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First Order ODEs
y′ + p(x)y = g(x)

Integrating Factors

y =
1

e
∫
p(x)dx

[∫
e
∫
p(x)dxg(x)dx+ C

]
Exact ODEs

M(x, y) +N(x, y)
dy

dx
= 0 ⇐⇒ ψx =

∂M

∂y
=
∂N

∂x
= ψy

Find g(x, y) by integrating and comparing
∫
Mdx with

∫
Ndy.

Wronskian

W [y1, ..., yn] =

∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y′1 y′2 . . . y′n
. . . . . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣
The functions {yi} form a fundamental set of solutions if W 6= 0
(i.e. if they’re linearly independent. Then any solution can be
written as their linear combination. If W (x0) 6= 0 then
W (x) 6= 0 ∀x ∈ [α, β].

Undetermined Coefficients: Repeated Roots
Let k be a real root with multiplicity s then

y = ekx(c0 + c1x+ c2x
2 + ...+ cs−1x

s−1).

If k = λ+ µi then

y = eλx[(c0 + c1x+ c2x
2 + ...+ cs−1x

s−1) cosµx

+(d0 + d1x+ d2x
2 + ...+ ds−1x

s−1) sinµx].

For particular solution, if g(x) solves the ODE then multiply the
trial function by xs.

Variation of Parameters
Cramer’s rule:

ypar =
n∑
j=1

uj(x)yj(x), u′j = g(x)
Wj [x]

W [y1, ..., yn]

ypar =
∑
j

∫ x

x0

g(s)
Wj [s]

W [y1(s), ..., yn(s)]
ds

where Wj [x] is the determinant of the matrix where we replace
the j-th column by the vector (0,0,...,1).

Laplace Transforms
The Laplace transform of f(x) defined for x ∈ [0,∞) is

F (s) = L{f}(s) ≡
∫ ∞
0

e−sxf(x)dx = lim
t→∞

∫ T

0
e−sxf(x)dx

Requires f ∈ E (f be of exponential type) - need f(t) to be
piecewise continuous on any [0, T ] where it is defined and
|f(x)| ≤ AeBx∀x ∈ [0,∞) for some constants A,B.
It is a linear operation, i.e.

L{c1f1(x) + c2f2(x)}(s) = c1L{f1(x)}+ c2L{f2(x)}.

If f(x) is continuous on [0,∞) and f, f ′ ∈ E then

L{f ′(x)} = sL{f(x)} − f(0)

L{f (n)(x)} = snL{f(x)}− sn−1f(0)− ...− sf (n−2)(0)−f (n−1)(0)

Let L{f(x)}(s) = F (s):

1. s-shift: L{e−cxf(x)}(s) = F (s+ c)

2. x-shift: L{f(x− c)}(s) = e−scF (s) if c ≥ 0 and f(x) = 0
for x < 0.

3. s-derivative: L{xf(x)}(s) = −F ′(s) or in general
L{xnf(x)}(s) = (−1)nF (n)(s).

4. scaling: L{f(cx)}(s) = 1
c
F ( s

c
), F (sc) = 1

c
L{f

(
x
c

)
} if

c > 0.

Unit Step Function
Given a function f(t) defined for t ≥ 0,

f(t)uc(t) =

{
f(t) for t ≥ c
0 for t < c

f(t)(ua(t)− ub(t)) =

{
f(t) for t ∈ [a, b)
0 for t 6∈ [a, b)

Dirac Distribution

δ(t) = 0 for t 6= 0,

∫ ∞
−∞

δ(t)dt = 1∫ ∞
−∞

δ(t− t0)f(t)dt = f(t0)

Convolution
Convolution is commutative, associative and distributive, but
(f ∗ 1) 6= f and (f ∗ f) 6= f2.

(f ∗ g)(t) =

∫ t

0
f(τ)g(t− τ)dτ

L{f ∗ g} = (L{f})(L{g})

First-Order Systems of ODEs
x′i(t) = Fi(xj(t), t) i, j = 1, ..., n

From n-th order to system of first-order ODEs
y(n) = F (y, y′, ..., y(n−1), t)

Change variables to x1 = y, x2 = y′, ..., xn = y(n−1) and take
derivatives x′1 = x2, x′2 = x3, ..., x′n−1 = xn and
x′n = y(n) = F (x1, x2, ..., xn, t).
A first-order ODE system is linear if it has the form

x′i =
dxi

dy
=

n∑
j=1

Pij(t)xj + gi(t) i = 1, ..., n

Homogeneous Systems of Linear ODEs
dx

dt
= P (t)x

The general solution is given by the linear combination of any
fundamental set of n solutions

xgen(t) =
n∑
j=1

cjxj(t)

with W [x1, ...,xn] = |x1,x2, ...,xn| = det Ψ(t) 6= 0.

Liouville’s Theorem

Ẇ = W trP =⇒ W (t) = e
∫ t
t0

trP (s)ds
W (t0)

Different Eigenvalues: Real
We look for exponential solutions of dx

dt
= Ax with

x = ertξ =⇒ dx
dt

= rx.
If the corresponding eigenvalue problem (A− rI)ξ = 0 has
different eigenvalues ri, the eigenvectors ξ(i) are linearly
independent and the general solution reads

x =
n∑
j=1

cje
rjtξ(j).

If an eigenvalue r has algebraic multiplicity s ≥ 2, the method
still works if the geometric multiplicity (number of linearly
independent eigenvectors) equals s.



Different Eigenvalues: Complex
If r1 = λ+ iµ is and eigenvalue, i.e. (A− r1I)ξ1 = 0 then the
complex conjugate r∗1 = λ− iµ is also an eigenvalue with
eigenvector ξ∗1.
To convert into real solutions, write ξ1 = a + ib, then the 2 real
solutions are

u(t) = eλt(a cosµt− b sinµt)

v(t) = eλt(a sinµt+ b cosµt)

and the general solution: x(t) = c1u(t) + c2v(t) + ...

Fundamental Matrix
A fundamental marix Ψ(t) is an n× n matrix with fundamental
solutions as columns:

Ψ(t) =


x
(1)
1 . . . x

(n)
1

...
. . .

...
x
(1)
n . . . x

(n)
n


• det Ψ(t) = W (t) 6= 0

• x(t) =
∑n
j=1 cjx

(j) = Ψ(t)c, c = (c1, ..., cn)T .

• If x(t0) = Ψ(t0)c = x0 =⇒ c = Ψ−1(t0)x0

x(t) = Ψ(t)c = Ψ(t)Ψ−1(t0)x0 (requires invertible Ψ(t)).

• Ψ′ = AΨ

Matrix exponential

eAt =

∞∑
n=0

(At)n

n!
= I +At+

1

2!
A2t2 + ...

= lim
n→∞

(
I +

1

n
A

)n
• x(t) = eAtx0 ⇐⇒ eAt = Ψ(t)Ψ−1(t0)

• eAt = Ψ(t) for Ψ(0) = I

Let dx
dt

= Ax and consider the matrix T with eigenvectors ξ(i) as
columns. The matrix AT has columns equal to Aξ(1) = riξ

(i), so

AT =


r1ξ

(1)
1 . . . rnξ

(n)
1

...
. . .

...
r1ξ

(1)
n . . . rnξ

(n)
n

 = T


r1 0 . . . 0
0 r2 . . . 0
...

...
. . .

...
0 0 . . . rn


= Tdiag(r1, ..., rn) = TD =⇒ D = T−1AT.

Then x = Ty =⇒ dy
dt

= Dy and in the new variables, the
solution is

yi = erit


0
.
1
0
.
0

 1 i-th component.

Thus its fundamental matrix equals
Q(t) = eDt = diag(er1t, ..., ernt). The fundamental matrix in the
original variables x is Ψ(t) = TQ(t) and the exponential matrix is
eAt = Ψ(t)Ψ−1(0) = TQT−1. Only works if A is diagonalisable. If
we have an eigenvalues with geometric multiplicity < algebraic
multiplicity, we cannot diagonalise!

Repeated Eigenvalues
If the algebraic multiplicity > geometric multiplicity, then follow
these steps:

1. One solution is x1 = eλtξ.
2. Second solution is of the form x2 = teλtξ + eλtη with

(A− λI)η = ξ.

3. (Third solution is of the form x3 = t2

2
eλtξ + teλtη + eλtζ

with (A− λI)ζ = η.)
Connection to matrix methods Build a matrix T out of
ξ,η, (ζ), then T−1AT = J where J is an upper triangular matrix
(Jordan form). We can then proceed as if it was D above. The
exponential has the form

eJλt =

(
eλt teλt

0 eλt

)
.

Nonhomogeneous Systems of ODEs
x′ = Ax + g(t)

The general solution is of the form

x(t) =
∑
i

cix
(1)(t) + xpar(t).

Diagonalisation
Introduce change of variables x = Ty, so we have

Ty′ = ATy + g(t) =⇒
dy

dt
= Dy + T−1g = Dy + h.

This leads to a system of n decoupled equation which we solve by
direct integration:

y′i = riyi + hi =⇒ yi(t) = cie
rit + erit

∫ t

t0

e−rishi(s)ds.

General solution in the original variables equals x(t) = Ty(t). In
case the matrix is not diagonalisable, find its Jordan form and
proceed in a similar way (with J instead of D). Note that we will
need to integrate from the bottom up.

Method of Undetermined Coefficients
Works if g(t) is built out of polynomials and exponentials (real or
complex). Same rules apply with the exception that if g(t) = ueλt

where λ is an eigenvalue of A with multiplicity 1, then

xpar = teλta + eλtb.

If the multiplicity is n, we must write xpar = eλt
∑n
i=0 t

iai.

Variation of Parameters
If A = P (t) is not constant, we look for solutions to the
non-homogeneous part of the form

x(t) = Ψ(t)u(t).

Introducing this to the system gives
dx

dt
= Ψ′(t)u(t) + Ψ(t)

du

dt
= P (t)Ψ(t)u(t) + g(t).

Remembering Ψ′ = P (t)Ψ,

Ψ
du

dt
= g(t) =⇒

du

dt
= Ψ−1g =⇒ u(t) =

∫ t

t0

Ψ−1(s)g(s)ds+ f

Thus the general solution is

x(t) = Ψ(t)Ψ−1(t0)x0 + Ψ(t)

∫ t

t0

Ψ−1(s)g(s)ds.

Qualitative Theory of ODEs
Consider a nonlinear autonomous system (i.e. F,G have no
explicit time dependence)

dx

dt
= F (x, y),

dy

dt
= G(x, y).

Critical Points
A point x0 = (x0, y0) is a critical point if
F (x0, y0) = G(x0, y0) = 0. Locally, around any critical point,
nonlinear ODEs ≈ linear ODEs. Use Taylor expansions (for F
and G):

F (x, y) = F (x0, y0) + ∂xF (x0, y0)(x− x0)

+∂yF (x0, y0)(y − y0) + η1(x, y)

where η1(x,y)
||x−x0||

→ 0 as (x, y)→ (x0, y0). Linear approximation
consists of dropping η1.
Introduce new variables u1 ≡ x− x0, u2 ≡ y − y0. These satisfy

du(t)

dt
=

(
∂xF (x0, y0) ∂yF (x0, y0)
∂xG(x0, y0) ∂yG(x0, y0)

)(
u1
u2

)
= Au.

A is the Jacobian matrix.

A node is proper if it has independent eigenvectors and improper
if there is a missing eigenvector. A critical point x0 is stable if ∀ε,
∃δ > 0 s.t. every solution x = φ(t) with ||φ(0)− x0|| < δ at t = 0
satisfies ||φ(t)− x0|| < ε, ∀t > 0.
A critical point x0 is asymptotically stable if it is stable and the
solution x = φ(t) is forced to approach x0 as t→∞.
Sometimes a nonlinear ODE system has an exact phase portrait
given by

dx
dt

= F (x, y)
dy
dt

= G(x, y)

}
=⇒

dy

dx
=
G(x, y)

F (x, y)
=⇒ H(x, y) = c.

Lyapunov’s Theory
Let E(x, y) be defined on a domain D containing (0,0).
E(x, y) is positive (negative) definite if E(0, 0) = 0 and
E(x, y) > 0 ∀(x, y) ∈ D (E(x, y) < 0 ∀(x, y) ∈ D).
E(x, y) is positive (negative) semi-definite if E(0, 0) = 0 and
E(x, y) ≥ 0 ∀(x, y) ∈ D. (E(x, y) ≤ 0 ∀(x, y) ∈ D.
Theorem Given an autonomous system with critical point (0,0),
if ∃E(x, y) continuous with continuous first partial derivatives,
positive definite and for which dE

dt
is negative definite on some

domain D containing (0,0) then (0,0) is asymptotically stable. If
dE
dt

is negative semi-definite =⇒ (0,0) is stable (at the non-linear
level). E(x, y) is called Lyapunov function.



Theorem Given an autonomous system with critical point (0,0),
assume ∃E(x, y) continuous with continuous first partial
derivatives, such that E(0, 0) = 0 and that in every
neighbourhood of (0,0) ∃ at least one point (x1, y1) where
E(x1, y1) is positive (negative). If ∃ some domain D containing
(0,0) where dE

dt
is positive definite (negative definite) on D =⇒

(0,0) is an unstable critical point.

Limit Cycles
Periodic solutions: f(x+ T ) = f(x) ∀x (the smallest possible T is
fundamental period). Trajectories form closed curves. A linear
combination or product of functions with the same period T also
have period T .
Limit cycles are periodic solutions s.t. at least one other
non-closed trajectory asymptotes to them as t→∞ (or −∞ or
both).
Let F (x, y), G(x, y) have continuous first partial derivatives in
some domain D. The we have the following:
Theorem A closed trajectory must necessarily enclose at least
one critical point. If it encloses only one critical point, it cannot
be a saddle point. (i.e. no critical points in D =⇒ no closed
trajectories in D; if ∃ a unique critical point in D and it is a
saddle =⇒ no closed trajectories in D).
Theorem Let D be simply connected (i.e. without holes). If
∂xF + ∂yG has the same sign in D =⇒ there are no closed
trajectories in D.
Poincaré-Bendixon Theorem Let R consist of a bounded
subdomain of D and its boundary. Suppose R has no critical
points. If a certain trajectory lies entirely in R, then this
trajectory either is a periodic (closed) trajectory or spirals
towards one. Either way, ∃ a closed trajectory.

Fourier Series
Inner Product

(u(x), v(x)) ≡
∫ L

−L
u(x)v(x)dx

(u(x), v(x)) ≡
∫ β

α
u∗(x)v(x)dx (complex functions)

The set {1, sin nπx
L
, cos mπx

L
} forms an orthogonal basis. If

Sn(x) = sin nπx
L
, Sm(x) = sin mπx

L
, Cn(x) = cos nπx

L
, Cm(x) =

cos mπx
L

, C0 = 1, then

(Sm, Sn) = 0
(Sn, Sn) = L

}
=⇒ (Sm, Sn) = Lδmn m,n 6= 0

(Cm, Cn) = 0
(Cn, Cn) = L

}
=⇒ (Cm, Cn) = Lδmn m,n 6= 0

(Sm, Cn) = (Sn, Cn) = (C0, Cm) = (C0, Sm) = 0, (C0, C0) = 2L.

A periodic function with period 2L can be expressed as Fourier
series

f(x) =
a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
=

∞∑
n=−∞

cne
inπx/L

For piecewise continuous functions the series converges to f(x) ∀x
where f(x) is continuous. At discontinuities, the series converges

to f(x+)+f(x−)
2

, not to f(x) - Gibbs phenomenon.

Euler-Fourier Formulas
Projecting the function onto orthogonal basis gives

a0

2
=

1

2L

∫ L

−L
f(x)dx ≡ 〈f(x)〉 = c0

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx, n = 0, 1, 2, ...

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx

cn =
an − ibn

2
, c−n =

an + ibn

2
(n > 0)

cn =
1

2L

∫ L

−L
f(x)e−

inπx
L dx, n ∈ Z

Even functions (f(−x) = f(x)) only have cosine coefficient series.
Odd functions (f(−x) = −f(x)) only have sine coefficient series.
Due to symmetries, even/odd functions only require information
about half the interval [0, L].

Parseval’s Theorem

(f, f) =

∫ L

−L
|f(x)|2dx = 2L

∞∑
n=−∞

|cn|2

= L

[
|a0|2

2
+

∞∑
n=1

(|an|2 + |bn|2)

]

Partial Differential Equations
• Assume separation of variables u(x, t) = X(x)T (t).

• Introduce one (or more) separation parameter λ.

• Solve eigenvalue problem(s): quantisation of λ (depends on
boundary / initial conditions).

• Write the most general solution as a linear combination of
all solutions to the eigenvalue boundary problems.

• Identify any undetermined coefficients using initial
conditions.

Heat Equation
∂tu = α2∂2xu, α > 0

• initial condition: u(x, 0) = f(x), 0 ≤ x ≤ L
• boundary conditions: u(0, t), u(L, t), t > 0

Homogeneous boundary conditions u(0, t) = u(L, t) = 0

u(x, t) = X(x)T (t) =⇒ X′′ + λX = 0

T ′ + α2λT = 0

Xn(x) = sin
nπx

L
, n = 1, 2, 3, ... λn =

n2π2

L2

Tn = e
−n

2π2α2t
L2

u(x, t) =
∞∑
n=1

cnXn(x)Tn(t) =
∞∑
n=1

cne
−n

2π2α2t
L2 sin

nπx

L

cn =
2

L

∫ L

0
f(x) sin

nπx

L
dx

Nonhomogeneous boundary conditions
u(0, t) = T1, u(L, t) = T2.
Map problem to one with homogeneous boundary conditions.
Define time independent function g(x) = limt→∞ u(x, t).

g(x) = T1 + (T2 − T1)
x

L
=⇒ u(x, 0) = f(x)− g(x)

Then ∂tg = 0 and it is easy to solve for g(x). The original
problem has the form u(x, y) = g(x) + w(x, t) (w(x) satisfies a
homogeneous set of boundary conditions with different initial
value function).

cn =
2

L

∫ L

0
(f(x)− g(x)) sin

nπx

L
dx

u(x, t) = T1 + (T2 − T1)
x

L
+
∞∑
n=1

cne
−n

2π2α2t
L2 sin

nπx

L

Insulated ends X′(0) = X′(L) = 0
Process is the same but this time the result is a cosine series.

Wave Equation

∂2t u = a2∂2xu a = wave speed

• initial position: u(x, 0) = f(x)

• initial velocity ut(x, 0) = g(x)

• fixed ends: u(0, t) = u(L, t) = 0

String with initial position No initial velocity, so
ut(x, 0) = 0 =⇒ T ′(0) = 0. Xn and cn are same as homogeneous
heat equation.

u(x, t) =

∞∑
n=1

cnXn(x)Tn(t) =
∞∑
n=1

cn sin
nπx

L
cos

nπat

L

String with initial velocity No initial position, so
u(x, 0) = 0 =⇒ T (0) = 0. We find that

Tn(t) = sin
nπat

L

u(x, t) =
∞∑
n=1

cn sin
nπx

L
sin

nπat

L

cn =
2

nπa

∫ L

0
g(x) sin

nπx

L
dx

String with initial position and velocity Let v(x, t) be the
solution for the vibrating string with no initial velocity
(g(x) = 0). Let w(x, t) be the solution for the string with no
initial displacement (f(x) = 0). Then u(x, t) = v(x, t) + w(x, t).



Laplace’s Equation
∇2u ≡ ∂2xu+ ∂2yu = 0

Dirichlet boundary conditions: u(x, y) specified at the boundary.
Rectangle Assume separation of variables u(x, y) = X(x)Y (y).
Then

X′′ − λX = 0

Y ′′ + λY = 0

Example : u(x, 0) = u(x, b) = 0, u(0, y) = 0, u(a, y) = f(y), 0 ≤
x ≤ a, 0 ≤ y ≤ b

u(x, y) =
∞∑
n=1

cn sinh
nπx

b
sin

nπy

b

cn sinh
nπa

b
=

2

b

∫ b

0
f(y) sin

nπy

b
dy

Disc Change coordinates:

∂2u

∂r2
+

1

r2
∂2u

∂θ2
+

1

r

∂u

∂r
= 0

Assume u(r, θ) = R(r)Θ(θ), then

r2R′′ + rR′ = λR

Θ′′ = −λΘ

Example: u(a, θ) = f(θ), x2 + y2 = a2, 0 ≤ θ ≤ 2π and
u(x, y) =

√
x2 + y2 ≤ a

Periodicity and boundedness determine:
• λ = 0 allows a constant solution u0(r, θ) = c0

2
.

• λ = n2 allows solutions of the form
un(r, θ) = rn(an cosnθ + bn sinnθ)

u(r, θ) =
c0

2
+

∞∑
n=1

rn(en cosnθ + fn sinnθ)

u(a, θ) = f(θ) =
c0

2
+

∞∑
n=1

an(en cosnθ + fn sinnθ)

anen =
1

π

∫ π

−π
f(θ) cosnθdθ

anfn =
1

π

∫ π

−π
f(θ) sinnθdθ

Sturm-Liouville Boundary Problems
Homogeneous Problems
Consider differential equations of the form

[p(x)y′]′ − q(x)y + λr(x)y = 0

Define the differential operator L and rewrite the equation

L[y] = −[p(x)y′]′ + q(x)y

L[y] = λr(x)y

a1y(0) + a2y
′(0) = 0 b1y(1) + b2y

′(1) = 0

All eigenvalues λ for which there are nontrivial solutions are real.
If we have two eigenvalues λ1 and λ2 with λ1 6= λ2 and
corresponding eigenfunctions φ1, φ2 then

〈φ1, φ2〉 =

∫ 1

0
r(x)φ1(x)φ2(x)dx = 0.

That is, the pair is orthogonal with respect to the inner product
defined by the Sturm-Liouville problem (w.r.t the weight function
r(x)), denoted by the angled brackets to differentiate from the
original inner product. For each eigenvalue, there is a unique
linearly independent eigenfunction. They form and infinite
ordered sequence λ1 < λ2.. < λn and λn →∞.
Eigenfunctions satisfying

〈φn, φn〉 =

∫ 1

0
r(x)φ2n(x)dx = 1

are said to be normalised and form an orthonormal set w.r.t. r(x).
A functionf(x) can be written as a sum of these eigenfunctions as
follows:

f(x) =

∞∑
n=1

cnφn(x)

Multiplying by r(x)φm(x) and integrating gives
∞∑
n=1

cn

∫ 1

0
r(x)φm(x)φn(x)dx = cm

cm =

∫ 1

0
r(x)φm(x)f(x)dx = 〈f(x), φm〉

Lagrange’s Identity∫ 1

0
(L[u]v − uL[v])dx = [−p(x)(u′(x)v(x)− u(x)v′(x))]10 = 0

(L[u], v)− (u, L[v]) = 0

Nonhomogeneous Problems
L[y] = −[p(x)y′]′ + q(x)y = µr(x)y + f(x)

First look at the homogeneous problem L[y] = λr(x)y with
eihenvalues λ1, λ2.. and eigenfunctions φ1, φ2... Assume the
solution y = φ(x) can be written as

φ(x) =
∞∑
n=1

bnφn(x)

cn =

∫ 1

0
f(x)φn(x)dx

bn =
cn

λn − µ

y = φ(x) =
∞∑
n=1

cn

λn − µ
φn(x)

If cn is zero then bn is arbitrary - infinitely many solutions. If
λn = µ for some n and cn 6= 0 then there are no solutions.
Example: generalised heat equation

r(x)ut = (p(x)ux)x − q(x)u+ F (x, t)

with two boundary conditions
ux(0, t)− h1(0, t) = 0, ux(1, t) + h2u(1, t) = 0 and initial condition
u(x, 0) = f(x). Assume solution of the form

u(x, t) =

∞∑
n=1

bn(t)φn(x)

where φn are eigenfunctions of the problem. Expand F (x, t) in the
same basis. It is convenient to consider

F (x, t)

r(x)
=
∑
n

γn(t)φn(x)

with γn(t) =

∫ 1

0
r(x)

F (x, t)

r(x)
φn(x)dx = (F, φn)

Substituting we find

˙bn + λnbn(t) = γb(t) n = 1, 2, 3...

Using initial conditions

u(x, 0) = f(x) =
∑
n

αnφn(x) =⇒ αn =

∫ 1

0
r(x)f(x)φn(x)dx

bn(t) = αne
λnt +

∫ t

0
e−λn(t−s)γn(s)ds

Wave equation in 2D
Rectangle

∂2t u = a2(∂2xu+ ∂2yu)

Separation of variables gives rise to:

X′′

X
+
Y ′′

Y
=

T ′′

a2T
= −(λ+ µ)

X′′ + λX = 0

Y ′′ + µY = 0

Example : 0 ≤ x ≤ L, 0 ≤ y ≤M with
u(0, y) = u(L, y) = u(x, 0) = u(x,M) = 0.

X = sin(mπx/L), λm = m2π2/L2m m = 1, 2, ...

Y = sin(nπy/M), µn = n2π2/M2m n = 1, 2, ...

T ′′ + a2(λm + µn)T = 0

T (t) = Tmn(t) = cmn cos(ωmnt) + dmn sin(ωmnt)

where ωmn = aπ
√
m2/L2 + n2/M2.

General solution is u(x, y, t) = X(x)Y (y)T (t).

u(x, y, 0) = f(x, y) =
∑
m,n

cmn sin(mπx/L)sin(nπy/M)

∂tu(x, y, 0) = g(x, y) =
∑
m,n

dmn sin(mπx/L) sin(nπy/M)

Disc

∂2t u = a2
(
∂2r +

1

r
∂r +

1

r2
∂2θ

)
u

Separation of variables gives rise to:

Θ′′ +m2Θ = 0

T ′′ + a2µ2T = 0

R′′ +
R′

r
+

(
µ2 −

m2

r2

)
R = 0

Example: 0 ≤ x2 + y2 ≤ 1 with
u(1, θ, t) = 0, ∂tu(x, y, 0) = 0, u(r, θ, 0) = f(r, θ).

T (t) = k1 sin(µat) + k2 cos(µat)

Θ(θ) = a1 cos(mθ) + a2 sin(mθ)

R(r) = c1Jm(µr) + c2Ym(µr)

Periodicity in θ requires m = 1, 2, .... Boundedness imposes
a2 = 0. u(1, θ, t) imposes Jm(µ) = 0, i.e. µ = µm1, µm1... are



zeroes of the Bessel function. Initial condition ∂tu(r, θ, 0) = 0
imposes k1 = 0. So the general solution is

u =
∑
m

∑
n

(cmn cos(mθ) + dmn sin(mθ)) cos(aµmnt)Jm(µmnr)

cmn ∝
∫ 1

0

∫ 2π

0
f(r, θ) cos(mθ)Jmn(µmnr)rdrdθ

dmn ∝
∫ 1

0

∫ 2π

0
f(r, θ) sin(mθ)Jmn(µmnr)rdrdθ

Third Laplace’s Equation in Cylindrical Coordinates

∇2u ≡ ∂2xu+ ∂2yu+ ∂2zu = 0

1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ2
∂2u

∂ψ2
+
∂2u

∂z2
= 0

Using separation of variables u(ρ, ψ, z) = R(ρ)Ψ(ψ)Z(z),

1

Rρ

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2Ψ

d2Ψ

dψ2
+

1

Z

d2Z

dz2
= 0

d2Z

dz2
= χ2Z

d2Ψ

dψ2
= −m2Ψ

d2R

dρ2
+

1

ρ

dR

dρ
+

(
1−

m2

ρ2

)
R = 0

The radial equation is Bessel’s equation. So the solution are of the
form

Rm(ρ) = c1Jm(χρ) + c2Ym(χρ)

which is a linear combination of Bessel functions of first and
second kind.

• p(ρ) = r(ρ) = ρ: vanish at origin ρ = 0

• q(ρ) = m2

ρ
: unbounded as ρ→ 0.

Useful Facts
• cosh(x) = ex+e−x

2

• sinh(x) = ex−e−x
2

•
∫
udv = uv −

∫
vdu

Polar coordinates
x = r cos θ y = r sin θ

r2 = x2 + y2 tan θ =
y

x

Cylindrical coordinates
x = ρ cosψ, y = ρ sinψ, z = z
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