
DEs Formula Sheet
William Bevington

Higher-Order ODEs

Exact form and Integrating factors

An ODE is in exact form if it’s of the form M(x, y) +N(x, y) dy
dx

= 0 with
My = Nx, sometimes an ODE can be made exact with integrating factors
to get I

[
M(x, y)dx+N(x, y)dy

]
= 0 for integrating factor I given by

I = e−
∫
h(y)dy if

My−Nx

M
= h(y)

I = e−
∫
g(x)dx if

Nx−My

N
= g(x)

If an ODE is exact then it defines a conservative field, whereby there
is some kind of ‘potential energy’.

The Wronskian

W [y1, y2, . . . , yn] :=

∣∣∣∣∣∣∣
y1 · · · yn
...

. . .
...

y
(n−1)
1 · · · y

(n−1)
n

∣∣∣∣∣∣∣ ,
This determines whether or not the set of solutions {yi} forms a linearly
independent basis; if W [y1, . . . , yn] = 0 anywhere then it is zero every-
where, and the yi are not independent, otherwise it’s nowhere-zero and
the yi are linearly independent.

Systems of ODEs
Homogeneous Solution Method
If you have a homogeneous system of ODEs, ie of the from dx

dt
= Ax, then

you get xh by finding the eigenvalues and vectors of the matrix A, and
hence of the operator d

dt
. Call the eigenvalues λ1 and λ2 with correspond-

ing eigenvectors ξλ1 and ξλ2 , then we have the cases:

• λ1 6= λ2 are real ⇒ xh = c1e
λ1tξλ1 + c2e

λ2tξλ2 .

• λ∗1 = λ2 = u+ iv ⇒ xh1 = eut (a cos(vt) + bi sin(vt)) then you split
this into real and imaginary parts xh1 = h1 + ih2 to get homoge-
neous solution xh = c1h1 + c2h2.

• λ1 = λ2 then you must find the generalised eigenvector η in the
equation (A−Iλ)η = ξ to get solution xh = c1te

λtξ+c2e
λtξ+c3e

λtη.

Undetermined Coefficients
If your inhomogeneous part is a polynomial, sine, cosine, or exponential

This is the same as for normal ODEs, except the coefficients are vectors,

and the algebra is worse. For example, if your inhomogeneous term is

g(t) =

(
eat

kt

)
then try xpar = aeat + bt+ c.

Variation of Parameters
For when you’ve ran out of other options.

If the coefficient matrix P (t) in x′ = P (t)x isn’t constant then seek solu-
tions of the form x(t) = Ψ(t)u(t) for fundamental matrix Ψ(t), which
is just the matrix of fundamental solutions in xhom. Remember that
Ψ′ = P (t)Ψ by definition which will help cancel annoying terms along
the way.

Diagonalisation

“Let x = Ty . . . ” where T is the matrix of eigenvalues of A in x′ =
Ax + g(t), then Ty′ = ATy + g(t) and so y = T−1ATy + T−1g(t), but
T−1AT = D is diagonal (in fact the entries are the eigenvalues of A), so
this gives us several very simple equations to solve one-by-one!

Critical Points and whatnot
If you have a two dimensional non-linear system x′ = Ax + g(t) with non-linear term g(t) then you can take the Taylor-expansion F (x, y) ≈
F (x0, y0) + (x− x0)∂xF (x0, y0) + (y − y0)∂yF (x0, y0) in the form of a Jacobian matrix (this is just a useful change of notation) to get:

J =
∂(F,G)

∂(x, y)
=

(
∂xF ∂yF
∂xG ∂yG

)
.

The Jacobian in this case approximates the non-linear system in the new system u′ = Ju. If you’re approximating, then you might like this lovely
little table which tells you whether or not a critical point is stable or not (don’t forget to find eigenvalues of the Jacobian)!

Linear System Linear Approximation

Eigenvalues type of point stability type of point stability

r1 > r2 > 0 Node Unstable Node Unstable
r1 < r2 < 0 Node Asymptotically Stable Node Asymptotically Stable

r1 < 0 < r2 Saddle Point Unstable Node Unstable
r1 = r2 > 0 Node (proper/improper) Unstable Node or Spiral Unstable
r1 = r2 < 0 Node (proper/improper) Asymptotically Stable Node or Spiral Stable

r = λ± µ
λ < 0 Spiral Asymptotically Stable Spiral Asymptotically Stable
λ > 0 Spiral Unstable Spiral Unstable
λ = 0 Center Stable Center/Spiral Undetermined

Assessing non-linear stability
“Anything but Poincare-Bendixson!”

Try Lyapunov’s method if they ask: V should be positive-definite, then if V ′ is negative (resp. positive) definite in some region containing the critical
point then the system is asymptotically stable (resp. unstable) at that point. Negative semi-definite only guarantees stability, not asymptotic stability.

Maybe you can write the system in exact form, that is, using dy
dx

= dy
dt

dt
dx

by the chain rule. If you can solve this to get H(x, y) = c then
try and ignore higher-order terms (since they’re small perturbations and hence fast-vanishing close to critical points) and translating the problem
(x, y) 7→ (x− x0, y − y0). If the trajectory is closed or inwards-spiraling then the critical point is stable.
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Lap-o-lace Transforms; Fellowship of the DEs
For DEs with non-constant coefficients.

What is a Laplace transform? You can think of it as a kind of continuous analogue to a power series:
∑∞
n=0 c(n)xn →

∫∞
0
f(n)xtdt →

∫∞
0
f(n)e−st

where the “→” means “dodgy maths”. Nonetheless it’s very useful to think of it like this as it means we can see the transform as a kind of weighting
to our function f , and we can then change from horrible differential-manifold land to nice algebra-land – turning differential equations into partial
fractions! Here’s a list of transforms:

f(t) F (t) := L{f}(s) f(t) F (t) := L{f}(s)
f(t)

∫∞
0
e−stf(t)dt eat sin(bt) b

(s2−a2)+b2

1 1
s

eat cos(bt) s−a
(s2−a2)+b2

eat 1
s−a eattn n!

(s−a)n+1

tn n!
sn+1 uc(t)

e−cs

s

sin(at) a
s2+a2

δ(t− c) limα→c
(
e−αs

)
cos(at) s

s2+a2
f (n)(t) snF (s)−

∑n−1
k=1 s

n−kf (k)(0)

sinh(at) a
s2−a2 (−t)nf(t) F (n)(s)

cosh(at) s
s2−a2

Type of Shift f(t) F (t) := L{f}(s)
s-shift e−csf(t) F (s+ c)
t-shift uc(t)f(t− c) e−csF (s)

s-derivative tf(t) −F ′(s)
scaling f(ct) 1

c
F ( s

c
)

Which brings me to my next point, the convolution integral. It’s a rather strange and laborious truth that L(fg) 6= L(f)L(g), which is why we
need to use something called the convolution, given by:

CONVOLUTION INTEGRAL: f ? g =

∫ t

0

f(τ)g(τ − t)dτ.

which gives that L(f ? g) = L(f)L(g). Don’t stress though, the Laplace transform is still commutative, associative and distributive.

Partial Differential Equations
Any differential equation that is not partial is impartial, and so doesn’t really mind.

There is a ‘one-size-fits-all’ method to follow with PDEs:

1. “Let u(x, t) = X(x)T (t) ..”

2. Separate the variables, introducing a separation constant −λ.

3. Solve the corresponding ODE in X(x), this gives a quantisation of
λ and tells us the ‘geometry’ of the ODE

4. If there are infinitely many possible λ then label them {λ1, λ2, . . . },
and find corresponding eigen-functions Xn(x).

5. Use this λ and solve the ODE in T (t).

6. Recall u = XT and write the general solution

7. If the system is inhomogeneous with infinitely many λ then you’ll
probably have to use Fourier series to solve it; letting un = XnTn
and thus u =

∑
nXnTn, find the Fourier coeffiecients of L[u(x, t)] =

g(x, t) where g(x, t) is the inhomogeneous term.

8. Use initial/boundary conditions to find any coefficient you can!

There are three main types of PDE that you might come across in your
day-to-day life, these are:

• Heat Equation: ut = α2uxx.

• Wave Equation: utt = a2uxx or utt = a2(uxx + uyy).

• Laplace Equation: uxx + uyy = 0 or urr +
ur
r

+
uθθ
r2

= 0.

If you are ever in doubt with PDEs then first step; relax. Think about
what variables/coefficients etc you have and which ones you need to find
then try and see if you can use orthogonality and the inner product in any
useful way. Try and simplify the problem to what you’d do with linear
algebra - differentials are just linear operators after all, there are often
good analogues!

Fourier’s Theorem
REMEMBER: Check to see if f is an odd or even function - it’ll speed things up!

We deal only with periodic functions f so that for some T ∈ R we have
f(t + T ) = f(t), this lets us worry only about a small interval [−L,L],
which we can then approximate f on using sine and cosine functions.
First of all, we use an orthogonal basis {cos(t), sin(t), 1} for some space
with an inner product given by

(
u(t), v(t)

)
=

∫ L

−L
u(t)v(t)dt,

where T = 2L. This is a continuous analogue of the dot product:
x · y =

∑
i xiyi. Since we have the orthogonal basis {cos(t), sin(t), 1}

we have that

(sin(t), cos(t)) = (cos(t), 1) = (sin(t), 1) = 0,(
cos

(
mπt

L

)
, cos

(
nπt

L

))
=

(
sin

(
mπt

L

)
, sin

(
nπt

L

))
= (1, 1) = δmn.

Fourier’s theorem is that any periodic function f(t) can be written in
the form

f(t) =
a0
2

+

∞∑
n=1

(
an cos

(
nπt

L

)
+ bn sin

(
nπt

L

))
,

where we can find the coefficients using the orthogonality of the basis
functions above:

a0
2

= (1, f) =
1

2L

∫ L

−L
f(t)dt

an =

(
cos

(
nπt

L

)
, f

)
=

1

L

∫ L

−L
cos

(
nπt

L

)
f(t)dt

bn =

(
sin

(
nπt

L

)
, f

)
=

1

L

∫ L

−L
sin

(
nπt

L

)
f(t)dt

Parseval’s theorem:

||f(t)||2 = (f, f) =

∫ L

−L
|f(t)|2dt = L

[
|a0|2

2
+

∞∑
n=1

(|an|2 + |bn|2)

]
,

which is an infinite-dimensional analogue to Pythagoras’ theorem.

Nonhomogenous Boundary Conditions

If you have non-homogeneous boundary values then look for time-
independent solutions v(x) then re-write the PDE with the following map

u(x, t) = v(x) + ω(x, t)

where if our original boundary conditions were u(0, t) = A, u(L, t) = B
then our new ones are ω(0, t) = 0 and ω(L, t) = 0. To find v(x) just plug
it into the PDE noting that ∂tv(x) = 0 and that v(0) = A and v(L) = B,
and solve the ODE in v(x). Then just solve the PDE in ω and apply the
map above at the end!
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For example, you may let v(x) = limt→∞ u(x, t) be the final steady-

state so that v(x) = A + (B−A)
L

x (like how a vibrating string must even-
tually come to rest). Thus u(x, 0) = uinit(x, 0) − v(x) where uinit(x, 0) is
the initial condition, this step removes any contribution made by this final
steady-state. Then u(x, t) = v(x) +ω(x, t) where ω(x, t) is the solution to
the corresponding homogeneous problem by the principle of superposition.

Conceptually what you’re doing here is ‘tilting’ the underlying geom-
etry. Remember that the boundary conditions determine the shape of the
domain of the PDE, and so shifting these by A at one end and B at the
other is just like tilting the PDE.

Sturm Liouville
Just like Fourier’s theorem but more finicky and generally not as pleasant.

An S-L problem on x ∈ [0, 1] is one of the form

[p(x)yx(x)]x + q(x)y(x) = λr(x)y(x), p > 0, p′, q and r > 0 are cts,

the eigenvalues λ are what we’re solving for, this is otherwise a very regular
type of PDE, so you’d just have to solve it as you would any other. There
are some shortcuts though; all eigenvalues of a Sturm-Liouville problem
are real with orthogonal eigen-functions with respect to the inner product:

〈u, v〉 =

∫ 1

0

r(x)u(x)v(x)dx.

Regular homogeneous S-L problems have boundary conditions of the form
α1y(0) + α2y

′(0) = 0 and β1y(1) + β2y
′(1) = 0, if these are not homo-

geneous then use the same method as for PDEs with nonhomogenous
boundary conditions.

If the S-L problem itself isn’t homogeneous, i.e. is of the form
[p(x)yx(x)]x + q(x)y(x) = λr(x)y(x) + F (x), then solve the homogeneous

equation then try and expand F (x)
r(x)

in terms of the eigenfunctions since it’ll

cancel with the r(x) in the inner-product, and you can multiply through
at the end (this is exactly why r(x) is considered a weighting function by
the way).

Really, the entire point of S-L theory is to generalise Fourier’s methods
which can be seen by noting that the basis

{
1, sin

(
nπt
L

)
, cos

(
nπt
L

)}
is just

a set of solutions to the equation y′′ =
(
nπt
L

)2
y with y(t+T ) = y(t). Thus

if you can solve a partial differential equation using Fourier series you just
do exactly the same with S-L.

Bessel Stuffs

Bessel’s equation is y′′ + 1
x
y′ +

(
1− m2

x2

)
y = 0, and it’s an example of a

Sturm-Liouville problem whose eigenfunctions that are not sine and cosine
functions. It has the two solutions

Jm(x) =
(x

2

)m ∞∑
k=1

(−1)k
x2k

k!(m+ k)!

Ym(x) =
2

π
log(x/2)Jm(x) +

∞∑
k=0

. . . x2k,

which can be found by taking the Laplace transform (using the s-derivative
transform) and solving the resulting ODE in Y (s) := L{y(x)}(s).

Miscellaneous Theorems:
If you need a theorem then I’ve (hopefully) got your back

Superposition (Worst superhero ever): the full solution x of a system
of ODEs is the combination of the homogeneous solution xh and partic-
ular solution xp, this property is a consequence of the linearity of the
differential operator d

dt
.

d’Alembert’s Method: If you have a solution to an ODE given
by f(t), then look for second solution of form u(t)f(t) for some u(t) to
be determined. Plug this back into the original ODE and solve! That

is: ypar =
∑
j yj(x)

∫ x
x0
g(s)

Wj [s]

W [y1(s),...,yn(s)]
ds where g(s) is the inhomoge-

neous term, the yj are the linearly independent homogeneous solutions,
and Wj [s] is the Wronskian with the jth column removed.

Liouville’s Theorem: Ẇ = tr(P (t))W ⇒ W = e
∫ t
t0

tr(P (s))ds
W (t0).

And so if the Wronskian W is anywhere zero then it is everywhere-zero.

Exponential: eAt =
∑∞
n=0

(At)n

n!
. If you have an initial condi-

tion x0 := x(t0) then this can be used to get a fundamental matrix:
eAt = Ψ(t)Ψ−1(t0)x0.

Exponential II: det(eAt) = et·tr(A), so the trace of A (sum of the di-
agonal) measures the rate of change of area (by differentiating both sides).

Stability: A critical point x0 is stable if ∀ε > 0 : ∃δ > 0 such that
for every solution φ̄(t) we have ||φ̄(0)− x0|| < δ ⇒ ||φ̄(t)− x0|| < ε. It is
called asymptotically stable if limt→∞ φ̄(t) = x0.

Locally Linear: A system x′ = Ax + g(t) is locally linear if x = 0 is

an isolated critical point and ||g(t)||||x|| → 0 as x→ 0.

Liapunov Function: V (x, y) is a lyapunnov function if it’s positive
definite in some region containing a critical point. If the derivative of
V is negative-definite then the point is asymptotically stable, negative
semi-definite only guarentees stability.

Basin of Attraction: If there is some region DK for which there is a
Lyapunov function V (x, y) < K ∈ R which is negative-definite then every
solution which starts in DK approaches the origin as t→∞. That is, the

basin of attraction is dom(V (x, y)).

Closed trajectories contain critical points: If x is a solution to
some system of ODEs which is closed then it encircles a critical point
(THM 9.7.1).

Velocities and CPs If Fx and Gy have the same sign in a simply-
connected domain D then there is no closed trajectory in D.

Poincare-Bendixson: (Used to assess stability; limit cycles) If D̄ is
the closure of some region D which contains no critical points but there is
a t0 ∈ R such that a solution to a system of ODEs is contained in D̄ then
that solution is either periodic, or approaching a periodic solution.

Fourier Convergence Theorem: If we use Fourier series to approx-
imate f(x) then the series converges to f wherever it is continuous and to
f(x+)+f(x−)

2
wherever it isn’t.

Lagrange’s Identity:

〈
L[u], v

〉
−
〈
u, L[v]

〉
:=

∫ 1

0

{
L[u]v − uL[v]

}
= −p(x)

[
u′v − v′u

]1
0
.

For Sturm-Liouville problems the RHS is zero, which we can use to check
whether or not a differential equation is self-adjoint. If the function-space
defined by the boundary values and the differential equation leads to L
being self-adjoint then we have (by Sturm-Liouville’s theory) that all eigen-
values are real, and eigenfunctions are orthogonal!

Interestingly enough, Lagrange’s identity is used to relate determinant
to area, the LHS =< L[u], v > − < u,L[v] > gives an equation for the
‘areas’ of two ‘parallelepipeds,’ one with sides u and L[v], the other with
sides v and L[u]. Thus the LHS tells you how L affects the area of the
‘vectors’ it’s acting on, and the RHS is the determinant - I mean, just look
at it!

Cylindrical coordinates: (x, y, z) = (ρ cos(θ), ρ sin(ϕ), z)

Polar Conversion Tip: r2 = x2 + y2 ⇒ r dr
dt

= x dx
dt

+ y dy
dt

3



Model Answers
S-L with continuity and finiteness:
Given the complex function ϕ which satisfies ϕ′′(x) + (λ− V (x))ϕ(x) = 0
with V (x) = 0 for x ∈ (−∞,−L) and V (x) = −|V0| for x ∈ (−L, 0) along
with ϕ(0) = 0 and ϕ(x), ϕ′(x) are continuous at x = −L then we solve for
λ as follows. Show it’s an S-L problem to assert λ ∈ R, find when the inner
product (ϕ,ϕ) =

∫ 0

−∞ ϕ(x)ϕ∗(x)dx is finite (and hence normalisable) by
breaking the ODE down into piecewise conditions of V (x) and solving for
ϕ(x), eliminating any terms that make ϕ(x) → ±∞ for x ∈ (−∞, 0). Fi-
nally solve the continuity condition at x = −L by equating the functions
ϕI(−L) = ϕII(−L) (that is, the solutions to the ODEs in the different
‘pieces’ of V ) and ϕ′I(−L) = ϕ′II(−L) then asserting that the determinant
of coefficients vanishes.

Bessel Bad Boys:
Say you use separation of variables and you end up seeing a horrible equa-
tion for the radius, something like

rR′′(r) + 2R′(r) + λrR(r) = 0,

then look for a sneaky substitution and solve it that way - in this case

using v(r) = rR(r) since the original PDE is just 1
r
∂2(ru)

dr2
= ∂2u

∂t2
. Failing

this you’ll just have to try and force it into the form of Bessel’s equation
and use the Bessel solution, using that j0(x) = sin(x)

x
.

Assorted December 2017 Qs:
Question 2(b): “Show that L{f(t) ? g(t)}(s) = F (s)G(s)”:
Swapping the order of integration yields L{f(t) ? g(t)}(s) =

∫∞
0
e−stdt =

∫ t
0
f(t − τ)g(τ)dτ =

∫∞
0
g(τ)dτ

∫∞
τ
e−stf(t − τ)dt =∫∞

0
e−sτg(τ)dτ

∫∞
0
e−s(t−τ)f(t− τ)d(t− τ) = G(s)F (s).

Question 5 (b),(c):

L[y] = x2y′′ + 2xy′ + (λ+ 1/4)y = 0 with y(1) = y(e) = 0

Part B: “Find eigenfunctions”: Try xα giving the polynomial α(α +
1) + λ+ 1/4 = 0 and so α = −1

2
± i
√
λ, thus our general solution is

y(x) = x−1/2
(
Axi

√
λ +Bx−i

√
λ
)

= x−1/2
(
C cos

(√
λ log(x)

)
+D sin

(√
λ log(x)

))
,

since xα = eα log(x). Then do as you usually would (find λ and then solve).
Part C: “Show they’re orthogonal for an inner product that you will

define”: Write out the ODE for ym(x) and yn(x) then cross-multiply, in-
tegrate and subtract to get < ym, L[yn] > − < yn, L[ym] > (i.e. use
Lagrange’s identity) to, hopefully, get zero ⇒ orthogonality!

Dec 2015 Q4:
“Find the general periodic bounded solution u(r, θ) to the ODE below”:

urr(r, θ) +
1

r
ur(r, θ) +

1

r2
uθθ(r, θ) = 0

for θ ∈ [−π, π] and r ∈ (0, ρ), with ρ > 0 and u(ρ, θ) = f(θ).
You use separation of variables by letting u(r, θ) = R(r)Θ(θ) and solv-

ing the ODEs in R ans Θ using periodic boundary conditions Θ(0) = Θ(π)
and Θ′(0) = Θ′(π), solve for Θ first as to quantise the separation constant
λ as {λn}.

Trig and Stuff

sin(x± y) = sin(x) cos(y)± sin(y) cos(x)

cos(x± y) = sin(x) sin(y)∓ cos(x) cos(y)

sin2(x) =
1− cos(2x)

2

cos2(x) =
1 + cos(2x)

2

sinh(x) =
ex − e−x

2

csch(x) =
1

sinh(x)
=

2

ex − e−x

cosh(x) =
ex + e−x

2

sech(x) =
1

cosh(x)
=

2

ex + e−x

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x

coth(x) =
1

tanh(x)
=

ex + e−x

ex− e−x
cosh2(x)− sinh2(x) = 1

tanh2(x) + sech2(x) = 1

coth2(x)− csch2(x) = 1

Integrals

∫
sin2(kx)dx =

x

2
− sin(2kx)

4k
+ constant∫

cos2(kx)dx =
x

2
+

sin(2kx)

4k
+ constant∫

eax sin(bx) =
a sin(bx)− b cos(bx)

a2 + b2
eax∫

eax cos(bx) =
b sin(bx) + a cos(bx)

a2 + b2
eax∫

xnekxdx =
xnekx

k
− n

k

∫
xn−1ekxdx

To normalise the function u(x), set
〈
u(x), u(x)

〉
= 1, which in Fourier

series equates to
∫ L
−L u(x)u(x)dx = 1.
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