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THE DEFINITION OF A MAIFOLD
DEFINITION 1.1: COORDINATE CHART

A coordinate chart on a set M is a pair (U, ¢) where U C M and ¢ : U — ¢(U) is a bijection onto an

open subset of R™.
Writing p(a) = (z!(a),...,2"(a)) for a € U we get local coordinate functions z°, giving a local

chart (U, z%, ..., 2").

DEFINITION 1.2: SMOOTH FUNCTION

Let V C R™. A function f : V — R™ is differentiable at a € V if there exists a linear map L : R® — R™
so that L I

lim <f(a +h) = f(a) — ) =0.

h=0 IRl [|A]]

We say that L is the derivative of f at a and denote it L = (df),. Relative to standard bases in R and
R™ we have a matrix representation of L via the Jacobian Matrix,

aft aft
Oxl ox™
a a
D.fa = : :
afm™ af™
Oxl ox™
a a

where f(z',...,2") = (f*(z',...,2"),..., f™(z',...,2™)). If f is differentiable at each a € V then
Df :aw Df, defines a continuous function. We say f is smooth if D™ f exists for all n € N.

THEOREM 1.3: CHAIN RULE
If g and f are smooth composable functions then
d(g o f)a = (dg) f(a) © (df )a-
DEFINITION 1.4: ATLAS

Let A be some indexing set. An n-dimensional coordinate atlas on a set M is a collection {(Uq, ¥a) taca
of coordinate charts such that

1. X =Uqaen Ua so that {U,} covers M,
2. ¢o(Uy,NUg) is open in R” for all a, 5 € A, and

3. for all a, B € A, the transition functions ¢z o o, (U, N Up) is a smooth function between two
open subsets of R™.

DEFINITION 1.8: COMPATIBLE ATLASES

Two atlases {(Un, ¥a) taeca and {(Vz,¥3)}sco are compatible if their union is an atlas.

DEFINITION 1.10: DIFFERENTIABLE STRUCTURE

A differentiable structure on a set M is an equivalence class of compatible atlases.



DEFINITION 1.11: MANIFOLD

A differentiable manifold is a set M together with a differentiable structure.

DEFINITION 1.17

Let M be a manifold with atlas A = {(Us, ¥a)}aca- A subset V' C X is open if for all @ € A then
va(V NU,) is open in R™.

THEOREM 1.18: MANIFOLD TOPOLOGY

The open subsets of a manifold M define a topology on M

DEFINITION 1.19

A manifold M is second-countable if it admits a countable atlas; i.e. an atlas with at most countably
many charts.

DEFINITION 1.25: COMPACT/CONNECTED MANIFOLD

Let M be a manifold with atlas A = {(Us,¥a)}aeca. Then M is compact if every atlas has a finite
sub-atlas, and M is compact if given any two a,b € M there is a finite set of charts {(U;, p;) }i=1,....~N
such that a € Uy, b€ Uy and U; NU;3q # 0 for i =1,2,..., N — 1.

THEOREM 1.26: INVERSE FUNCTION THEOREM

Let U C R™ be an open set and f : U — R™ be a smooth function with (df), : R® — R" invertible at
a € U. Then there exist neighbourhoods a € V and f(a) € W such that f(V) =W and f has a smooth
inverse on W.

DEFINITION 1.27

Let U C R™*" be open, F : U — R™ be smooth, and ¢ € R™. We say that c is a regular value of F if
for all a € F~1(c) the derivative (dF), : R™*t™ — R™ is surjective.

THEOREM 1.27: LEVEL SET

Let U C R™"™ be open and F : U — R™ be smooth with ¢ € R™ as a regular value. Then F~!(c) is a
smooth n-dimensional Hausdorff second-countable manifold.
Remark: definition 1.29 gives that F~1(c) has dimension m.

DEFINITION 1.29: REGULAR SUB-MANIFOLD

A subset S C M of an n-dimensional manifold M is a regular sub-manifold® of M with dimension
k < n if for every p € S there is a chart (U, ¢) of M with p € U and U N S is defined by the vanishing of
n — k of the coordinate functions.

9Equally a regular sub-manifold is one with atlas {(Ua NS, ¢a)}aca-



MAPS BETWEEN MANIFOLDS
DEFINITION 2.1: SMOOTH MAP

A map F : M — N between an m-dimensional manifold M and an n-dimensional manifold NV is smooth
if for each a € M and chart (U, ¢) in M and chart (V,4) in N with ¢ € U and F(a) € V the composite

poFop! :@(Fﬁl(V)ﬂU) — R"
is smooth as a map from R™ to R".

DEFINITION 2.5: DIFFEOMORPHISM

A diffeomorphism F' : M — N is a smooth bijection with smooth inverse.

DEFINITION 2.8: LIE GROUP

A Lie Group is a smooth manifold G together with
e an element e € G,
e amap pu: Gx G — G,
e amap (: G — G,
such that
e (Identity): p(e,a) = p(a,e) =aforalla € G,
e (Inverse): p(a,i(a)) = u(i(a),a) =efor all a € G,
e (Associativity): p(u(a,b),c) = p(a, u(b,c)) for all a,b,c € G.

We will often write a=! = +(a) and ab = u(a,b).

DEFINITION 2.10

Let G be a Lie group. For all a,b € G we have diffeomorphisms A\, : G — G and p, : G — G given by
Aa(b) = p(a,b) = py(a).

DEFINITION 2.11: SMOOTH FUNCTIONS

A special case of smooth maps are smooth functions, which are smooth maps f : M — R. We denote
the commutative, associative R-algebra (hence an R-module) of smooth functions on a manifold M as

C>®(M).
DEFINITION 2.17: COTANGENT SPACE

Let M be a smooth manifold. Denote by Z,(M) C C°°(M) the set of smooth functions whose derivative®
vanish at a € M. The cotangent space of M at a is the quotient vector-space

T*M := C%(M)/Z,.

The derivative (df), of f € C°>°(M) at a is the image of f is the image under the canonical quotient
map.

We haven’t actually defined what a derivative is yet, but f € Z, if and only if the derivative f o p~! vanishes at ¢(a),

by the chain rule. Here f o ¢~ is a real-valued function, so we have a definition of (vanishing) derivatives.



THEOREM 2.20

Let M be an n-dimensional manifold, then:
o for all a € M the cotangent space T, M is an n-dimensional real vector space,

e if (U, ) is a coordinate chart around a with local coordinates (z!,...,2") then (dzl),,..., (dz"),
is a basis for T M, and

o if f e C(M) then

n

(@)=Y 0:(f o5

=1

dz")a,
w(a)( )

where 0; is the i-th derivative with respect to the i-th coordinate on R™.

DEFINITION 2.22: TANGENT SPACE

Let M be an n-dimensional manifold with ¢ € M. The tangent space T, M to M at a is the dual vector
space to T2 M, i.e. the linear functions C*°(M) — R sending Z, to zero.

DEFINITION 2.23: DIRECTIONAL DERIVATIVE
A directional derivative at a € M is a linear map X, : C°°(M) — R satisfying the Liebniz rule:
Xa(fg) = f(a)Xa(g) + g(a) Xa(f)-
THEOREM 2.24
Let X, be a directional derivative at a € M and f € Z, then X,f = 0. Hence X, € T,M, and
9
8961 a ’

is the canonical dual basis to ((dacl)a, e (dx")a).

0

THEOREM 2.25

If ¢ is a smooth curve in M passing through a € M, i.e. a smooth map c: (—¢,¢) = M with ¢(0) = a.
We define the velocity of ¢ at a to be the function

d

d(0): C®(M) = R, J(0)f = =

(foc)(®)

t=0

Then ¢/(0) € T,M. In fact every X, € T,M is of the form ¢/(0) for some curve ¢ through a.



DEFINITION 2.27: PUSH FORWARD /DERIVATIVE

The derivative (or ‘push-forward’) at a € M of a smooth map F : M — N is the linear map
(Fu)a : TaM — Tpg)N, (Fo)a(Xa)(f) = Xa(f o F).
If X, =¢(0) then (Fu)o(Xa)(f) = (Foc)(0)(f), and

(F)a (aii ) N i 25

Jj=1

2
a 8@/] F(a).

DEFINITION 2.28: SUBMERSION, IMMERSION, EMBEDDING

Let F': M — N be a smooth map between an m-dimensional manifold M and an n-dimensional manifold
N, then

e F'is a submersion if (F}), is surjective for all a« € M
e Fis a immersion if (F.), is injective for all a € M
e Fis an embedding if F' is a homeomorphism onto its image, and is an immersion.

Warning: injectivity/surjectivity of F says nothing about injectivity/surjectivity of (Fx)q-

DEFINITION 2.29: EMBEDDED SUB-MANIFOLD

A manifold M is an embedded sub-manifold of a manifold N if there is an embedding ¢ : M — N.

DEFINITION 2.30: REGULAR VALUE

Let F: M — N be a smooth map between manifolds. We say ¢ € N is a regular value of F if for all
a € M with F(a) = ¢ the derivative (Fy), : T,M — T.N is surjective.

THEOREM 2.31: REGULAR SUB-MANIFOLD

Let F : M™*t" — N™ be a smooth map between manifolds and ¢ € N be a regular value of F. Then
F~1(c) is an n-dimensional embedded sub-manifold of M and for all a € F~(c)

T.F~*(c) = ker(F.),.



THE TANGENT BUNDLE AND VECTOR FIELDS
THEOREM 3.1: TANGENT BUNDLE

Let M be a manifold, we define the tangent bundle as

TM = | | T.M,
aceM

with projection map p : TM — M sending v € T,M to a € M. Suppose that {(Ua, ¥a)}aca is an atlas
for M, then we have seen that (%

ey % ,) is a basis for T,M, so we have a bijection
a a

1/1:U><R"—>TU::|_|TQM, 7,/1(a,v1,...,v”)zzia
ac€U i=1

Then {(TUq, ¥Y4o)}aea with

"9
®=(pxid)oyp™ : TU = o(U) x R™, W(Zv’ .):(gcl,...7x”,v1,...,1)”)

i=1

is an atlas for T M.

THEOREM 3.2

The tangent bundle TM of a manifold M is Hausdorff and second-countable (provided M is).

DEFINITION 3.4: VECTOR FIELD

A vector field on a manifold M is a smooth map X : M — TM such that po X = idys, in other
words X (a) € T,M. The set of all vector fields is denoted X(M), and we use the abuse of notation
Xe="WoXop )zt ...,2") = (2,..., 2", X (z),..., X" (2)).

Any vector field X : M — TM is an embedding so that X (M) is an embedded sub-manifold of T'M
diffeomorphic to M (exercise 4.6).

DEFINITION 3.5

The zero section of T'M is the map s : M — T'M given by the vector field X = 0. All sections of TM
are vector fields®.

®Though we will only define what a section is later

THEOREM 3.7

Given a smooth map F : M — N from an m-dimensional manifold M to an n-dimensional manifold N
the push-forwards (Fy), : T,M — Tpq) N assemble to a smooth map Fy : TM — TN. In other words,
there is a functor F, from the category of manifolds and smooth maps to its self.

We can do a similar trick for the cotangent bundle 7 M, with a couple of differences. There is no
functor T*F : T*M — T*N, but we can pull back sections of T*N to sections of T*M (see workshop 3).



DEFINITION 3.8

Any R-linear transformation X of C°° (M) obeying the Leibniz rule

X(fg)=fX(g9)+9X(f)

is called a derivation of C*°(M).

THEOREM 3.10

A transformation X : C*° (M) — C°°(M) is a vector field if and only if it is a derivation.

DEFINITION 3.11

The lie bracket of two vector fields X and Y is defined by

(X, Y](f) = X(Y(f)) = Y (X(f)),
and is its self a vector field satisfying (exercise 4.13)
o [—,—] is R-bilinear,
o [X,Y]=—[Y,X] (‘skew-symmetry’),
o [X,[V,Z]] = [[X,Y],Z] + [, X, Z]] (‘Jacobi identity’), and
o [X,fY]=fIX,Y]+X(f)Y.

DEFINITION 3.14

Let F : M — N be a smooth map between differentiable manifolds. We say that a vector field X € X(M)
is F-related to Y € X(N) if for all a € M the identity (F}),(Xa) = Yp(q) holds.

THEOREM 3.15

A vector field X € X(M) is F-related to Y € X(M) if and only if X(fo F') = (Y f)o F for all f € C>*(M).



DEFINITION 3.18
A one parameter group of diffeomorphisms of a manifold M is a smooth map 1 : R x M — M with
P(t,a) = ¢ (a) such that for all s,¢ € R:
e Y, : M — M is a diffeomorphism,
e g = idys, and
® oyt =150y

Suppose that 1 is a one parameter group of diffeomorphisms of M and f € C*°(M) then for all a € M
the function R — R given by ¢ — f(t:(a)) is smooth and hence ; defines a vector field

Xo(f) = 7@ (a)

t=0

In local coordinates ¢y (x!, ..., 2") = (y*(t,x),...,y"(t,z)) we have

" [0y of
Xl =2 ( 8%‘ t0> ozt

i=1

DEFINITION 3.19
An integral curve of a vector field X € X(M) is a smooth map ¥ : («, 8) — M such that for all ¢t € (¢, 8)

(1)t (i) = Xy()-

In fact, if (U,¢) is a chart of M with local coordinates (z',...,2") and X = Y1 | X¥(z)52 € X(U)
then v is a smooth curve satisfying

o (5) = X

i=1

giving a first-order system of ODEs ‘%i = X%(x(t)). Thus a vector field is an ODE on that manifold and

solving that ODE is equivalent to finding its integral curves.

THEOREM 3.21

Let V' C R™ be open with py € V and f : V — R" smooth. Then the initial value problem

dy

—_— = s 0 =

i) y(0) = po
has a unique smooth solution y : (o, 8) — V where a, 8 depend on py and («, ) is the maximal interval
containing 0 on which y is defined.

THEOREM 3.22

Let V C R" be open and f : V — R™ be smooth. For each py € V there exists W C V open with py € W,
€ > 0 and smooth
y:(—g,e)x W=V

such that

%(MJ) = fly(t,q),  y(0,9)=q V(t,q) € (—¢,&) x W.



DEFINITION 3.23

Theorem 3.22 gives that if X € X(U) then for every a € U there is a W C U open with a € W, & > 0 and
smooth 9 : (—¢,e) x W — U such that for all p € W we have that ¢ (p) = 9 (¢, p) is an integral curve.
We call ¢ the local flow generated by X. If v is defined on R x M then we call it global flow.

DEFINITION 3.24: LIE DERIVATIVE
If 4, is the local flow generated by X € X(M) then for all f € C*°(M) we saw previously that

X(f) = Srou| e,

t=0

We call this the Lie derivative Lx along X. Equivalently:

(LxY)(f) = [X, Y](f)-

10



VECTOR BUNDLES
DEFINITION 4.1: TENSOR PRODUCT

Let V, W be two finite-dimensional real vector spaces. Their tensor product V ® W is the vector space
defined by the set of linear maps ® : Vx W — V @ W sending (v, w) — v ® w satisfying the following
universal property:

Given a bilinear map B : V x W — U into a vector space U there is a unique linear map 8 : VW — U
such that the following commutes:

VxW 85U
[ 27
VoW

It turns out that V' ® W is just the dual to the vector space Bil(V, W) of bilinear maps, and there is a
natural isomorphism Hom(V @ W, U) = Hom(V, Hom(W, U)).

DEFINITION 4.2

Denote by V€% =V ® ---® V. Then the tensor algebra of V has underlying space
—_————

k times

T(V) = é vek
k=0

whose elements are finite sums A +v + Y v; @ v; + - + > vy, ® ---v;, and if u,v € T(V) then their
product is just © ® v. This algebra is associative.

Vectors in T7 (V) = V& @ (V*)®* are called (r, s)-tensors, we can understand (r, s)-tensors as linear
maps V& — V" by the isomorphism V @ V* = End(V). That is, 77 (V) = Hom(V®*, V).

DEFINITION 4.5: VECTOR BUNDLE

A real vector bundle or rank m consists of
1. a manifold M, called the base space,
2. a manifold F, called the total space,
3. a smooth surjection 7 : E — M called the projection
such that
4. for all @ € M the fibre 7~ !(a) is isomorphic as a vector space to R™

5. for all a € M there is an open neighbourhood U of a and a diffeomorphism ¢ : 77 1(U) — U x R™
(called the local trivialisation) such that ¢y maps the vector space w~1(a) isomorphically to the
vector space {a} x R™, and

6. If (U, py) and (V, @y ) are two local trivialisations with U NV # @ then
ngogp‘_/l (UNV)xR™ = (UNV) xR™,

takes the form (a,v) — (a, gyv(a)v) where the transition function gyyv : UNV — GL(m,R) is
smooth.

A vector bundle is trivial if the neighbourhood in (4) can be taken to be all of M. If the rank of the
vector bundle is one, we call it a line bundle.

11



DEFINITION 4.6

Let m : E — M be a real rank m vector bundle, then {(Uy, ¥a)}aca is a trivialising cover if M =
Uaen Ua and (Uy, 0a) is a local trivialisation for every a € A.

THEOREM 4.8

Let I € GL(m,R) denote the identity matrix. Let M be a manifold with open cover {Uy, }aea and family
{gap : Ua N U = GL(m,R)} of smooth maps satisfying”

1. gaa =1 for all a € U,,
2. gap(a)gsa(a) =1for all a € Uy, N Up,
3. gap(a)gpy(a)gya(a) =1 for all a € Uy NUg N U,.

Then there exists a real rank m vector bundle 7 : £ — M with transition functions g.z.

“these are called the Cech cocycle conditions.

DEFINITION 4.9

For a vector bundle E — M we briefly denote the transition functions by ng. Using the Cech-cocycle
conditions we can define new vector bundles from old:

e Let E — M and F — M be two real vector bundles of rank &k and [, respectively, over the same base
space. We define the Whitney sum E @ F — M to be the vector bundle with fibres (E & F), =
E, ® F, with transition functions

B0
gig" 1 UaNUs — GL(k + 1, R), a»—)(ggﬁ g%)'

e The dual bundle E* — M to E — M has fibres (E*), = Hom(E,,R) = (E,)* and transition
functions gfﬁ = ((ng)T)*1 given by the inverse-transpose of the transition functions of £ — M.

e The tensor bundle E® F — M of E — M and F — M has fibres (E® F), = E, ® F, and
transition functions
gfL?F(a):goEzﬁ(a)@?ggﬁ(a% (A,B) » A® B.

DEFINITION 4.17

Let p: E — M and g : F — N be two vector bundles. A pair of smooth maps (¥, ) with & : £ —» F
and ¢ : M — N is a bundle map if for all @ € M the map ®, : E, — F,(,) is linear with the following
commutative diagram

B!

J O

]
<«
)

=

MT’

We say that ¥ covers .

DEFINITION 4.20: SECTIONS

Let p: E — M be a vector bundle, then a map s : M — FE is a section if p o s = id)y, that is, if for all
a € M, s(a) € E,. The set of all sections of E is denoted I'(E).



THEOREM 4.22

Let p: E — M be a vector bundle, then T'(F) is a C°°(M)-module.

THEOREM 4.23

Ifp: E— M and q: F — M are vector bundles and ¥ : E — F is a bundle map (covering the identity)
then ¥ defines a C°°(M)-linear map ¥, : I'(E) — I'(F) by ¥(s) = P o s.

THEOREM 4.24

Let E — M and F — M be vector bundles with C°°(M)-linear map ¢ : I'(E) — T'(F) , then 1 is local so
that if s|yy = 0 for U C M open then ¢(s)|y = 0. In particular if s € I'(E) with s(a) = 0 then ¥(s)(a) =0
as well.

THEOREM 4.25

Let E — M be a vector bundle and e € E, for some a € M then there exists a section s € I'(F) such that
s(a) =e.c

THEOREM 4.26

Let p: E — M and g : F — M be vector bundles of rank k and [ respectively, and let ¢ : T'(E) — I'(F)
be C°°(M)-linear. Then ¢ = ¥, for a unique bundle map ¥ : £ — F.

13



DIFFERENTIAL FORMS
DEFINITION: ALTERNATING FORMS

A k-linear alternating form (or ‘k-form’) on an n-dimensional real vector space V' is a k-linear map
¢ : VF — R which vanishes if any two of its arguments coincide: ¢(...,v,...,v,...) =0 for all v € V.

We will use /\k V* to denote the set of k-linear alternating forms on V.

THEOREM

Let p € /\k V* be an alternating k-form, then:

o If ¢ is alternating then ¢(...,v,w,...) = —¢(...,w,v,...) for all v,w € V - hence the name
‘alternating’, and

o dim (A"V*) = (Z)

THEOREM

if A€ GL(V) then (A-¢)(v1,...,v5) = (A7 vy, ..., A7 vg). This defines a Lie-Group homomorphism

GL(V) —%— GL(A"V*)

Lok
GL(n,R) GL <(Z> ,R)

k *
which defines the transition functions gé\ﬁ - (g2s).

DEFINITION

k =
Taking T M and constructing /\k T* M with transition functions gé\ﬁ =M _ \I/(ggé” ) we get a vector bundle
with the C°°(M)-module of smooth sections Q¥(M): the differential k-forms on M. A typical element

of QF(M) is a C°° (M )-multilinear alternating map

a:X(M)x - x X(M) = C=(M),  a(X1,..., X)) = aa((X1)a,- -+ (Xi)a),

k—times

for all a € M.

DEFINITION

Let F: M — N be a smooth map and a € QF(N), then its pull-back F*a € Q(M) by F is

(F*a)(X1,. .., Xp)(a) = ap@ (Fa(X1)a - » (F2)a(Xe)a).

14



DEFINITION

Let a, 3 € Q'(M) then their wedge product (or ‘exterior product’) a A B € Q*(M) is

fanxy) =der (50 557) = a8 - a)sex)

for all X,Y € X(M).
More generally, if oy, ..., € QY (M) then ai A --- A ag € QF(M) is given by

al(Xl) O[l(Xk)
O[l/\"'/\ak(Xla"'an):det .
ak(Xl) Oék(Xk)

for all Xq,..., X € X(M).

THEOREM 5.3

Let a, 3 € QY(M) and F : N — M be a smooth map, then

F*(aAB) = (Fa) A (F*B).
DEFINITION

Q' (M) =P rM) = (M) & - & Q"(M).

THEOREM

Recall that if (U, z?,...,2") is a local coordinate chart on M then dz’ € Q' (U) and every o € Q' (U) can
be written in the form

0
xt

o= zn:aiXi € 0> (M), X = ixia
=1

=1

DEFINITION

We say that I = (i1,...,i) is a multi-index of length [I| = k if 1 < i3 < -+ < i < n. We define
dz’ € QUI(U) = QF(U) by da’ = da’t A --- Ada'™, so that every k-form can be written as

0 0
1 —
g ardz”, al_a(amil"”’axik>'

=k

THEOREM 5.5

For all o € QF(M) and B8 € Q!(M) we have

aAB=(DFgra QL (M).

15



THEOREM 5.6
Let F': R™ — U be a smooth map, then for all a € Q%(U) and 3 € Q'(U) we have
F*(aAB)=F*aNF*3 € QFL(R™).
DEFINITION 5.7

The exterior derivative d : QF(U) — Q*+1(U) is defined by

da = Z day A dx! where o= Z ajdxl.
|I|=k |I|=k

THEOREM 5.8
Let a € QF(U) and B € QY(U) then
danB)=daAB+(—1)*andb.
THEOREM 5.9

Let f € C>®(U) and df € Q(U) then d(df) = d*>f = 0. In general, if a € Q¥(U) then d?a = 0.

THEOREM 5.11: DIFFERENTIAL GRADED ALGEBRA

Let F: R™ — U be smooth, then for all a € Q*(U)
dF*a = F*da.

This makes (Q'(M ), A, d) into what we call a differential graded algebra.

THEOREM 5.12: GLUING LEMMA

Let {Uqa}aea be an open cover for M and let F, : U, — N be smooth maps with F,(a) = Fg(a) for all
a € U,NUpg. Then there exists a unique” smooth map F : M — N such that F'(a) = F,(a) for all a € U,.

®This uniqueness allows us to ‘glue’ maps together, for instance if sections sq(a) = sg(a) for all a € Uy N Ug then there
is a unique global section s with s|y, = sa.

THEOREM 5.13

Let M be an m-dimensional manifold, and N be an n-dimensional manifold. Then (2°, A, d) is a differential
graded algebra and if F': N — M is a smooth map then F*: Q*(M) — Q°(N) is a dga-morphism.
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DEFINITION
We defined the Lie derivative for tangent bundles, now for the more general definition. Let X € X(M) have

local flow 1 so that for all f € C°°(M) we have the smooth function X (f) = < (fo;) 0 4y f)
t—

dt i—0
If a € QF(M) then its Lie derivative along X is

d
[,on:%(z/)fa) o € QF(M).

DEFINITION 5.15

An R-linear map D : Q*(M) — Q*(M) is a degree-k derivation if D : QP (M) — QP+F(M) and D obeys
the Leibniz rule
D(aAB)=DaAB+(~1)"aADB.

We denote the set of degree k derivations by Dery (M).

THEOREM 5.16

The degree k derivations form a C'*°(M)-module.

THEOREM 5.18

For all X € X(M) we have Lx € Derg(M) and Lx od=do Lx.

THEOREM 5.19

Let Dy € Dery(M) and Dy € Der;(M), then

[D1, D] = Dy o Dy — (=1)¥' Dy o Dy € Deryy 1 (M).

THEOREM 5.20

Let D be a derivation and a € QP(M) and o]y = 0 for some open subset U C M. Then Daly = 0.

THEOREM 5.21

Let D € Dery(M) be such that Df = 0 and Da = 0 for all f € Q°(M) and o € Q'(M). Then D = 0.

THEOREM 5.22

Let D € Dery(M) and Dod = (—1)kdo D. If Df =0 for all f € Q°(M) then D = 0.
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DEFINITION 5.23

The contraction with X € X(M) is the C°°(M)-linear map

(an)(XQ, .. ,Xk) = Oé(X7 XQ, .. ,Xk)

THEOREM 5.24

For X € X(M) we have tx € Der_1(M) and
e 1, 0tx =0, and

o 1yx = fux for all f e C(M).

THEOREM 5.25

For all X, Y € X(M) and o € Q°*(M) the following hold:
o Lx =|[d,itx] € Derg(M), ie. Lxa =1xda+ dixa
o [Lx,ty]=1xy] € Der_1(M),ie. Lxiya=1yLxa+ixyja and

o [Lx,Ly]= E[Xy] € Derg(M), ie. LxLya=LyLxa+ E[Xy]a.

DEFINITION 5.27: CLOSED AND ExAcT FORMS

Let a € QF(M). We say that « is closed of da = 0 and we say that it is exact if o = df for some
B e QF1(M).

We denote the vector subspace of closed forms by Z¥(M) C Q¥ (M) and the subspace of exact forms
by B¥(M) C Z¥(M) C QF(M). We have the identites

ZH(M) =ker(d) and  BF(M) =im(d).
DEFINITION 5.28
The k-th de-Rahm cohomology of M is the quotient vector space
Z*(M)

HgR(M)]W7

a typical element being the equivalence of a closed form [a] = [a + df].
THEOREM 5.29

e If o, 8 are closed then so is a A 3,

e If v is closed and f is exact then o A B is exact.
and hence the cup/wedge product [a] A [5] = [a A (] is well-defined.

THEOREM 5.30

If M is a connected manifold then Hl,(M) = R.
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THEOREM 5.31

A smooth map F' : N — M defines a ring homomorphism F* : H},(M) — H3,(N) by F*[a] = [F*al.
Hence F*([a] A [8]) = F*[a] A F*[3].

THEOREM 5.32: HOMOTOPY INVARIANCE

Let F: M x [0,1] — N be smooth and let Fy(a) = F(a,t). Then Fy : Hf,(N) — H55(M) gives that
F§ = FY for all k.

THEOREM 5.33: POINCARE LEMMA

Let n > 0 be an integer, then

R ifk=0
HgR(R):{o ifhk>0

Hence HE,(M x R) = HY, (M) for any manifold M.
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INTEGRATION
DEFINITION 6.1: PARTITIONS OF UNITY

A partition of unity on a manifold M is a collection of smooth functions {p;};cs such that
o pi(a)>0foralaecMandiecl,

e The set of supports {suppp; }icr is locally finite: each a € M has a neighbourhood U which intersects
only finitely many of the {suppp;}, i.e. #{i € [ : U Nsuppp; # 0} < .

e for all a € M we have ), ; pi(a) = 1.

We know that the sum in (3) converges since (2) gives that it is a finite sum.

THEOREM 6.2: EXISTENCE OF PARTITIONS OF UNITY

Given an open covering U = {V, }oea of a manifold M, there exists a partition of unity {p;};c; subordi-
nate to U, that is: each suppp; C V,, for some «a(3).

DEFINITION 6.5: ORIENTABILITY

We say that a manifold M is orientable if any of the equivalent criteria hold
o \"T*M — M is a trivial bundle,
e there exists a nowhere vanishing u € Q" (M),

e M has an atlas {(Us, ¥a) }aca with det D(p, o @El) >) for all a, 8 € A.

DEFINITION 6.9: ORIENTATION

An orientation on an orientable manifold M is an equivalence class of nowhere vanishing n-forms, where
w1 ~ po if and only if py = fue for some nowhere zero f € C°(M).

THEOREM 6.10

Let U,V C R™ and F : U — V be orientation-preserving diffeomorphism with p € Q%(V) a compactly-

supported n-form on V. Then
[ree]
U V=F(U)

THEOREM 6.11: INTEGRATION

Let M be an n-dimensional oriented manifold, then there exists a unique linear map (called the integral)

/ QN (M) - R,
M

so that if (U, ¢) is an oriented chart and w € QF(U) then

/Mw N /Lp(U)(SO_l)*w.
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THEOREM 6.14: STOKES’ THEOREM (VERSION 1)

Let M be an oriented n-dimensional manifold and let w € Q7~1(M) then
/ dw = 0.
M

THEOREM 6.15

Let M be a compact, orientable, n-dimensional manifold. Then H}, (M) # 0.

DEFINITION 6.16: MANIFOLD WITH BOUNDARY

A set M is an n-dimensional manifold with boundary if it has a collection {U,}q4cp of subsets and
maps @q : Uy — R such that

¢ UaEA Ua =M
o ¢, : Uy — va(Uy) is a bijection and ¢4 (Uy N Up) is open for all o, 8 € A, and

e g0t 1 0o (Uy NUg) — pp(Uy NUg) is the restriction of a smooth map from a neighbourhood
¢a(Ua NUp) CR%Y C R™ to R™.

The boundary OM of M is the (n — 1)-dimensional sub manifold

OM = | pa(0RY).

aEN

THEOREM 6.18: BOUNDARY ORIENTATION

If M is an oriented manifold with boundary then there is an induced orientation on M.

THEOREM 6.19: STOKES’ THEOREM (VERSION 2)

Let M be an n-dimensional oriented manifold with boundary OM and let w € Q7~*(M) have compact
support. Then, with the induced orientation

/ dw:/ w.
M oM
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