_{4}\right) \in \tilde{\mathbb{C}}$ be two triplets of distinct points. Then there exists a unique Möbius transformation f s.t. $f\left(z_{2}\right)=w_{2}$,
$f\left(z_{3}\right)=w_{3}, f\left(z_{4}\right)=w_{4}$.

Remark 2.5.6.

Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}$, then:

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\frac{z_{1}-z_{3}}{z_{1}-z_{4}} \frac{z_{2}-z_{4}}{z_{2}-z_{3}}
$$

If one of the z_{i} is ∞, then all terms involving it disappear, e.g.:

$$
\left[z_{1}, z_{2}, \infty, z_{4}\right]=\frac{z_{2}-z_{4}}{z_{1}-z_{4}}
$$

Theorem 2.5.7.
Let $z_{1}, z_{2}, z_{3}, z_{4} \in \tilde{\mathbb{C}}$ be distinct and f a Möbius transformation. Then

$$
\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right]=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]
$$

Question Ws.5, Q.1.
(a) $f(z)=\frac{(z-1)}{(z+1)}$:
(i) $f(\{\operatorname{Re}(z)>0\})=D_{1}(0)$
(ii) $f\left(D_{1}(0)\right)=\{\operatorname{Re}(z)<0\}$
(b) $f(z)=\exp (i z)$:
(i) $f(\{0<\operatorname{Re}(z)<\pi\})=\{\operatorname{Im}(z)>0\}$
(ii) $f(\{-\pi / 2<\operatorname{Re}(z)<\pi / 2$ and $\operatorname{Im}(z)>$ $0\})=\{|z|,-\pi / 2<\operatorname{Arg}(z)<\pi / 2\}$
(c) $f(z)=z^{\frac{1}{2}}$:
(i) $f(\{\operatorname{Re}(z)>0\})=\{-\pi / 4<\operatorname{Arg}(z)<$ $\pi / 4\}$
(ii) $f\left(D_{0,-\pi}\right)=\{\operatorname{Re}(z)>0\}$ (preimage is cut plane)

Complex Integration

Lemma 3.2.8.
Let Γ be arc of a circle of radius r traced through angle θ. Then $\ell(\Gamma)=r \theta$.

Lemma 3.2.9 (M-L Lemma).
Let $\Gamma \in \mathbb{C}$ be a regular curve and let $f: \Gamma \rightarrow \mathbb{C}$ be continuous. Then

$$
\left|\int_{\Gamma} f(z) d z\right| \leqslant \ell(\Gamma) \max _{z \in \Gamma} f(z)
$$

Lemma 3.3.2.

Let $D \subseteq \mathbb{C}$ be a domain an suppose $u: D \rightarrow \mathbb{R}$ is differentiable and $\frac{\partial u}{\partial x}=0=\frac{\partial u}{\partial y}$ on D. Then u is constant on D.

Theorem 3.3.5 (Fundamental Theorem of Calculus).
Let $D \subseteq \mathbb{C}$ be a domain, $\Gamma \subseteq D$ contour joining $z_{0}, z_{1} \in D, f: D \rightarrow \mathbb{C}$ with antiderivative F on D. Then

$$
\int_{\Gamma} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

Corollary 3.3.6.
Let $D \subseteq \mathbb{C}$ be a domain, f holomorphic on D with $\forall z \in D: f^{\prime}(z)=0$. Then f is constant.

Lemma 3.3.9 (Path-Independence Lemma).
Let $D \subseteq \mathbb{C}$ be a domain, $f: D \rightarrow \mathbb{C}$
continuous. Then the following are equivalent:
(i) f has an antiderivative on D;
(ii) $\int_{\Gamma} f(z) d z=0$ for all closed contours Γ on D;
(iii) all $\int_{\Gamma} f(z) d z$ are independent of path.

Theorem 3.4.2 (Jordan Curve Theorem). Let $\Gamma \subseteq \mathbb{C}$ be a loop. Then Γ defines two regions, bounded domain $\operatorname{Int}(\Gamma)$ and unbounded domain $\operatorname{Ext}(\Gamma)$, with common boundary Γ.

Theorem 3.4.8 (Cauchy Integral Theorem). Let f holomorphic inside and on loop Γ. Then

$$
\int_{\Gamma} f(z) d z=0
$$

Corollary 3.4.9.

Let $D \subseteq \mathbb{C}$ be a simply-connected domain, f holomorphic on D. Then f has antiderivative on D.

Remark (unknown).

Due to Cauchy Integral Theorem, we can deform a contour without changing value of integral, provided we do not cross any point where f is not holomorphic.

Theorem 3.4.11.
Let $z_{0} \in \mathbb{C}$ and $\Gamma \subseteq \mathbb{C}$ a loop s.t. it does not pass through z_{0}. Then

$$
\int_{\Gamma} \frac{1}{z-z_{0}}= \begin{cases}2 \pi i & z_{0} \in \operatorname{Int}(\Gamma) \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 3.5.1 (Cauchy Integral Formula).

Let Γ be a loop, $z_{0} \in \operatorname{Int} \Gamma$ and f holomorphic inside and on Γ. Then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{z-z_{0}} d z
$$

Corollary 3.5.4.

Let $D \subseteq \mathbb{C}$ be a domain and f holomorphic on D. Then f is infinitely differentiable on D and all derivatives are holomorphic on D.

Theorem 3.5.5 (Generalized Cauchy Integral Formula).
Let Γ be a loop, $z_{0} \in \operatorname{Int} \Gamma$ and f holomorphic inside and on Γ. Then f is infinitely differentiable at z_{0} and $\forall n \in \mathbb{N}$:

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z .
$$

Theorem 3.5.11 (Morera's Theorem).
Let $D \subseteq \mathbb{C}$ be a domain, $f: D \rightarrow \mathbb{C}$ continuous s.t. $\int_{\Gamma} \bar{f}(z) d z=0$ for all loops $\Gamma \subseteq D$. Then f is holomorphic.
Hint: Antiderivative by Path-Independence \& Corollary 3.5.4.

Theorem 3.6.1.
Let $D \subseteq \mathbb{C}$ be a domain, $z_{0} \in D$ and $R>0$ s.t. $\bar{D}_{R}\left(z_{0}\right) \subseteq D, f$ holomorphic on D and $M>0$ s.t. $\forall z \in D:|f(z)| \leqslant M$. Then $\forall n \in \mathbb{N}$:

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leqslant \frac{n!M}{R^{n}}
$$

Hint: Generalized Cauchy Integral Formula and Lemma 3.2.9.

Theorem 3.6.2 (Liouville's Theorem).
Let f be holomorphic on \mathbb{C} and bounded, i.e. there exists $M>0$ s.t. $\forall z \in \mathbb{C}|f(z)| \leqslant M$. Then f is constant.
Hint: Theorem 3.6.1 on circle $\Rightarrow f^{\prime}(z)=0 \Rightarrow f$ constant by Corollary 3.3.6.

Exercise 3.6.4.

Let P be a (monic) polynomial of degree N, then there exists $R>0$ s.t.
$|z| \geqslant R \Rightarrow|P(z)| \geqslant \frac{1}{2}|z|^{N}$.
Theorem 3.7.1.
Let $D \subseteq \mathbb{C}$ be a domain, $z_{0} \in D$ and $R>0$ s.t. $\bar{D}_{R} z_{0} \subseteq D$ and f holomorphic on D. Then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+R e^{i t}\right) d t
$$

Remark 3.7.2

If there exists $M>0$ s.t. $\forall z \in C_{R}\left(z_{0}\right):|f(z)|$ with requirements of Theorem 3.7.1, then $\left|f\left(z_{0}\right)\right| \leqslant M$.

Lemma 3.7.3.
Let $D \subseteq \mathbb{C}$ be a domain, $z_{0} \in D$ and $R>0$ s.t. $\bar{D}_{R}\left(z_{0}\right) \subseteq D, f$ holomorphic on D s.t. $\max _{z \in \bar{D}_{R}\left(z_{0}\right)}|f(z)|=\left|f\left(z_{0}\right)\right|$. Then $|f(z)|$ is constant on $\bar{D}_{R}\left(z_{0}\right)$.

Exercise 3.7.4.

Let $D \subseteq \mathbb{C}$ be a domain, f holomorphic on D s.t. $|f(z)|$ is constant on D. Then f is constant on D.

Theorem 3.7.5 (Maximum Modulus Principle).
Let $D \subseteq \mathbb{C}$ be a domain, f holomorphic and bounded on D, i.e. $|f(z)| \leqslant M$ for $M>0$. If $|f(z)|$ achieves maximum at $z_{0} \in D$, then f is constant.

Remark 3.7.6.

A holomorphic function on a bounded domain, continuous up to and including the boundary, attains maximum on the boundary.

Theorem 3.7.8 (Maximum/minimum Principle for Harmonic Functions).
Let $D \subseteq \mathbb{R}^{2}$ be a domain, $\phi: D \rightarrow \mathbb{R}$ be harmonic s.t. ϕ is bounded above or below on D by $M>0$ and $\exists z_{0} \in D: \phi\left(z_{0}\right)=M$. Then ϕ is constant on D.

Question Ws.7, Q.5.

Let f be holomorphic on $D_{1}(0)$ s.t.
$\max _{z \in C_{r}(0)}|f(z)| \rightarrow 0$ as $r \rightarrow 1$, then $f=0$.

Question Ws.8, Q.2.

Let f be holomorphic on \mathbb{C} s.t. $|f| \rightarrow 0$ as $|z| \rightarrow \infty$. Then $\forall z \in \mathbb{C}: f(z)=0$.

Question Ws.8, Q.3.

Let f be holomorphic on \mathbb{C} and periodic in real and imaginary directions, i.e.
$\exists a_{0}, b_{0}>0 \forall z \in \mathbb{C}: f(z)=f\left(z+z_{0}\right)$ and $f(z)=f\left(z+i b_{0}\right)$. Then f is constant.
Hint: f is determined by values within rectangle, so bounded. Then Liouville's Theorem.

Question Ws.8, Q.4.

Let f be holomorphic on \mathbb{C}. If $\operatorname{Re}(f(z))$ or $\operatorname{Im}(f(z))$ are bound below or above for all $z \in \mathbb{C}$, then f is constant.

Question Ws.8, Q.5.

Let f be holomorphic on \mathbb{C} s.t. for some integer $N \geqslant 1$ there exists $C>0$ s.t. $|f(z)| \leqslant C|z|^{N}$ for all $z \in \mathbb{C}$. Then $f(n)(z)=0$ for all $z \in \mathbb{C}$, for all $n \geqslant N+1$.

Question Ws.8, Q.6.

Suppose f is holomorphic on \mathbb{C} s.t. $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$. Then f is surjective.

Question Ws.9, Q.4.

Let f be holomorphic on \mathbb{C} s.t. there exists $C>0$ s.t. $|f(z)| \leqslant C|z|^{2}$ for all $z \in \mathbb{C}$. Then $f(z)=c z^{2}$ for some $c \in \mathbb{C}$ s.t. $|c| \leqslant C$.

Infinite Series

Lemma 4.1.2.

Let $\sum_{j=0}^{\infty} z_{j}$ be a convergent series. Then $z_{j} \rightarrow 0$ as $j \rightarrow \infty$.

Lemma 4.1.6 (Comparison Test).
Let $z_{n} \in \mathbb{C}$ be a sequence s.t. $\left|z_{n}\right| \leq M_{n}$, for $M_{n} \geq 0$, for all $n \geq n_{0}$ for some $n_{0} \in \mathbb{N}$, where $\sum_{j=0}^{\infty} M_{j}$ is convergent. Then $\sum_{j=0}^{\infty} z_{j}$ is convergent.

Lemma 4.1.7.

Let $c \in \mathbb{C}$. Then $\sum_{j=0}^{\infty} c^{j}$ is convergent if and only if $|c|<1$.

Lemma 4.1.9 (Ratio Test).
Let $z_{n} \in \mathbb{C}$ be a sequence and suppose

$$
\lim _{n \rightarrow \infty}\left|\frac{z_{n+1}}{z_{n}}\right|=L
$$

Then
(i) if $L<1$, the series $\sum_{j=0}^{\infty} z_{j}$ is convergent;
(ii) if $L>1$, the series $\sum_{j=0}^{\infty} z_{j}$ is divergent;
(iii) if $L=1$, we can conclude nothing.

Example 4.1.15.

Let $f_{n}(z)=\exp \left(-n z^{2}\right)($ holomorphic! $)$, then $f_{n} \rightarrow f$ as $n \rightarrow \infty$ pointwise where

$$
f(x)= \begin{cases}1 & x=0 \\ 0 & x \neq 0\end{cases}
$$

is not holomorphic.
Lemma 4.1.17.
Let $S \subseteq \mathbb{C}$ and suppose $f_{n}: S \rightarrow \mathbb{C}$, sequence of continuous functions, converge uniformly to f. Then f is continuous.

Lemma 4.1.19 (Weierstrass M-test).
Let $S \subseteq \mathbb{C}, f_{n}: S \rightarrow \mathbb{C}$ a sequence of functions and $M_{n} \geq 0$ a sequence of non-negative numbers s.t. for all $z \in S$ and for all $n \geq n_{0} \in \mathbb{N},\left|f_{n}(z) \leq M_{n}\right|$ and $\sum_{j=0}^{\infty} M_{j}$ converges. Then $\sum_{j=0}^{\infty} f_{j}(z)$ converges uniformly on S .

Theorem 4.1.23.

Let $D \subseteq \mathbb{C}$ be a simply-connected domain, f_{n} holomorphic on D and converge uniformly to f. Then $f: D \rightarrow \mathbb{C}$ is holomorphic on D.

Theorem 4.2.4 (
). Let $\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}$ be a power series and suppose the sequence $\left|\frac{a_{j}}{a_{j+1}}\right|$ has a limit. Then the radius of convergence is equal to this limit.

Exercise 4.3.8.

The following Taylor series are centred at 0 :

$$
\begin{aligned}
\exp (z) & =\sum_{j=0}^{\infty} \frac{z^{j}}{j!} \\
\cos (z) & =\sum_{j-0}^{\infty}(-1)^{j} \frac{z^{2 j}}{(2 j)!} \\
\sin (z) & =\sum_{j-0}^{\infty}(-1)^{j} \frac{z^{2 j+1}}{(2 j+1)!}
\end{aligned}
$$

Theorem 4.4.4 (Laurent Series).
Let $z_{0} \in \mathbb{C}, 0 \leqslant r<R \leqslant \infty, f$ holomorphic on $A_{r, R}\left(z_{0}\right)$. Then f can be expressed as Laurent series centred at z_{0}, convergent on $A_{r, R}\left(z_{0}\right)$ and uniformly convergent on $\bar{A}_{r_{1}, R_{1}}\left(z_{0}\right)$ for $r<r_{1} \leqslant R_{1}<R$. Moreover:

$$
a_{j}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{j+1}} d z
$$

Proposition 4.5.4.

Let $z_{0} \in \mathbb{C}, U \subseteq \mathbb{C}$ a neighbourhood of z_{0}, f holomorphic on U with zero of finite order z_{0}. Then z_{0} is isolated.
Hint: Function with Zeros Trick, $g\left(z_{0}\right) \neq 0$ and continuity of g.

Corollary (Lecture).
Let f have finitely many zeros. Then all zeros are isolated.

Corollary 4.5.5.

Let $z_{0} \in \mathbb{C}, U \subseteq \mathbb{C}$ a neighbourhood of z_{0}, f holomorphic on U s.t. $f\left(z_{n}\right)=0$ for sequence $z_{n} \in U$ s.t. $z_{n} \rightarrow z_{0}$ as $n \rightarrow \infty$. Then $\exists R>0$ s.t. $\forall z \in D_{R}\left(z_{0}\right): f(z)=0$.

Hint: Continuity of f and contrapositive of Prop. 4.5.4.

Corollary 4.5.6.

Let $z_{0} \in \mathbb{C}$ be singularity of rational function $f=P / Q$. Then z_{0} is isolated.

Theorem 4.5.8.

Let $z_{0} \in \mathbb{C}$ be a removable singularity of f, holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ for some $R>0$. Then
$f\left(z_{0}\right)$ can be (re-)defined s.t. f is holomorphic on z_{0}.

Lemma 4.5.11.
Let f, g be holomorphic at z_{0}, where z_{0} is zero of order m of g. Then
(i) if z_{0} is not zero of $f, f / g$ has pole of order m at z_{0};
(ii) if z_{0} is zero of order k of $f, f / g$ has pole of order $m-k$ at z_{0} if $m>k$ and removable singularity otherwise.
Hint: Function with Zeros Trick.
Theorem 4.6.4 (Identity Theorem).
Let $D \subseteq \mathbb{C}, z_{0} \in D, f$ holomorphic on D s.t.
$\forall z \in D_{R}\left(z_{0}\right): f(z)=0$ for some $R>0$. Then $f(z)=0$ for all $z \in D$.

Corollary 4.6.5.
Let $D \subseteq \mathbb{C}, f, g$ holomorphic on D s.t.
$\forall z \in \overline{D_{R}}\left(z_{0}\right): f(z)=g(z)$ for some $R>0$.
Then $f(z)=g(z)$ for all $z \in D$.
Corollary 4.6.7.
Let $D \subseteq \mathbb{C}, z_{0} \in D$ and f holomorphic on D s.t. $f\left(z_{n}\right)=0$ for a sequence of distinct $z_{n} \in D$ which converge to z_{0}. Then $f(z)=0$ for all $z \in D$.

Corollary 4.6.8.

Let $D \subseteq \mathbb{C}, z_{0} \in D$ and f, g holomorphic on D s.t. $f\left(z_{n}\right)=g\left(z_{n}\right)$ for a sequence of distinct $z_{n} \in D$ which converge to z_{0}. Then $f(z)=g(z)$ for all $z \in D$.

Question Ws.10, Q.5.
Let f be holomorphic on $D_{r}^{\prime}\left(z_{0}\right)$ and
$|f(z)| \leqslant M$ for all $z \in D_{r}^{\prime}\left(z_{0}\right)$, for some $M>0$.
Then f can be (re-)defined at z_{0} to make f holomorphic on $D_{r}\left(z_{0}\right)$.

Residue Calculus

Theorem 5.1.1.
Let $z_{0} \in \mathbb{C}, f$ holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ for some $R>0$ with z_{0} being isolated singularity, Γ in $D_{R}^{\prime}\left(z_{0}\right)$ and $z_{0} \in \operatorname{Int}(\Gamma)$. Then

$$
\int_{\Gamma} f(z) d z=2 \pi i a_{-1}
$$

where a_{-1} is coefficient from Laurent expansion.

Lemma 5.1.4.

Let $z_{0} \in \mathbb{C}, f$ holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ for some $R>0$, with removable singularity z_{0}. Then $\operatorname{Res}\left(f, z_{0}\right)=0$.

Lemma 5.1.5.

Let $z_{0} \in \mathbb{C}, f$ holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ for some $R>0$, with pole of order m at z_{0}. Then
$\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]$.
Hint:
Lemma 5.1.7.
Let $z_{0} \in \mathbb{C}, \mathrm{~g}$ and h holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ for some $R>0$, s.t. h has a simple zero at z_{0}, while $g\left(z_{0}\right) \neq 0$. Then for $f=g / h$:

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

Theorem 5.1.11 (Cauchy Residue Theorem). Let f be holomorphic inside and on loop Γ except for finitely many isolated singularities $z_{1}, \ldots, z_{k} \in \operatorname{Int}(\Gamma)$. Then

$$
\int_{\Gamma} f(z) d z=2 \pi i \sum_{j=1}^{k} \operatorname{Res}\left(f, z_{j}\right)
$$

Theorem 5.2.5 (The Argument Principle). Let $\Gamma \subseteq \mathbb{C}$ be a loop, f non-zero on Γ, holomorphic inside and on Γ, except for finitely many poles in Γ (meromorphic). Then

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z= \\
& \sum_{z_{0} \in \operatorname{Int}(\Gamma)} \operatorname{order}\left(z_{0}\right)-\sum_{z_{\infty} \in \operatorname{Int}(\Gamma)} \operatorname{order}\left(z_{\infty}\right)
\end{aligned}
$$

where z_{0} is a zero of f and z_{∞} is a pole of f.

Corollary 5.2.6.

Let $\Gamma \subseteq \mathbb{C}$ be a loop, f non-zero on Γ,
holomorphic inside and on Γ. Then

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{z_{0} \in \operatorname{Int}(\Gamma)} \operatorname{order}\left(z_{0}\right)
$$

where z_{0} is a zero of f.
Theorem 5.2.7 (Rouché's Theorem).
Let Γ be a loop, f, g holomorphic inside and on Γ s.t. $\forall z \in \Gamma:|f(z)-g(z)|<|f(z)|$. Then

$$
\sum_{z_{0} \in \operatorname{Int}(\Gamma)} \operatorname{order}\left(z_{0}\right)=\sum_{z_{0} \in \operatorname{Int}(\Gamma)} \operatorname{order}\left(w_{0}\right)
$$

where z_{0} is zero of f and w_{0} is zero of g. N.B.: Number and order of zeros can be different, only total is equal.
Theorem 5.2.16 (Open Mapping Theorem). Let $D \subseteq \mathbb{C}$ be a domain and suppose $f: D \rightarrow \mathbb{C}$ is non-constant and holomorphic on D. Then $f(D)$ is an open subset of \mathbb{C}.

Corollary 5.2.18.

Let $D \subseteq \mathbb{C}$ be a domain, f holomorphic on D s.t. any of the values $\operatorname{Re}(f(z)), \operatorname{Im}(f(z))$, $|f(z)|$, or $\operatorname{Arg}(f(z))$ is constant. Then f is constant.
Exercise 5.2.19 (Schwarz's Lemma).
Let f be holomorphic on $D_{1}(0)$ s.t. $f(0)=0$ and $\forall z \in D_{1}(0):|f(z)| \leqslant 1$. Then $|f(z)| \leqslant|z|$.
Remark (unknown).
Let $z=e^{i \theta}$, i.e. $z \in D_{1}(0)$, then

$$
\begin{aligned}
& \cos \theta=\operatorname{Re}(z)=\frac{1}{2}\left(z+\frac{1}{z}\right) \\
& \sin \theta=\operatorname{Im}(z)=\frac{1}{2 i}\left(z-\frac{1}{z}\right)
\end{aligned}
$$

Remark (Trigonometric Integrals).
Let $\Gamma=C_{1}(0)$, parametrized by $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$; $\theta \mapsto \exp (i \theta)$ and let $R(\cos \theta, \sin \theta)$ be a rational function of cosines and sines, then

$$
\begin{aligned}
& \int_{0}^{2 \pi} R(\cos \theta, \sin \theta) d \theta= \\
& \int_{\Gamma} \frac{1}{i z} R\left(\frac{z+\frac{1}{z}}{2}, \frac{z-\frac{1}{z}}{2 i}\right) d z
\end{aligned}
$$

i.e. trigonometric integral can be evaluated as contour integral on unit circle by replacing $\cos \theta$ with $\frac{z+1 / z}{2}$ and $\sin \theta$ with $\frac{z-1 / z}{2 i}$ and multiplying integrand by $\frac{1}{i z}$.
Lemma 5.4.6 (Jordan Lemma).
Let P, Q be polynomials s.t.
$\operatorname{deg}(Q) \geqslant \operatorname{deg}(P)+1$ and $a \in \mathbb{R} \backslash\{0\}$. Then

$$
\begin{aligned}
& \lim _{\rho \rightarrow \infty} \int_{C_{\rho}^{+}} \exp (i a z) \frac{P(z)}{Q(z)} d z=0, \quad \text { if } a>0 \\
& \lim _{\rho \rightarrow \infty} \int_{C_{\rho}^{-}} \exp (i a z) \frac{P(z)}{Q(z)} d z=0, \quad \text { if } a<0
\end{aligned}
$$

where $C_{\rho}^{+}, C_{\rho}^{-}$are semicircular arcs from $-\rho$ to ρ in upper/lower half-plane.

Lemma 5.5.3.

Let $D \subseteq \mathbb{C}$ be a domain, $c \in D, f$ holomorphic on D except at possibly finitely many
singularities with simple pole at c. Let S_{r} be circular arc parametrized by $\gamma(\theta)=c+r \exp (i \theta)$ for $\theta \in\left[\theta_{0}, \theta_{1}\right]$ for some $0 \leqslant \theta_{0}<\theta_{1} \leqslant 2 \pi$. Then

$$
\lim _{r \rightarrow 0} \int_{S_{r}} f(z) d z=i\left(\theta_{1}-\theta_{0}\right) \operatorname{Res}(f, c)
$$

Lemma 5.6.4.

Let $0 \leqslant k \leqslant n$ be non-negative integers, let $\binom{n}{k}$ be the usual binomial coefficient and Γ a loop with 0 in interior. Then

$$
\binom{n}{k}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{(1+z)^{n}}{z^{k+1}} d z
$$

Miscellaneous

Example (Circle Parametrization).
Circle $C_{r}\left(z_{0}\right), z_{0} \in \mathbb{C}, r>0$ can be parametrized by
$\gamma:[0,2 \pi] \rightarrow \mathbb{C} ; t \mapsto z_{0}+r \exp (i t)$.
Remark (Contour Integral Checklist).
\square Accounted for orientation of contour?
\square Accounted for $\frac{n!}{2 \pi i}$ factor in (Generalized) Cauchy Integral Formula?

Remark (Classifying Singularities).
\square Isolated or not?
\square If isolated, what order? (Lemma 4.5.11)
Remark (Function with Zeros Trick).
Let f be holomorphic with z_{0}, zero of order m. Then

$$
f(z)=\left(z-z_{0}\right)^{m} g(z)
$$

where $g(z)=\sum_{j=0}^{\infty} \frac{f^{(j+m)}\left(z_{0}\right)}{(j+m)!}\left(z-z_{0}\right)^{j}$, $g\left(z_{0}\right) \neq 0$.

Remark (Function with Poles Trick).

Let f be holomorphic except at z_{0}, pole of order k. Then

$$
f(z)=\left(z-z_{0}\right)^{-k} H(z)
$$

where $H(z)=\sum_{j=0}^{\infty} a_{j-k}\left(z-z_{0}\right)^{j}$,
holomorphic.

Definitions

Definition 1.2.2.
A neighbourhood of $z_{0} \in \mathbb{C}$ is an open set containing z_{0}.

Lemma 1.3.8.

Let $f: \mathbb{C} \rightarrow \mathbb{C}$. The f is continuous \Leftrightarrow the preimage $f^{-1}(U)$ is open for all open $U \subseteq \mathbb{C}$.

Definition 1.4.12.
Let $h: \mathbb{R} \rightarrow \mathbb{R}$. Then h is harmonic if it satisfies for all $(x, y) \in \mathbb{R}^{2}$ Laplace's equation:

$$
\frac{\partial^{2} h}{\partial x^{2}}(x, y)+\frac{\partial^{2} h}{\partial y^{2}}=0
$$

Definition 1.4.14.
Let $U \subseteq \mathbb{R}^{2}$ be open, $u: U \rightarrow \mathbb{R}$ harmonic. The function $v: U \rightarrow \mathbb{R}$ is the harmonic conjugate of u if $f=u+i v$ is holomorphic on U.

Definition 1.6.4.

$$
\begin{aligned}
& \cos (z):=\frac{\exp (i z)+\exp (-i z)}{2} \\
& \sin (z):=\frac{\exp (i z)-\exp (-i z)}{2 i}
\end{aligned}
$$

Remark (Trigonometric Functions).

$$
\begin{aligned}
& \tan :=\frac{\sin }{\cos }, \quad \cot :=\frac{1}{\tan } \\
& \sec :=\frac{1}{\cos }, \quad \csc :=\frac{1}{\sin }
\end{aligned}
$$

Definition 1.6.9.

$$
\begin{aligned}
& \cosh (z):=\frac{\exp (z)+\exp (-z)}{2} \\
& \sinh (z):=\frac{\exp (z)-\exp (-z)}{2}
\end{aligned}
$$

Definition 1.7.6.

A branch cut L is a subset of complex plane removed s.t. multivalued function can be defined holomorphic on $\mathbb{C} \backslash L$. An endpoint of a branch cut is a branch point.
The set $L_{z_{0}, \phi}=\left\{z \in \mathbb{C}: z=z_{0}+r e^{i \pi}, r \geqslant 0\right\}$ denotes a half-line.
The set $D_{z_{0}, \phi}=\mathbb{C} \backslash L_{z_{0}, \phi}$ denotes the cut plane with branch point z_{0} and along angle line at angle ϕ.

Definition 1.7.8.

Let $\phi \in \mathbb{R}$. We define the branch $\operatorname{Arg}_{\phi}(z)$ of the argument function s.t. $\phi<\operatorname{Arg}_{\phi}(z) \leqslant \phi+2 \pi$. This defines a branch of logarithm:
$\log _{\phi}(z)=\ln |z|+i \operatorname{Arg}_{\phi}(z)$. N.B.: The
principal branch is when $\phi=-\pi$.
Definition 1.8.1.
Let $\alpha, z \in \mathbb{C}, z \neq 0$. Then we define the α-power of z by $z^{\alpha}=\{\exp (\alpha w): w \in \log (z)\}$.

Definition 1.8.4.
Let $q \in \mathbb{N}$, then the q values:

$$
1^{1 / q}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{q-1}\right\}
$$

where $\omega:=\exp (i 2 \pi / q)$, are the q roots of unity.

Definition 1.8.7.

The principal branch of logarithm defines the principal branch of z^{α} by $z^{\alpha}=\exp (\alpha \log (z))$.

Definition 2.1.2.

Let $U \subseteq \mathbb{C}$ and $f: U \rightarrow \mathbb{C}$. f is conformal if f preserves angles.

Definition 2.2.1.

A Möbius transformation is a function of form

$$
f(z)=\frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{C}$ and $a d \neq b c$.

Definition 2.3.1.

The extended complex plane is the set
$\tilde{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. where for $a \in \mathbb{C}$ and $b \in \mathbb{C} \backslash\{0\}$:
$a+\infty=\infty, \quad b \cdot \infty=\infty, \quad \frac{b}{0}=\infty, \quad \frac{b}{\infty}=0$
For $f(z)=\frac{a z+b}{c z+d}$ we define $f(-d / c)=\infty$ and $f(\infty)=a / c$.

Definition 2.4.1.

(i) Translation: $f(z)=z+b, b \in \mathbb{C}$ with matrix $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$;
(ii) Rotation: $f(z)=a z, a=e^{i \theta} \in \mathbb{C}$ s.t. $|a|=1$ with matrix $\left(\begin{array}{cc}e^{i \theta / 2} & 0 \\ 0 & e^{i \theta / 2}\end{array}\right)$;
(iii) Dilation: $f(z)=r z$, where $r>0$ with matrix $\left(\begin{array}{cc}\sqrt{r} & 0 \\ 0 & 1 / \sqrt{r}\end{array}\right)$;
(iv) Inversion: $f(z)=1 / z$ with matrix $\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$.

A Möbius transformation fixes the point at infinity if $f(\infty)=\infty$. Only inversion does not fix the point at infinity.

Definition 2.5.5.

Let $z_{1}, z_{2}, z_{3}, z_{4} \in \tilde{\mathbb{C}}$ be distinct points. The cross-ratio $\left[z_{1}, z_{2}, z_{3}, z_{4}\right.$] is the image z_{1} under the Möbius transformation sending z_{2}, z_{3}, z_{4} to $(1,0, \infty)$.

Definition 3.2.7.
Let $\Gamma \subseteq \mathbb{C}$ be a regular curve. We define arclength $\ell(\Gamma)$ by:
$\ell(\Gamma):=\int_{t_{0}}^{t_{1}}\left|\gamma^{\prime}(t)\right| d t=\int_{t_{0}}^{t_{1}} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t$

Definition 3.3.1.

Let $D \in \mathbb{C}$. We say D is a domain if D is open and any two points in D can be connected by a contour entirely in D.

Definition 3.4.1.

Let $\Gamma \subseteq \mathbb{C}$ be a contour. Then Γ is simple if it has no self-intersections.

Definition 3.4.6.

Let D be a domain. Then D is
simply-connected if for all loops $\Gamma \in D$ we have $\operatorname{Int}(\Gamma) \subseteq D$.

Definition 4.3.1.
Let $z_{0} \in \mathbb{C}$ and f holomorphic at z_{0}. The
Taylor series of f centred at z_{0} is:

$$
\sum_{j=0}^{\infty} \frac{f^{(j)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j}
$$

Definition .

Let $z_{0} \in \mathbb{C}$. A Laurent series centred at z_{0} is a series of the form:

$$
\sum_{j=-\infty}^{\infty} a_{j}\left(z-z_{0}\right)^{j}
$$

Definition 4.5.1.

Let $D \subseteq \mathbb{C}$ be a domain, $f: D \rightarrow \mathbb{C}, z_{0} \in \mathbb{C}$. We say z_{0} is a singularity if f is not holomorphic at z_{0}.
Singularity z_{0} is isolated, if $\exists R>0$ s.t. f is
holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$.
Definition 4.5.3.
Let $z_{0} \in \mathbb{C}, U \subseteq \mathbb{C}$ be a neighbourhood of z_{0}, f holomorphic on U. Then z_{0} is a zero of f if $f\left(z_{0}\right)=0$.
Zero z_{0} is zero of finite order if $\exists m \in \mathbb{N}$ s.t.

$$
f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\ldots=f^{(m-1)}\left(z_{0}\right)=0
$$

but $f^{(m)}\left(z_{0}\right) \neq 0$.
Singularity z_{0} is isolated, if $\exists R>0$ s.t.
$f(z) \neq 0$ for $z_{0} \in D_{R}^{\prime}\left(z_{0}\right)$.
Definition 4.5.7.
Let $z_{0} \in \mathbb{C}$ be an isolated singularity of f, holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ for some $R>0$. Then $f(z)=\sum_{j=-\infty}^{\infty} a_{j}\left(z-z_{0}\right)^{j}$ on $A_{0, R}\left(z_{0}\right)$
(Laurent Series. If
(i) $\forall j<0: a_{j}=0$, then z_{0} is removable;
(ii) $\forall j<-m: a_{j}=0$ for some $m \in \mathbb{N}$ and $a_{-m} \neq 0$, then z_{0} is pole of order \boldsymbol{m};
(iii) $a_{j} \neq 0$ for infinitely many j, z_{0} is essential.

Definition 4.6.1.

Let $D \subseteq \tilde{D} \subseteq \mathbb{C}$ be domains, $f: D \rightarrow \mathbb{C}$ holomorphic. $F: \tilde{D} \rightarrow \mathbb{C}$ is an analytic continuation of f if $\forall z \in D: F(z)=f(z)$.

Definition 5.1.2.
Let $z_{0} \in \mathbb{C}$ and f holomorphic on $D_{R}^{\prime}\left(z_{0}\right)$ for some $R>0$, with isolated singularity z_{0}. Then residue of f at z_{0} is $\operatorname{Res}\left(f, z_{0}\right)=a_{-1}$, where a_{-1} is from Laurent Expansion of f.

Definition 5.2.1.

Let $D \subseteq \mathbb{C}$ be a domain. Function f is meromorphic on D if for all $z \in D$ either f has a pole of finite order or f is holomorphic at z.

