Differential Equations

Owen Fuller

DE Basics

Linear Nth Order ODE:

$$
\frac{d^{n} y}{d x^{n}}+p_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+p_{n-1}(x) \frac{d y}{d x}+p_{n}(x) y(x)=g(x)
$$

if $g(x)=0$ then it is homogeneous
if $g(x) \neq 0$ then it is non-homogeneous

$$
y_{g e n}(x)=y_{\text {hom }}(x)+y_{\text {par }}(x)
$$

If the Wronskian is zero then the solutions aren't linearly independent

$$
W\left(y_{1}, \ldots, y_{n}\right) \equiv\left|\begin{array}{cccc}
y_{1} & y_{2} & \ldots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \ldots & y_{n}^{\prime} \\
\ldots & \ldots & \ldots & \ldots \\
y_{1}^{n-1} & y_{2}^{n-1} & \ldots & y_{n}^{n-1}
\end{array}\right|
$$

if $k=\lambda+i \mu$ then $y_{h o m}=e^{\lambda x}\left(c_{1} \cos \mu x+c_{2} \sin \mu x\right)$
The Chain Rule:

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t}
$$

Exact ODEs

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0 \Longleftrightarrow \psi_{x}=\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}=\psi_{y}
$$

Methods

D'Alemberts Theorem: find missing solution: Try
$y(x)=$ oldsolution $\times u(x)$
Variation of Parameters (for non-homogeneous ODE's):
Looking for solution the form $y_{\text {par }}=\sum_{j=1}^{n} u_{j}(x) y_{j}(x)$
For the case where $\mathrm{n}=3$ we have
$\Sigma_{j}^{n} u_{j}^{\prime} y_{j}=0, \Sigma_{j}^{n} u_{j}^{\prime} y_{j}^{\prime}=0, \Sigma_{j}^{n} u_{j}^{\prime} y_{j}^{\prime \prime}=g(x)$
Solve this system then integrate each u_{j}^{\prime}
Then multiply by y_{j} to get $y_{p a r}=\sum_{j=1}^{n} u_{j}(x) y_{j}(x)$ aka:

$$
y_{p a r}=\sum_{j} y_{j}(x) \int_{x_{0}}^{x} g(s) \frac{W_{j}[s]}{W\left[y_{1}(s), \ldots y_{n}(s)\right]} d s
$$

Diagonalisation
Introducing change of variables $x=T y$, so we have

$$
T y^{\prime}=A T y+g(t) \Longrightarrow \frac{d y}{d t}=D y+T^{-1} g=D y+h
$$

This leads to a system of n decoupled equations which we solve by direct integration:

$$
y_{i}^{\prime}=r_{i} y_{i}+h_{i} \Longrightarrow y_{i}(t)=c_{i} e^{r_{i} t}+e^{r_{i} t} \int_{t_{0}}^{t} e^{-r_{i} s} h_{i}(s) d s
$$

General solution in the original variables equals $x(t)=T y(t)$. In case the matrix is not diagonalisable, find its Jordan form and proceed in a similar way (with J instead of D). Note that we will need to integrate from the bottom up.

$$
\begin{aligned}
& P^{-1} A P=D \\
& J=\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]
\end{aligned}
$$

Laplace Transform

map $y(x) \rightarrow F(s)$ through

$$
F(s)=\int_{\alpha}^{\beta} K(s, x) y(x) d x
$$

The Laplace Transform of $f(x)$ is defined for $x \in[0, \infty)$

$$
F(s)=\mathcal{L}\{f\}(s) \equiv \int_{0}^{\infty} e^{-s x} f(x) d x=\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-s x} f(x) d x
$$

The Laplace Transform is a linear operation:

$$
\mathcal{L}\left\{c_{1} f_{1}(x)+c_{2} f_{2}(x)\right\}(s)=c_{1} \mathcal{L}\left\{f_{1}(x)\right\}+c_{2} \mathcal{L}\left\{f_{2}(x)\right\}
$$

If $f, f^{\prime}, \ldots f^{n-1}$ is continuous on $[0, \infty)$ and $\in E$ then:

$$
\mathcal{L}\left\{f^{n}(x)\right\}=s^{n} \mathcal{L}\{f(x)\}-s^{n-1} f(0)-\ldots s f^{n-2}(0)-f^{n-1}(0)
$$

$f(x)$	$F(s)=\mathcal{L}(f)(s)$
1	$\frac{1}{s}$
$e^{a t}$	$\frac{1}{(s-a)}$
$\sin (a x)$	$\frac{\left(s^{2}+a^{2}\right)}{\left(s^{2}+a^{2}\right)}$
$\cos (a x)$	$\frac{a}{s^{2}-a^{2}}$
$\sinh (a t)$	$\frac{s+s^{2}}{(s-a)^{n+1}}$
$\cosh (a t)$	$\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
$t^{n} e^{a t}$	$\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$
$t \cos (a t)$	$\frac{\sqrt{\pi}}{2 s^{\frac{3}{2}}}$

Let $\mathcal{L}\{f(x)\}(s)=F(s)$ For $f \in E$:
s-shift: $\mathcal{L}\left\{e^{-c x} f(x)\right\}(s)=F(s+c)$
x-shift: $\mathcal{L}\{f(x-c)\}(s)=e^{-s c} F(s)$ if $c \leq 0$ and $f(x)=0$ for $x<0$ s-derivative: $\mathcal{L}\{x f(x)\}(s)=-F^{\prime}(s)$
scaling: $\mathcal{L}\{f(c x)\}(s)=\frac{1}{c} F\left(\frac{s}{c}\right), F(s c)=\frac{1}{c} \mathcal{L}\left\{f\left(\frac{x}{c}\right)\right\}$ if $c>0$
Laplace transform of $x e^{x}: \mathcal{L}\left\{x e^{x}\right\}(s)=-\left(\frac{1}{s-1}\right)^{\prime}=\frac{1}{(s-1)^{2}}$
Change variable form t to $t^{\prime}=t-c: \mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} F(s)$
The unit step function:

$$
u_{c}(t)= \begin{cases}0 & t<c \\ 1 & t \geq c\end{cases}
$$

Laplace transform of the unit step function $(c \geq 0)$:

$$
\mathcal{L}\left\{u_{c}(t)\right\}(s)=\int_{0}^{\infty} e^{-s t} u_{c}(t) d t=\int_{c}^{\infty} e^{-s t} d t=\frac{e^{-s c}}{s}, s>0
$$

For 'nice' functions $f(t)$.

$$
\begin{gathered}
\int_{\infty}^{\infty} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right) \\
\mathcal{L}\left\{\delta\left(t-t_{0}\right)\right\}(s)=e^{-s t_{0}} \\
\mathcal{L}\{\delta(t)\}(s)=\lim _{\alpha \rightarrow 0} e^{-\alpha s} \\
\mathcal{L}^{-1}\left\{\lim _{\alpha \rightarrow 0} \frac{e^{-\alpha s}}{s^{2}-a^{2}}\right\}=\frac{1}{a} u_{0}(t) \sinh (a t)
\end{gathered}
$$

Laplace Proofs:
$\mathcal{L}\left\{y^{\prime}\right\}(s)=\int_{0}^{\infty} e^{-s t} y^{\prime} d t=\left.e^{-s t} y(t)\right|_{0} ^{\infty}+s Y(s)=s Y(s)-y(0)$
With $\mathcal{L}\left\{(-t)^{n} f(t)\right\}(s)=\frac{d^{n} F(s)}{d s^{n}}$, where $F(s)=\{f(t)\}(s)$ we get
$\mathcal{L}\left\{t^{n} e^{a t}\right\}(s)=(-1)^{n} \frac{d^{n}}{d s^{n}}(s-a)^{-1}=\frac{n!}{(s-a)^{n+1}}$
Convolution:
$(f \star g)(t) \equiv \int_{0}^{t} f\left(t_{1}\right) g\left(t-t_{1}\right) d t_{1}$
$(\mathcal{L}\{f\})(\mathcal{L}\{g\})=\mathcal{L}\{f \star g\}$
Example: $\mathcal{L}^{-1}\left\{\frac{\mathcal{G}(s)}{s^{2}-a^{2}}\right\}=\frac{1}{a}(g(t) \star \sinh a t)$

Systems of DEs

First solution is $x^{(1)}=e^{\lambda t} \xi_{\lambda}$
Second solution is $x^{(2)}=t e^{\lambda t} \xi_{\lambda}+e^{\lambda t} \eta$
Where $\xi_{\lambda}=(A-\lambda \mathbb{1}) \eta$
Third solution is $x^{(3)}=\frac{t^{2}}{2} e^{\lambda t} \xi_{\lambda}+t e^{\lambda t} \eta+e^{\lambda t} \zeta$
Where $\eta=(A-\lambda \mathbb{1}) \zeta$

Critical Points

$$
\text { Jacobian Matrix }=\left[\begin{array}{cc}
\partial_{x} F\left(x_{0}, y_{0}\right) & \partial_{y} F\left(x_{0}, y_{0}\right) \\
\partial_{x} G\left(x_{0}, y_{0}\right) & \partial_{y} G\left(x_{0}, y_{0}\right)
\end{array}\right]
$$

Sometimes a nonlinear ODE has an exact phase portrait given by:

$$
\frac{d y}{d x}=\frac{G(x, y)}{F(x, y)} \Longrightarrow \quad \text { (integrate) } H(x, y)=c
$$

Eigenvalues	Critical Points	Stability
$r_{1}>r_{2}>0$	Node (source)	Unstable
$r_{1}<r_{2}<0$	Node (sink)	Asymp. Stable
$r_{2}<0<r_{1}$	Saddle	Unstable
$r_{1}=r_{2}>0$	Proper/Improper Node	Unstable
$r_{1}=r_{2}<0$	Proper/Improper Node	Asymp. Stable
$r_{1}, r_{2}=\lambda \pm i \mu(\lambda>0)$	Spiral (Focus)	Unstable
$r_{1}, r_{2}=\lambda \pm i \mu(\lambda<0)$	Spiral (Focus)	Asymp. Stable
$r_{1}=i \mu, r_{2}=-i \mu$	Centre	Stable

Almost Linear Systems the Proper/Improper bits become Node/Spiral Point. And the Centre becomes Centre or Spiral (Indeterminate)

Lyapunov Functions

Let $V(x, y)$ be defined on a domain D containing $(0,0)$
$V(x, y)$ is positive (negative) definite if $V(0,0)=0$ and $E(x, y)>0$ $\forall(x, y) \in D(V(x, y)<0 \forall(x, y) \in D)$
$V(x, y)$ is positive (negative) semi-definite if $V(0,0)=0$ and $E(x, y) \geq 0$ $\forall(x, y) \in D(V(x, y) \leq 0 \forall(x, y) \in D)$
Theorem Given an autonomous system with critical point (0,0), if $\exists V(x, y)$ continuous with continuous first partial derivatives, is positive definite then $(0,0)$ is:
Asymptotically Stable: If $\frac{d V}{d t}$ is negative definite on some domain D containing (0,0)
Stable (at non-linear level): If $\frac{d V}{d t}$ is negative semi-definite
Theorem Given an autonomous system with critical point (0,0), assume $\exists V(x, y)$ continuous with continuous first partial derivatives, such that $V(0,0)=0$ and that in every neighbourhood of $(0,0)$ there exists at least one point (x_{1}, y_{1}) where $E\left(x_{1}, y_{1}\right)$ is positive (negative). If there exists some domain D containing $(0,0)$ where $\frac{d V}{d t}$ is positive definite (negative definite) on D , then $(0,0)$ is an unstable critical point.

$$
\frac{d V}{d t}=x^{\prime} \partial_{x} V+y^{\prime} \partial_{y} V
$$

Limit Cycles

Limit cycles are periodic solutions s.t at least one other non-closed trajectory asymptotes to them as $t \rightarrow \infty$ (or $-\infty$ or both)
Theorem Let $F(x, y), G(x, y)$ have continuous first partial derivatives in some domain D. A closed trajectory must enclose at least one critical point. If it encloses only one, it cannot be a saddle point. (i.e no critical points in D implies no closed trajectories in D; if there exists a unique critical point in D and it is a saddle implies no closed trajectories in D).
Theorem Let $F(x, y), G(x, y)$ have continuous first partial derivatives in some simply connected domain D (i.e without holes). If $\partial_{x} F+\partial_{y} G$ has the same sign in $\mathrm{D} \Longrightarrow$ there are no closed trajectories in D.
Poincaré-Bendixon Theorem Let $F(x, y), G(x, y)$ have continuous first partial derivatives in some domain D . Let D_{1} be a bounded subdomain of D and let R consist of D_{1} and its boundary. Suppose R has no critical points. If \exists a trajectory $(x(t), y(t))$ staying in $\mathrm{R} \forall t \geq t_{0} \Longrightarrow$ either the solution is periodic (closed trajectory) or it spirals towards one. Either way there exists a closed trajectory.

$$
r r^{\prime}=x x^{\prime}+y y^{\prime}
$$

Example: $\dot{r}=r^{2}\left(1-r^{2}\right), \dot{\theta}=1$
$r=1, \theta=t+t_{0}$ corresponds to a limit cycle. Notice that for $r>1, \dot{r}<0$, whereas for $r<1, \dot{r}>0$. Thus, the cycle $r=1$ is stable. Can check this behaviours by plotting the trajectories not corresponding to periodic solutions.

$$
-\frac{1}{r}+\frac{1}{2} \log \frac{1+r}{1-r}=t+c
$$

sldls

Sturm-Liouville Boundary Problems

S-L form is $L[y]+\lambda y=0$ with $\mathcal{L}[y] \equiv-\left(p(x) y^{\prime}\right)^{\prime}+q(x) y(x)$
Modified Inner Product: $\left\langle\phi_{1}, \phi_{2}\right\rangle \equiv \int_{0}^{1} r(x) \phi_{1}(x) \phi_{2}(x) d x$ if $\left\langle\phi_{1}, \phi_{2}\right\rangle=0$ then ϕ_{1} and ϕ_{2} are orthogonal with respect to the inner product.
Using normalized eigenfunctions Φ_{n} we can expand $f(x)=x=\Sigma_{n=1}^{\infty} a_{n} \Phi_{n}$ Over $0 \leq x<1$ using orthonormality of inner product we find: $a_{n}=\int_{0}^{1} f(x) \Phi_{n}$

Fourier Analysis

Fourier Series of $f(x)$:

$$
f(x)=\frac{a_{0}}{2}+\Sigma_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right)
$$

Where $T=2 L$ or $f(x+2 L)=f(x)$

$$
\begin{gathered}
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x \\
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{gathered}
$$

Function is even if $f(-x)=f(x)$ and only have cosine coefficient series Function is odd is $f(-x)=-f(x)$ and only have sine coefficient series

Partial Differential Equations

We have $a^{2} \partial_{x x}^{2} u+\beta u=\partial_{t} u$
Now with non-homogeneous boundary conditions $u(0, t)=T_{1}, u(L, t)=T_{2}$, look for $v(x)$ to solve
$a^{2} v^{\prime \prime}(x)+\beta v(x)=0, v(0)=T_{1}, v(L)=T_{2}$
Then determine solution using $u(x, t)=v(x)+\omega(x, t)$

Identities

- $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$
- $\cos \mu=0 \Longrightarrow \mu_{n}=(2 n-1) \frac{\pi}{2}$
- $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$
- 1-D Heat Eq: $\partial_{t} u=\alpha^{2} \partial_{x}^{2} u$
- $\cos x=\frac{e^{i x}+e^{-i x}}{2}$
- $\int \sin ^{2} a x d x=\frac{x}{2}-\frac{\sin 2 a x}{4 a}$
- $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}$
- $\int \cos ^{2} a x d x=\frac{x}{2}+\frac{\sin 2 a x}{4 a}$

