
Differential Equations
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DE Basics

Linear Nth Order ODE:

dny

dxn
+ p1(x)

dn−1y

dxn−1
+ ...+ pn−1(x)

dy

dx
+ pn(x)y(x) = g(x)

if g(x) = 0 then it is homogeneous
if g(x) 6= 0 then it is non-homogeneous

ygen(x) = yhom(x) + ypar(x)

If the Wronskian is zero then the solutions aren’t linearly independent

W (y1, ..., yn) ≡

∣∣∣∣∣∣∣∣
y1 y2 ... yn
y′1 y′2 ... y′n
... ... ... ...

yn−1
1 yn−1

2 ... yn−1
n

∣∣∣∣∣∣∣∣
if k = λ+ iµ then yhom = eλx(c1 cosµx+ c2 sinµx)
The Chain Rule:

∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t

Exact ODEs

M(x, y) +N(x, y)
dy

dx
= 0 ⇐⇒ ψx =

∂M

∂y
=
∂N

∂x
= ψy

Methods

D’Alemberts Theorem: find missing solution: Try
y(x) = oldsolution× u(x)
Variation of Parameters (for non-homogeneous ODE’s):
Looking for solution the form ypar = Σnj=1uj(x)yj(x)
For the case where n = 3 we have
Σnj u

′
jyj = 0, Σnj u

′
jy
′
j = 0 , Σnj u

′
jy
′′
j = g(x)

Solve this system then integrate each u′j
Then multiply by yj to get ypar = Σnj=1uj(x)yj(x)
aka:

ypar =
∑
j

yj(x)

∫ x

x0

g(s)
Wj [s]

W [y1(s), ...yn(s)]
ds

Diagonalisation
Introducing change of variables x = Ty, so we have

Ty
′

= ATy + g(t) =⇒
dy

dt
= Dy + T

−1
g = Dy + h

This leads to a system of n decoupled equations which we solve by direct
integration:

y
′
i = riyi + hi =⇒ yi(t) = cie

rit + e
rit
∫ t

t0

e
−rishi(s)ds

General solution in the original variables equals x(t) = Ty(t). In case the
matrix is not diagonalisable, find its Jordan form and proceed in a similar
way (with J instead of D). Note that we will need to integrate from the
bottom up.

P
−1
AP = D

J =

[
λ 1
0 λ

]

Laplace Transform

map y(x)→ F (s) through

F (s) =

∫ β

α

K(s, x)y(x)dx

The Laplace Transform of f(x) is defined for x ∈ [0,∞)

F (s) = L{f}(s) ≡
∫ ∞
0

e
−sx

f(x)dx = lim
T→∞

∫ T

0

e
−sx

f(x)dx

The Laplace Transform is a linear operation:

L{c1f1(x) + c2f2(x)}(s) = c1L{f1(x)}+ c2L{f2(x)}

If f, f ′, ...fn−1 is continuous on [0,∞) and ∈ E then:

L{fn(x)} = s
nL{f(x)} − sn−1

f(0)− ...sfn−2
(0)− fn−1

(0)

f(x) F (s) = L(f)(s)
1 1

s
eat 1

(s−a)
sin(ax) a

(s2+a2)

cos(ax) s
(s2+a2)

sinh(at) a
s2−a2

cosh(at) s
s2−a2

tneat n!

(s−a)n+1

tcos(at) s2−a2

(s2+a2)2

tsin(at) 2as
(s2+a2)2

√
t

√
π

2s
3
2

Let L{f(x)}(s) = F (s) For f ∈ E:

s-shift: L{e−cxf(x)}(s) = F (s+ c)

x-shift: L{f(x− c)}(s) = e−scF (s) if c ≤ 0 and f(x) = 0 for x < 0
s-derivative: L{xf(x)}(s) = −F ′(s)
scaling: L{f(cx)}(s) = 1

cF ( sc ), F (sc) = 1
cL{f( xc )} if c > 0

Laplace transform of xex: L{xex}(s) = −( 1
s−1 )′ = 1

(s−1)2

Change variable form t to t′ = t− c: L{uc(t)f(t− c)} = e−csF (s)
The unit step function:

uc(t) =

{
0 t < c

1 t ≥ c

Laplace transform of the unit step function (c ≥ 0):

L{uc(t)}(s) =

∫ ∞
0

e
−st

uc(t)dt =

∫ ∞
c

e
−st

dt =
e−sc

s
, s > 0

For ’nice’ functions f(t).∫ ∞
∞

δ(t− t0)f(t)dt = f(t0)

L{δ(t− t0)}(s) = e
−st0

L{δ(t)}(s) = lim
α→0

e
−αs

L−1{ lim
α→0

e−αs

s2 − a2
} =

1

a
u0(t)sinh(at)

Laplace Proofs:
L{y′}(s) =

∫∞
0
e−sty′dt = e−sty(t)

∣∣∞
0

+ sY (s) = sY (s)− y(0)

With L{(−t)nf(t)}(s) =
dnF (s)
dsn , where F (s) = {f(t)}(s) we get

L{tneat}(s) = (−1)n dn

dsn (s− a)−1 = n!

(s−a)n+1

Convolution:
(f ? g)(t) ≡

∫ t
0
f(t1)g(t− t1)dt1

(L{f})(L{g}) = L{f ? g}
Example: L−1{ G(s)

s2−a2
} = 1

a (g(t) ? sinhat)

Systems of DEs

First solution is x(1) = eλtξλ
Second solution is x(2) = teλtξλ + eλtη
Where ξλ = (A− λ1)η

Third solution is x(3) = t2

2 e
λtξλ + teλtη + eλtζ

Where η = (A− λ1)ζ

Critical Points

Jacobian Matrix =

[
∂xF (x0, y0) ∂yF (x0, y0)
∂xG(x0, y0) ∂yG(x0, y0)

]
Sometimes a nonlinear ODE has an exact phase portrait given by:

dy

dx
=
G(x, y)

F (x, y)
=⇒ (integrate)

H(x, y) = c

Eigenvalues Critical Points Stability
r1 > r2 > 0 Node (source) Unstable
r1 < r2 < 0 Node (sink) Asymp. Stable
r2 < 0 < r1 Saddle Unstable
r1 = r2 > 0 Proper/Improper Node Unstable
r1 = r2 < 0 Proper/Improper Node Asymp. Stable

r1, r2 = λ± iµ(λ > 0) Spiral (Focus) Unstable
r1, r2 = λ± iµ(λ < 0) Spiral (Focus) Asymp. Stable
r1 = iµ, r2 = −iµ Centre Stable

Almost Linear Systems the Proper/Improper bits become Node/Spiral
Point. And the Centre becomes Centre or Spiral (Indeterminate)
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Lyapunov Functions

Let V (x, y) be defined on a domain D containing (0, 0)
V (x, y) is positive (negative) definite if V (0, 0) = 0 and E(x, y) > 0
∀(x, y) ∈ D (V (x, y) < 0 ∀(x, y) ∈ D)
V (x, y) is positive (negative) semi-definite if V (0, 0) = 0 and E(x, y) ≥ 0
∀(x, y) ∈ D (V (x, y) ≤ 0 ∀(x, y) ∈ D)
Theorem Given an autonomous system with critical point (0, 0), if ∃ V (x, y)
continuous with continuous first partial derivatives, is positive definite then
(0, 0) is:
Asymptotically Stable: If dV

dt is negative definite on some domain D
containing (0, 0)
Stable (at non-linear level): If dVdt is negative semi-definite
Theorem Given an autonomous system with critical point (0, 0), assume
∃ V (x, y) continuous with continuous first partial derivatives, such that
V (0, 0) = 0 and that in every neighbourhood of (0, 0) there exists at least
one point (x1, y1) where E(x1, y1) is positive (negative). If there exists some
domain D containing (0, 0) where dV

dt is positive definite (negative definite)
on D, then (0,0) is an unstable critical point.

dV

dt
= x
′
∂xV + y

′
∂yV

Limit Cycles

Limit cycles are periodic solutions s.t at least one other non-closed trajectory
asymptotes to them as t→∞ (or −∞ or both)
Theorem Let F (x, y), G(x, y) have continuous first partial derivatives in
some domain D. A closed trajectory must enclose at least one critical point.
If it encloses only one, it cannot be a saddle point. (i.e no critical points in
D implies no closed trajectories in D; if there exists a unique critical point
in D and it is a saddle implies no closed trajectories in D).
Theorem Let F (x, y), G(x, y) have continuous first partial derivatives in
some simply connected domain D (i.e without holes). If ∂xF + ∂yG has the
same sign in D =⇒ there are no closed trajectories in D.
Poincaré-Bendixon Theorem Let F (x, y), G(x, y) have continuous first
partial derivatives in some domain D. Let D1 be a bounded subdomain of D
and let R consist of D1 and its boundary. Suppose R has no critical points.
If ∃ a trajectory (x(t), y(t)) staying in R ∀t ≥ t0 =⇒ either the solution is
periodic (closed trajectory) or it spirals towards one. Either way there exists
a closed trajectory.

rr
′

= xx
′
+ yy

′

Example: ṙ = r2(1− r2), θ̇ = 1
r = 1, θ = t + t0 corresponds to a limit cycle. Notice that for r > 1, ṙ < 0,
whereas for r < 1, ṙ > 0. Thus, the cycle r = 1 is stable. Can check this be-
haviours by plotting the trajectories not corresponding to periodic solutions.

−
1

r
+

1

2
log

1 + r

1− r
= t+ c

Sturm-Liouville Boundary Problems

S-L form is L[y] + λy = 0 with L[y] ≡ −(p(x)y′)′ + q(x)y(x)

Modified Inner Product: 〈φ1, φ2〉 ≡
∫ 1
0
r(x)φ1(x)φ2(x)dx if 〈φ1, φ2〉 = 0

then φ1 and φ2 are orthogonal with respect to the inner product.
Using normalized eigenfunctions Φn we can expand f(x) = x = Σ∞n=1anΦn
Over 0 ≤ x < 1 using orthonormality of inner product we find:
an =

∫ 1
0
f(x)Φn

Fourier Analysis

Fourier Series of f(x):

f(x) =
a0

2
+ Σ

∞
n=1(ancos(

nπx

L
) + bnsin(

nπx

L
))

Where T = 2L or f(x+ 2L) = f(x)

a0 =
1

L

∫ L

−L
f(x)dx

an =
1

L

∫ L

−L
f(x)cos(

nπx

L
)dx

bn =
1

L

∫ L

−L
f(x)sin(

nπx

L
)dx

Function is even if f(−x) = f(x) and only have cosine coefficient series
Function is odd is f(−x) = −f(x) and only have sine coefficient series

Partial Differential Equations

We have a2∂2
xxu+ βu = ∂tu

Now with non-homogeneous boundary conditions u(0, t) = T1, u(L, t) = T2,
look for v(x) to solve
a2v′′(x) + βv(x) = 0, v(0) = T1, v(L) = T2

Then determine solution using u(x, t) = v(x) + ω(x, t)

Identities

• sinh(x) = e
x − e−x

2

• cosh(x) = e
x

+ e
−x

2

• cosx = e
ix

+ e
−ix

2

• sinx = e
ix − e−ix

2i

• cosµ = 0 =⇒ µn = (2n−1)π2

• 1-D Heat Eq: ∂tu = α2∂2
xu

•
∫
sin2axdx = x

2 −
sin2ax

4a

•
∫
cos2axdx = x

2 + sin2ax
4a
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