DIFFERENTIABLE MANIFOLDS: FORMULA SHEET

William Bevington — s1610318

These are my notes for the "*Differentiable Manifolds*" course at Edinburgh University given by José Figueroa-O'Farrill in 2019. There will undoubtedly be many mistakes in this formula sheet, and it is far from finished: given the time and energy I would add proofs of theorems, answers to exercises and workshops, and various insights. If you notice any mistakes please email me at william.bevington@zoho.eu.

CONTENTS

The Definition of a Maifold	2
Maps Between Manifolds	4
The Tangent Bundle and Vector Fields.	7
Vector Bundles	11
Differential Forms	14
Integration	20

THE DEFINITION OF A MAIFOLD

DEFINITION 1.1: COORDINATE CHART

A coordinate chart on a set M is a pair (U, φ) where $U \subseteq M$ and $\varphi : U \to \varphi(U)$ is a bijection onto an open subset of \mathbb{R}^n .

Writing $\varphi(a) = (x^1(a), \ldots, x^n(a))$ for $a \in U$ we get local coordinate functions x^i , giving a local chart (U, x^1, \ldots, x^n) .

DEFINITION 1.2: SMOOTH FUNCTION

Let $V \subseteq \mathbb{R}^n$. A function $f: V \to \mathbb{R}^m$ is **differentiable** at $a \in V$ if there exists a linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ so that

$$\lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{||h||} - \frac{L}{||h||} \right) = 0.$$

We say that L is the **derivative of** f at a and denote it $L = (df)_a$. Relative to standard bases in \mathbb{R}^n and \mathbb{R}^m we have a matrix representation of L via the **Jacobian Matrix**,

$$Df_a = \begin{pmatrix} \frac{\partial f^1}{\partial x^1} \Big|_a & \cdots & \frac{\partial f^1}{\partial x^n} \Big|_a \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m}{\partial x^1} \Big|_a & \cdots & \frac{\partial f^m}{\partial x^n} \Big|_a \end{pmatrix}$$

where $f(x^1, \ldots, x^n) = (f^1(x^1, \ldots, x^n), \ldots, f^m(x^1, \ldots, x^n))$. If f is differentiable at each $a \in V$ then $Df: a \mapsto Df_a$ defines a continuous function. We say f is **smooth** if $D^n f$ exists for all $n \in \mathbb{N}$.

THEOREM 1.3: CHAIN RULE

If g and f are smooth composable functions then

$$d(g \circ f)_a = (dg)_{f(a)} \circ (df)_a.$$

DEFINITION 1.4: ATLAS

Let Λ be some indexing set. An *n*-dimensional **coordinate atlas** on a set M is a collection $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$ of coordinate charts such that

- 1. $X = \bigcup_{\alpha \in \Lambda} U_{\alpha}$ so that $\{U_{\alpha}\}$ covers M,
- 2. $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is open in \mathbb{R}^n for all $\alpha, \beta \in \Lambda$, and
- 3. for all $\alpha, \beta \in \Lambda$, the **transition functions** $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}(U_{\alpha} \cap U_{\beta})$ is a smooth function between two open subsets of \mathbb{R}^{n} .

DEFINITION 1.8: COMPATIBLE ATLASES

Two atlases $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$ and $\{(V_{\beta}, \psi_{\beta})\}_{\beta \in \Phi}$ are **compatible** if their union is an atlas.

DEFINITION 1.10: DIFFERENTIABLE STRUCTURE

A differentiable structure on a set M is an equivalence class of compatible atlases.

DEFINITION 1.11: MANIFOLD

A differentiable manifold is a set M together with a differentiable structure.

DEFINITION 1.17

Let M be a manifold with atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$. A subset $V \subseteq X$ is **open** if for all $\alpha \in \Lambda$ then $\varphi_{\alpha}(V \cap U_{\alpha})$ is open in \mathbb{R}^{n} .

THEOREM 1.18: MANIFOLD TOPOLOGY

The open subsets of a manifold ${\cal M}$ define a topology on ${\cal M}$

DEFINITION 1.19

A manifold M is **second-countable** if it admits a countable atlas; i.e. an atlas with at most countably many charts.

DEFINITION 1.25: COMPACT/CONNECTED MANIFOLD

Let M be a manifold with atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$. Then M is **compact** if every atlas has a finite sub-atlas, and M is **compact** if given any two $a, b \in M$ there is a finite set of charts $\{(U_i, \varphi_i)\}_{i=1,...,N}$ such that $a \in U_1, b \in U_N$ and $U_i \cap U_{i+1} \neq \emptyset$ for i = 1, 2, ..., N - 1.

THEOREM 1.26: INVERSE FUNCTION THEOREM

Let $U \subseteq \mathbb{R}^n$ be an open set and $f: U \to \mathbb{R}^n$ be a smooth function with $(df)_a: \mathbb{R}^n \to \mathbb{R}^n$ invertible at $a \in U$. Then there exist neighbourhoods $a \in V$ and $f(a) \in W$ such that f(V) = W and f has a smooth inverse on W.

DEFINITION 1.27

Let $U \subseteq \mathbb{R}^{m+n}$ be open, $F: U \to \mathbb{R}^m$ be smooth, and $c \in \mathbb{R}^m$. We say that c is a **regular value** of F if for all $a \in F^{-1}(c)$ the derivative $(dF)_a : \mathbb{R}^{m+n} \to \mathbb{R}^m$ is surjective.

THEOREM 1.27: LEVEL SET

Let $U \subseteq \mathbb{R}^{m+n}$ be open and $F: U \to \mathbb{R}^m$ be smooth with $c \in \mathbb{R}^m$ as a regular value. Then $F^{-1}(c)$ is a smooth *n*-dimensional Hausdorff second-countable manifold.

Remark: definition 1.29 gives that $F^{-1}(c)$ has dimension m.

DEFINITION 1.29: REGULAR SUB-MANIFOLD

A subset $S \subseteq M$ of an *n*-dimensional manifold M is a **regular sub-manifold**^{*a*} of M with dimension $k \leq n$ if for every $p \in S$ there is a chart (U, φ) of M with $p \in U$ and $U \cap S$ is defined by the vanishing of n - k of the coordinate functions.

^{*a*}Equally a regular sub-manifold is one with atlas $\{(U_{\alpha} \cap S, \varphi_{\alpha})\}_{\alpha \in \Lambda}$.

MAPS BETWEEN MANIFOLDS

DEFINITION 2.1: SMOOTH MAP

A map $F: M \to N$ between an *m*-dimensional manifold M and an *n*-dimensional manifold N is **smooth** if for each $a \in M$ and chart (U, φ) in M and chart (V, ψ) in N with $a \in U$ and $F(a) \in V$ the composite

$$\psi \circ F \circ \varphi^{-1} : \varphi \Big(F^{-1}(V) \cap U \Big) \to \mathbb{R}^n$$

is smooth as a map from \mathbb{R}^m to \mathbb{R}^n .

DEFINITION 2.5: DIFFEOMORPHISM

A diffeomorphism $F: M \to N$ is a smooth bijection with smooth inverse.

DEFINITION 2.8: LIE GROUP

A Lie Group is a smooth manifold G together with

- an element $e \in G$,
- a map $\mu: G \times G \to G$,
- a map $\iota: G \to G$,

such that

- (Identity): $\mu(e, a) = \mu(a, e) = a$ for all $a \in G$,
- (Inverse): $\mu(a,\iota(a)) = \mu(\iota(a),a) = e$ for all $a \in G$,
- (Associativity): $\mu(\mu(a,b),c) = \mu(a,\mu(b,c))$ for all $a,b,c \in G$.

We will often write $a^{-1} = \iota(a)$ and $ab = \mu(a, b)$.

DEFINITION 2.10

Let G be a Lie group. For all $a, b \in G$ we have diffeomorphisms $\lambda_a : G \to G$ and $\rho_a : G \to G$ given by $\lambda_a(b) = \mu(a, b) = \rho_b(a)$.

DEFINITION 2.11: SMOOTH FUNCTIONS

A special case of smooth maps are **smooth functions**, which are smooth maps $f: M \to \mathbb{R}$. We denote the *commutative*, *associative* \mathbb{R} -algebra (hence an \mathbb{R} -module) of smooth functions on a manifold M as $C^{\infty}(M)$.

DEFINITION 2.17: COTANGENT SPACE

Let M be a smooth manifold. Denote by $Z_a(M) \subset C^{\infty}(M)$ the set of smooth functions whose derivative^{*a*} vanish at $a \in M$. The **cotangent space** of M at a is the quotient vector-space

 $T_a^*M := C^{\infty}(M)/Z_a.$

The **derivative** $(df)_a$ of $f \in C^{\infty}(M)$ at a is the image of f is the image under the canonical quotient map.

^{*a*}We haven't actually defined what a derivative is yet, but $f \in Z_a$ if and only if the derivative $f \circ \varphi^{-1}$ vanishes at $\varphi(a)$, by the chain rule. Here $f \circ \varphi^{-1}$ is a real-valued function, so we have a definition of (vanishing) derivatives.

THEOREM 2.20

Let M be an n-dimensional manifold, then:

- for all $a \in M$ the cotangent space T_a^*M is an *n*-dimensional real vector space,
- if (U, φ) is a coordinate chart around a with local coordinates (x^1, \ldots, x^n) then $(dx^1)_a, \ldots, (dx^n)_a$ is a basis for T_a^*M , and
- if $f \in C^{\infty}(M)$ then

$$(df)_a = \sum_{i=1}^n \partial_i (f \circ \varphi^{-1}) \Big|_{\varphi(a)} (dx^i)_a,$$

where ∂_i is the *i*-th derivative with respect to the *i*-th coordinate on \mathbb{R}^n .

DEFINITION 2.22: TANGENT SPACE

Let M be an n-dimensional manifold with $a \in M$. The **tangent space** T_aM to M at a is the dual vector space to T_a^*M , i.e. the linear functions $C^{\infty}(M) \to \mathbb{R}$ sending Z_a to zero.

DEFINITION 2.23: DIRECTIONAL DERIVATIVE

A directional derivative at $a \in M$ is a linear map $X_a : C^{\infty}(M) \to \mathbb{R}$ satisfying the Liebniz rule:

$$X_a(fg) = f(a)X_a(g) + g(a)X_a(f).$$

THEOREM 2.24

Let X_a be a directional derivative at $a \in M$ and $f \in Z_a$ then $X_a f = 0$. Hence $X_a \in T_a M$, and

$$\left(\frac{\partial}{\partial x^1}\Big|_a,\ldots,\frac{\partial}{\partial x^n}\Big|_a\right),$$

is the **canonical dual basis** to $((dx^1)_a, \ldots, (dx^n)_a)$.

THEOREM 2.25

If c is a **smooth curve** in M passing through $a \in M$, i.e. a smooth map $c : (-\varepsilon, \varepsilon) \to M$ with c(0) = a. We define the **velocity** of c at a to be the function

$$c'(0): C^{\infty}(M) \to \mathbb{R}, \qquad c'(0)f = \frac{d}{dt}(f \circ c)(t)\Big|_{t=0}.$$

Then $c'(0) \in T_a M$. In fact every $X_a \in T_a M$ is of the form c'(0) for some curve c through a.

DEFINITION 2.27: PUSH FORWARD/DERIVATIVE

The derivative (or '*push-forward*') at $a \in M$ of a smooth map $F: M \to N$ is the linear map

$$(F_*)_a: T_aM \to T_{F(a)}N, \qquad (F_*)_a(X_a)(f) = X_a(f \circ F).$$

If $X_a = c'(0)$ then $(F_*)_a(X_a)(f) = (F \circ c)'(0)(f)$, and

$$(F_*)_a \left(\frac{\partial}{\partial x^i} \Big|_a \right) = \sum_{j=1}^n \frac{\partial F}{\partial x^i} \Big|_a \frac{\partial}{\partial y^j} \Big|_{F(a)}.$$

DEFINITION 2.28: SUBMERSION, IMMERSION, EMBEDDING

Let $F:M\to N$ be a smooth map between an m-dimensional manifold M and an n-dimensional manifold N, then

- F is a submersion if $(F_*)_a$ is surjective for all $a \in M$
- F is a **immersion** if $(F_*)_a$ is injective for all $a \in M$
- F is an **embedding** if F is a homeomorphism onto its image, and is an immersion.

Warning: injectivity/surjectivity of F says nothing about injectivity/surjectivity of $(F_{\ast})_{a}$

DEFINITION 2.29: EMBEDDED SUB-MANIFOLD

A manifold M is an **embedded sub-manifold** of a manifold N if there is an embedding $\iota: M \to N$.

DEFINITION 2.30: REGULAR VALUE

Let $F: M \to N$ be a smooth map between manifolds. We say $c \in N$ is a **regular value** of F if for all $a \in M$ with F(a) = c the derivative $(F_*)_a: T_aM \to T_cN$ is surjective.

THEOREM 2.31: REGULAR SUB-MANIFOLD

Let $F: M^{m+n} \to N^m$ be a smooth map between manifolds and $c \in N$ be a regular value of F. Then $F^{-1}(c)$ is an *n*-dimensional embedded sub-manifold of M and for all $a \in F^{-1}(c)$

$$T_a F^{-1}(c) = \ker(F_*)_a.$$

THE TANGENT BUNDLE AND VECTOR FIELDS

THEOREM 3.1: TANGENT BUNDLE

Let M be a manifold, we define the **tangent bundle** as

$$TM := \bigsqcup_{a \in M} T_a M,$$

with projection map $p: TM \to M$ sending $v \in T_aM$ to $a \in M$. Suppose that $\{(U_\alpha, \varphi_\alpha)\}_{\alpha \in \Lambda}$ is an atlas for M, then we have seen that $\left(\frac{\partial}{\partial x^1}\Big|_a, \ldots, \frac{\partial}{\partial x^n}\Big|_a\right)$ is a basis for T_aM , so we have a bijection

$$\psi: U \times \mathbb{R}^n \to TU := \bigsqcup_{a \in U} T_a M, \qquad \psi(a, v^1, \dots, v^n) = \sum_{i=1}^n v^i \frac{\partial}{\partial x^i} \Big|_a.$$

Then $\{(TU_{\alpha}, \Psi_{\alpha})\}_{\alpha \in \Lambda}$ with

$$\Phi = (\varphi \times \mathrm{id}) \circ \psi^{-1} : TU \to \varphi(U) \times \mathbb{R}^n, \qquad \Psi\left(\sum_{i=1}^n v^i \frac{\partial}{\partial x^i}\right) = (x^1, \dots, x^n, v^1, \dots, v^n)$$

is an atlas for TM.

THEOREM 3.2

The tangent bundle TM of a manifold M is Hausdorff and second-countable (provided M is).

DEFINITION 3.4: VECTOR FIELD

A vector field on a manifold M is a smooth map $\mathfrak{X} : M \to TM$ such that $p \circ X = \mathrm{id}_M$, in other words $X(a) \in T_a M$. The set of all vector fields is denoted $\mathfrak{X}(M)$, and we use the abuse of notation $X^{"} = {}^{"} (\Psi \circ X \circ \varphi^{-1})(x^1, \ldots, x^n) = (x^1, \ldots, x^n, X^1(x), \ldots, X^n(x)).$

Any vector field $X: M \to TM$ is an embedding so that X(M) is an embedded sub-manifold of TM diffeomorphic to M (exercise 4.6).

DEFINITION 3.5

The zero section of TM is the map $s: M \to TM$ given by the vector field X = 0. All sections of TM are vector fields^{*a*}.

 a Though we will only define what a section is later

THEOREM 3.7

Given a smooth map $F: M \to N$ from an *m*-dimensional manifold M to an *n*-dimensional manifold N the push-forwards $(F_*)_a: T_aM \to T_{F(a)}N$ assemble to a smooth map $F_*: TM \to TN$. In other words, there is a functor F_* from the category of manifolds and smooth maps to its self.

We can do a similar trick for the **cotangent bundle** T^*M , with a couple of differences. There is no functor $T^*F: T^*M \to T^*N$, but we can pull back sections of T^*N to sections of T^*M (see workshop 3).

DEFINITION 3.8

Any \mathbb{R} -linear transformation X of $C^{\infty}(M)$ obeying the Leibniz rule

X(fg) = f X(g) + g X(f)

is called a **derivation** of $C^{\infty}(M)$.

THEOREM 3.10

A transformation $X: C^{\infty}(M) \to C^{\infty}(M)$ is a vector field if and only if it is a derivation.

DEFINITION 3.11

The **lie bracket** of two vector fields X and Y is defined by

$$[X, Y](f) = X(Y(f)) - Y(X(f)),$$

and is its self a vector field satisfying (exercise 4.13)

- [-, -] is \mathbb{R} -bilinear,
- [X, Y] = -[Y, X] ('skew-symmetry'),
- [X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]] ('Jacobi identity'), and
- [X, fY] = f[X, Y] + X(f)Y.

DEFINITION 3.14

Let $F: M \to N$ be a smooth map between differentiable manifolds. We say that a vector field $X \in \mathfrak{X}(M)$ is *F*-related to $Y \in \mathfrak{X}(N)$ if for all $a \in M$ the identity $(F_*)_a(X_a) = Y_{F(a)}$ holds.

THEOREM 3.15

A vector field $X \in \mathfrak{X}(M)$ is *F*-related to $Y \in \mathfrak{X}(M)$ if and only if $X(f \circ F) = (Yf) \circ F$ for all $f \in C^{\infty}(M)$.

DEFINITION 3.18

A one parameter group of diffeomorphisms of a manifold M is a smooth map $\psi : \mathbb{R} \times M \to M$ with $\psi(t, a) = \psi_t(a)$ such that for all $s, t \in \mathbb{R}$:

- $\psi_t: M \to M$ is a diffeomorphism,
- $\psi_0 = \mathrm{id}_M$, and
- $\psi_{s+t} = \psi_s \circ \psi_t$.

Suppose that ψ_t is a one parameter group of diffeomorphisms of M and $f \in C^{\infty}(M)$ then for all $a \in M$ the function $\mathbb{R} \to \mathbb{R}$ given by $t \mapsto f(\psi_t(a))$ is smooth and hence ψ_t defines a vector field

$$X_a(f) = \frac{d}{dt} f(\psi_t(a)) \Big|_{t=0}.$$

In local coordinates $\psi_t(x^1, \dots, x^n) = (y^1(t, x), \dots, y^n(t, x))$ we have

$$X_a(f) = \sum_{i=1}^n \left(\frac{\partial y^i}{\partial t}\Big|_{t=0}\right) \frac{\partial f}{\partial x^i}$$

DEFINITION 3.19

An integral curve of a vector field $X \in \mathfrak{X}(M)$ is a smooth map $\psi : (\alpha, \beta) \to M$ such that for all $t \in (\alpha, \beta)$

$$(\psi_*)_t \left(\frac{d}{dt}\right) = X_{\psi(t)}.$$

In fact, if (U, φ) is a chart of M with local coordinates (x^1, \ldots, x^n) and $X = \sum_{i=1}^n X^i(x) \frac{\partial}{\partial x^i} \in \mathfrak{X}(U)$ then ψ is a smooth curve satisfying

$$\psi_*\left(\frac{d}{dt}\right) = \sum_{i=1}^n X^i(x(t))\frac{\partial}{\partial x^i},$$

giving a first-order system of ODEs $\frac{dx^i}{dt} = X^i(x(t))$. Thus a vector field is an ODE on that manifold and solving that ODE is equivalent to finding its integral curves.

THEOREM 3.21

Let $V \subset \mathbb{R}^n$ be open with $p_0 \in V$ and $f: V \to \mathbb{R}^n$ smooth. Then the initial value problem

$$\frac{dy}{dt} = f(y), \qquad y(0) = p_0$$

has a unique smooth solution $y: (\alpha, \beta) \to V$ where α, β depend on p_0 and (α, β) is the maximal interval containing 0 on which y is defined.

THEOREM 3.22

Let $V \subseteq \mathbb{R}^n$ be open and $f: V \to \mathbb{R}^n$ be smooth. For each $p_0 \in V$ there exists $W \subset V$ open with $p_0 \in W$, $\varepsilon > 0$ and smooth

$$y: (-\varepsilon, \varepsilon) \times W \to V$$

such that

$$\frac{\partial y}{\partial t}(t,q)=f(y(t,q)),\qquad y(0,q)=q\qquad \forall (t,q)\in (-\varepsilon,\varepsilon)\times W.$$

DEFINITION 3.23

Theorem 3.22 gives that if $X \in \mathfrak{X}(U)$ then for every $a \in U$ there is a $W \subset U$ open with $a \in W$, $\varepsilon > 0$ and smooth $\psi : (-\varepsilon, \varepsilon) \times W \to U$ such that for all $p \in W$ we have that $\psi_t(p) = \psi(t, p)$ is an integral curve. We call ψ the **local flow generated by** X. If ψ is defined on $\mathbb{R} \times M$ then we call it **global flow**.

DEFINITION 3.24: LIE DERIVATIVE

If ψ_t is the local flow generated by $X \in \mathfrak{X}(M)$ then for all $f \in C^{\infty}(M)$ we saw previously that

$$X(f) = \frac{d}{dt}(f \circ \psi_t)\Big|_{t=0} \in C^{\infty}(M).$$

We call this the **Lie derivative** \mathcal{L}_X along X. Equivalently:

 $(\mathcal{L}_X Y)(f) = [X, Y](f).$

VECTOR BUNDLES

DEFINITION 4.1: TENSOR PRODUCT

Let V, W be two finite-dimensional real vector spaces. Their **tensor product** $V \otimes W$ is the vector space defined by the set of linear maps $\otimes : V \times W \to V \otimes W$ sending $(v, w) \mapsto v \otimes w$ satisfying the following universal property:

Given a bilinear map $B: V \times W \to U$ into a vector space U there is a *unique* linear map $\beta: V \otimes W \to U$ such that the following commutes:

It turns out that $V \otimes W$ is just the dual to the vector space Bil(V, W) of bilinear maps, and there is a natural isomorphism $Hom(V \otimes W, U) \cong Hom(V, Hom(W, U))$.

DEFINITION 4.2

Denote by $V^{\otimes k} = \underbrace{V \otimes \cdots \otimes V}_{k \text{ times}}$. Then the **tensor algebra** of V has underlying space

$$T(V) = \bigotimes_{k=0}^{\infty} V^{\otimes k}$$

whose elements are finite sums $\lambda + v + \sum v_i \otimes v_j + \cdots + \sum v_{i_1} \otimes \cdots \otimes v_{i_p}$ and if $u, v \in T(V)$ then their product is just $u \otimes v$. This algebra is associative.

Vectors in $T_s^r(V) = V^{\otimes r} \otimes (V^*)^{\otimes s}$ are called (r, s)-tensors, we can understand (r, s)-tensors as linear maps $V^{\otimes s} \to V^{\otimes r}$ by the isomorphism $V \otimes V^* \cong \operatorname{End}(V)$. That is, $T_s^r(V) \cong \operatorname{Hom}(V^{\otimes s}, V^{\otimes r})$.

DEFINITION 4.5: VECTOR BUNDLE

A real vector bundle or rank m consists of

- 1. a manifold M, called the **base space**,
- 2. a manifold E, called the **total space**,
- 3. a smooth surjection $\pi: E \to M$ called the **projection**

such that

- 4. for all $a \in M$ the fibre $\pi^{-1}(a)$ is isomorphic as a vector space to \mathbb{R}^m
- 5. for all $a \in M$ there is an open neighbourhood U of a and a diffeomorphism $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{R}^m$ (called the **local trivialisation**) such that φ_U maps the vector space $\pi^{-1}(a)$ isomorphically to the vector space $\{a\} \times \mathbb{R}^m$, and
- 6. If (U, φ_U) and (V, φ_V) are two local trivialisations with $U \cap V \neq \emptyset$ then

 $\varphi_U \circ \varphi_V^{-1} : (U \cap V) \times \mathbb{R}^m \to (U \cap V) \times \mathbb{R}^m,$

takes the form $(a, v) \mapsto (a, g_{UV}(a)v)$ where the **transition function** $g_{UV} : U \cap V \to \operatorname{GL}(m, \mathbb{R})$ is smooth.

A vector bundle is **trivial** if the neighbourhood in (4) can be taken to be all of M. If the rank of the vector bundle is one, we call it a **line bundle**.

DEFINITION 4.6

Let $\pi : E \to M$ be a real rank *m* vector bundle, then $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$ is a **trivialising cover** if $M = \bigcup_{\alpha \in \Lambda} U_{\alpha}$ and $(U_{\alpha}, \varphi_{\alpha})$ is a local trivialisation for every $\alpha \in \Lambda$.

THEOREM 4.8

Let $\mathbb{I} \in \mathrm{GL}(m, \mathbb{R})$ denote the identity matrix. Let M be a manifold with open cover $\{U_{\alpha}\}_{\alpha \in \Lambda}$ and family $\{g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(m, \mathbb{R})\}$ of smooth maps satisfying^{*a*}

- 1. $g_{\alpha\alpha} = \mathbb{I}$ for all $a \in U_{\alpha}$,
- 2. $g_{\alpha\beta}(a)g_{\beta\alpha}(a) = \mathbb{I}$ for all $a \in U_{\alpha} \cap U_{\beta}$,
- 3. $g_{\alpha\beta}(a)g_{\beta\gamma}(a)g_{\gamma\alpha}(a) = \mathbb{I}$ for all $a \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

Then there exists a real rank m vector bundle $\pi: E \to M$ with transition functions $g_{\alpha\beta}$.

 $^a{\rm these}$ are called the Cech cocycle conditions.

DEFINITION 4.9

For a vector bundle $E \to M$ we briefly denote the transition functions by $g^{E}_{\alpha\beta}$. Using the Cech-cocycle conditions we can define new vector bundles from old:

• Let $E \to M$ and $F \to M$ be two real vector bundles of rank k and l, respectively, over the same base space. We define the **Whitney sum** $E \oplus F \to M$ to be the vector bundle with fibres $(E \oplus F)_a = E_a \oplus F_a$ with transition functions

$$g_{\alpha\beta}^{E\oplus F}: U_{\alpha}\cap U_{\beta} \to \mathrm{GL}(k+l,\mathbb{R}), \qquad a\mapsto \begin{pmatrix} g_{\alpha\beta}^{E} & 0\\ 0 & g_{\alpha\beta}^{F} \end{pmatrix}.$$

- The **dual bundle** $E^* \to M$ to $E \to M$ has fibres $(E^*)_a = \text{Hom}(E_a, \mathbb{R}) = (E_a)^*$ and transition functions $g_{\alpha\beta}^{E^*} = ((g_{\alpha\beta}^E)^T)^{-1}$ given by the inverse-transpose of the transition functions of $E \to M$.
- The tensor bundle $E \otimes F \to M$ of $E \to M$ and $F \to M$ has fibres $(E \otimes F)_a = E_a \otimes F_a$ and transition functions

$$g^{E\otimes F}_{\alpha\beta}(a) = g^{E}_{\alpha\beta}(a) \otimes g^{F}_{\alpha\beta}(a), \qquad (A,B) \mapsto A \otimes B.$$

DEFINITION 4.17

Let $p: E \to M$ and $q: F \to N$ be two vector bundles. A pair of smooth maps (Ψ, φ) with $\Phi: E \to F$ and $\varphi: M \to N$ is a **bundle map** if for all $a \in M$ the map $\Phi_a: E_a \to F_{\varphi(a)}$ is linear with the following commutative diagram

$$\begin{array}{cccc}
E & \longrightarrow & F \\
p & & & \downarrow^{q} \\
M & \longrightarrow & N
\end{array}$$

We say that Ψ covers φ .

DEFINITION 4.20: SECTIONS

Let $p: E \to M$ be a vector bundle, then a map $s: M \to E$ is a section if $p \circ s = id_M$, that is, if for all $a \in M$, $s(a) \in E_a$. The set of all sections of E is denoted $\Gamma(E)$.

THEOREM 4.22

Let $p: E \to M$ be a vector bundle, then $\Gamma(E)$ is a $C^{\infty}(M)$ -module.

THEOREM 4.23

If $p: E \to M$ and $q: F \to M$ are vector bundles and $\Psi: E \to F$ is a bundle map (covering the identity) then Ψ defines a $C^{\infty}(M)$ -linear map $\Psi_{!}: \Gamma(E) \to \Gamma(F)$ by $\Psi_{!}(s) = \Psi \circ s$.

THEOREM 4.24

Let $E \to M$ and $F \to M$ be vector bundles with $C^{\infty}(M)$ -linear map $\psi : \Gamma(E) \to \Gamma(F)$, then ψ is local so that if $s|_U = 0$ for $U \subseteq M$ open then $\psi(s)|_U = 0$. In particular if $s \in \Gamma(E)$ with s(a) = 0 then $\psi(s)(a) = 0$ as well.

THEOREM 4.25

Let $E \to M$ be a vector bundle and $e \in E_a$ for some $a \in M$ then there exists a section $s \in \Gamma(E)$ such that s(a) = e.c

THEOREM 4.26

Let $p: E \to M$ and $q: F \to M$ be vector bundles of rank k and l respectively, and let $\psi: \Gamma(E) \to \Gamma(F)$ be $C^{\infty}(M)$ -linear. Then $\psi = \Psi_{!}$ for a unique bundle map $\Psi: E \to F$.

DIFFERENTIAL FORMS

DEFINITION: ALTERNATING FORMS

A k-linear alternating form (or 'k-form') on an n-dimensional real vector space V is a k-linear map $\varphi: V^k \to \mathbb{R}$ which vanishes if any two of its arguments coincide: $\varphi(\ldots, v, \ldots, v, \ldots) = 0$ for all $v \in V$. We will use $\bigwedge^k V^*$ to denote the set of k-linear alternating forms on V.

THEOREM

Let $\varphi \in \bigwedge^k V^*$ be an alternating k-form, then:

- If φ is alternating then $\varphi(\dots, v, w, \dots) = -\varphi(\dots, w, v, \dots)$ for all $v, w \in V$ hence the name *'alternating'*, and
- dim $\left(\bigwedge^k V^*\right) = \binom{n}{k}$.

Theorem

if $A \in GL(V)$ then $(A \cdot \varphi)(v_1, \ldots, v_k) = \varphi(A^{-1}v_1, \ldots, A^{-1}v_k)$. This defines a Lie-Group homomorphism

$$\begin{array}{ccc} \operatorname{GL}(V) & & & \Psi \\ & & & & \downarrow \cong \\ & & & & \downarrow \cong \\ \operatorname{GL}(n, \mathbb{R}) & & \operatorname{GL}\left(\binom{n}{k}, \mathbb{R}\right) \end{array}$$

which defines the transition functions $g_{\alpha\beta}^{\bigwedge^k E^*} = \Psi(g_{\alpha\beta}^E)$.

DEFINITION

Taking TM and constructing $\bigwedge^k T^*M$ with transition functions $g_{\alpha\beta}^{\bigwedge^k T^*M} = \Psi(g_{\alpha\beta}^{TM})$ we get a vector bundle with the $C^{\infty}(M)$ -module of smooth sections $\Omega^k(M)$: the **differential** k-forms on M. A typical element of $\Omega^k(M)$ is a $C^{\infty}(M)$ -multilinear alternating map

$$\alpha: \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{k-\text{times}} \to C^{\infty}(M), \qquad \alpha(X_1, \dots, X_k)(a) = \alpha_a((X_1)_a, \dots, (X_k)_a)$$

for all $a \in M$.

DEFINITION

Let $F: M \to N$ be a smooth map and $\alpha \in \Omega^k(N)$, then its **pull-back** $F^*\alpha \in \Omega(M)$ by F is

$$(F^*\alpha)(X_1,\ldots,X_k)(a) = \alpha_{F(a)}((F_*)_a(X_1)_a,\ldots,(F_*)_a(X_k)_a)$$

DEFINITION

Let $\alpha, \beta \in \Omega^1(M)$ then their wedge product (or 'exterior product') $\alpha \wedge \beta \in \Omega^2(M)$ is

$$(\alpha \wedge \beta)(X, Y) = \det \begin{pmatrix} \alpha(X) & \alpha(Y) \\ \beta(X) & \beta(Y) \end{pmatrix} = \alpha(X)\beta(Y) - \alpha(Y)\beta(X)$$

for all $X, Y \in \mathfrak{X}(M)$.

More generally, if $\alpha_1, \ldots, \alpha_k \in \Omega^1(M)$ then $\alpha_1 \wedge \cdots \wedge \alpha_k \in \Omega^k(M)$ is given by

$$\alpha_1 \wedge \dots \wedge \alpha_k(X_1, \dots, X_k) = \det \begin{pmatrix} \alpha_1(X_1) & \dots & \alpha_1(X_k) \\ \vdots & \ddots & \vdots \\ \alpha_k(X_1) & \dots & \alpha_k(X_k) \end{pmatrix}$$

for all $X_1, \ldots, X_k \in \mathfrak{X}(M)$.

THEOREM 5.3

Let $\alpha, \beta \in \Omega^1(M)$ and $F: N \to M$ be a smooth map, then

$$F^*(\alpha \wedge \beta) = (F^*\alpha) \wedge (F^*\beta)$$

DEFINITION

$$\Omega^{\bullet}(M) = \bigoplus_{k=0}^{n} \Omega^{k}(M) = \Omega^{0}(M) \oplus \dots \oplus \Omega^{n}(M).$$

THEOREM

Recall that if (U, x^1, \ldots, x^n) is a local coordinate chart on M then $dx^i \in \Omega^1(U)$ and every $\alpha \in \Omega^1(U)$ can be written in the form

$$\alpha = \sum_{i=1}^{n} \alpha_i X^i \in C^{\infty}(M), \qquad X = \sum_{i=1}^{n} X^i \frac{\partial}{\partial x^i}.$$

DEFINITION

We say that $I = (i_1, \ldots, i_k)$ is a **multi-index** of length |I| = k if $1 \le i_1 < \cdots < i_k \le n$. We define $dx^I \in \Omega^{|I|}(U) = \Omega^k(U)$ by $dx^I = dx^{i_1} \land \cdots \land dx^{i_k}$, so that every k-form can be written as

$$\sum_{|I|=k} \alpha_I dx^I, \qquad \alpha_I = \alpha \left(\frac{\partial}{\partial x^{i_1}}, \dots, \frac{\partial}{\partial x^{i_k}} \right).$$

THEOREM 5.5

For all $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^l(M)$ we have

 $\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha \quad \in \Omega^{k+1}(M).$

THEOREM 5.6

Let $F : \mathbb{R}^m \to U$ be a smooth map, then for all $\alpha \in \Omega^k(U)$ and $\beta \in \Omega^l(U)$ we have

 $F^*(\alpha \wedge \beta) = F^*\alpha \wedge F^*\beta \quad \in \Omega^{k+1}(\mathbb{R}^m).$

DEFINITION 5.7

The exterior derivative $d: \Omega^k(U) \to \Omega^{k+1}(U)$ is defined by

$$d\alpha = \sum_{|I|=k} d\alpha_I \wedge dx^I$$
 where $\alpha = \sum_{|I|=k} \alpha_I dx^I$.

THEOREM 5.8

Let $\alpha \in \Omega^k(U)$ and $\beta \in \Omega^l(U)$ then

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta.$$

THEOREM 5.9

Let $f \in C^{\infty}(U)$ and $df \in \Omega^1(U)$ then $d(df) = d^2f = 0$. In general, if $\alpha \in \Omega^k(U)$ then $d^2\alpha = 0$.

THEOREM 5.11: DIFFERENTIAL GRADED ALGEBRA

Let $F : \mathbb{R}^m \to U$ be smooth, then for all $\alpha \in \Omega^k(U)$

 $dF^*\alpha = F^*d\alpha.$

This makes $(\Omega^{\bullet}(M), \wedge, d)$ into what we call a **differential graded algebra**.

THEOREM 5.12: GLUING LEMMA

Let $\{U_{\alpha}\}_{\alpha \in \Lambda}$ be an open cover for M and let $F_{\alpha} : U_{\alpha} \to N$ be smooth maps with $F_{\alpha}(a) = F_{\beta}(a)$ for all $a \in U_{\alpha} \cap U_{\beta}$. Then there exists a unique^{*a*} smooth map $F : M \to N$ such that $F(a) = F_{\alpha}(a)$ for all $a \in U_{\alpha}$.

^{*a*}This uniqueness allows us to 'glue' maps together, for instance if sections $s_{\alpha}(a) = s_{\beta}(a)$ for all $a \in U_{\alpha} \cap U_{\beta}$ then there is a unique global section s with $s|_{U_{\alpha}} = s_{\alpha}$.

THEOREM 5.13

Let M be an m-dimensional manifold, and N be an n-dimensional manifold. Then $(\Omega^{\bullet}, \wedge, d)$ is a differential graded algebra and if $F: N \to M$ is a smooth map then $F^*: \Omega^{\bullet}(M) \to \Omega^{\bullet}(N)$ is a dga-morphism.

DEFINITION

We defined the Lie derivative for tangent bundles, now for the more general definition. Let $X \in \mathfrak{X}(M)$ have local flow ψ_t so that for all $f \in C^{\infty}(M)$ we have the smooth function $X(f) = \frac{d}{dt}(f \circ \psi_t)\Big|_{t=0} = \frac{d}{dt}(\psi_t^* f)\Big|_{t=0}$. If $\alpha \in \Omega^k(M)$ then its **Lie derivative** along X is

$$\mathcal{L}_X \alpha = \frac{d}{dt} (\psi_t^* \alpha) \Big|_{t=0} \in \Omega^k(M).$$

DEFINITION 5.15

An \mathbb{R} -linear map $D: \Omega^{\bullet}(M) \to \Omega^{\bullet}(M)$ is a **degree**-k derivation if $D: \Omega^{p}(M) \to \Omega^{p+k}(M)$ and D obeys the Leibniz rule

$$D(\alpha \wedge \beta) = D\alpha \wedge \beta + (-1)^{kp} \alpha \wedge D\beta.$$

We denote the set of degree k derivations by $\text{Der}_k(M)$.

THEOREM 5.16

The degree k derivations form a $C^{\infty}(M)$ -module.

THEOREM 5.18

For all $X \in \mathfrak{X}(M)$ we have $\mathcal{L}_X \in \text{Der}_0(M)$ and $\mathcal{L}_X \circ d = d \circ \mathcal{L}_X$.

THEOREM 5.19

Let $D_1 \in \text{Der}_k(M)$ and $D_2 \in \text{Der}_l(M)$, then

$$[D_1, D_2] = D_1 \circ D_2 - (-1)^{kl} D_2 \circ D_1 \quad \in \operatorname{Der}_{k+1}(M).$$

THEOREM 5.20

Let D be a derivation and $\alpha \in \Omega^p(M)$ and $\alpha|_U = 0$ for some open subset $U \subseteq M$. Then $D\alpha|_U = 0$.

THEOREM 5.21

Let $D \in \text{Der}_k(M)$ be such that Df = 0 and $D\alpha = 0$ for all $f \in \Omega^0(M)$ and $\alpha \in \Omega^1(M)$. Then D = 0.

THEOREM 5.22

Let $D \in \text{Der}_k(M)$ and $D \circ d = (-1)^k d \circ D$. If Df = 0 for all $f \in \Omega^0(M)$ then D = 0.

DEFINITION 5.23

The contraction with $X \in \mathfrak{X}(M)$ is the $C^{\infty}(M)$ -linear map

 $(\iota_X \alpha)(X_2, \ldots, X_k) = \alpha(X, X_2, \ldots, X_k).$

THEOREM 5.24

For $X \in \mathfrak{X}(M)$ we have $\iota_X \in \mathrm{Der}_{-1}(M)$ and

- $\iota_x \circ \iota_X = 0$, and
- $\iota_{fX} = f\iota_X$ for all $f \in C^{\infty}(M)$.

THEOREM 5.25

For all $X, Y \in \mathfrak{X}(M)$ and $\alpha \in \Omega^{\bullet}(M)$ the following hold:

- $\mathcal{L}_X = [d, \iota_X] \in \text{Der}_0(M)$, i.e. $\mathcal{L}_X \alpha = \iota_X d\alpha + d\iota_X \alpha$
- $[\mathcal{L}_X, \iota_Y] = \iota_{[X,Y]} \in \text{Der}_{-1}(M)$, i.e. $\mathcal{L}_X \iota_Y \alpha = \iota_Y \mathcal{L}_X \alpha + \iota_{[X,Y]} \alpha$ and
- $[\mathcal{L}_X, \mathcal{L}_Y] = \mathcal{L}_{[X,Y]} \in \text{Der}_0(M)$, i.e. $\mathcal{L}_X \mathcal{L}_Y \alpha = \mathcal{L}_Y \mathcal{L}_X \alpha + \mathcal{L}_{[X,Y]} \alpha$.

DEFINITION 5.27: CLOSED AND EXACT FORMS

Let $\alpha \in \Omega^k(M)$. We say that α is **closed** of $d\alpha = 0$ and we say that it is **exact** if $\alpha = d\beta$ for some $\beta \in \Omega^{k-1}(M)$.

We denote the vector subspace of closed forms by $Z^k(M) \subseteq \Omega^k(M)$ and the subspace of exact forms by $B^k(M) \subseteq Z^k(M) \subseteq \Omega^k(M)$. We have the identities

 $Z^k(M) = \ker(d)$ and $B^k(M) = \operatorname{im}(d)$.

DEFINITION 5.28

The k-th de-Rahm cohomology of M is the quotient vector space

$$H^k_{dR}(M)]\frac{Z^k(M)}{B^k(M)},$$

a typical element being the equivalence of a closed form $[\alpha] = [\alpha + d\beta]$.

THEOREM 5.29

- If α, β are closed then so is $\alpha \wedge \beta$,
- If α is closed and β is exact then $\alpha \wedge \beta$ is exact. and hence the cup/wedge product $[\alpha] \wedge [\beta] = [\alpha \wedge \beta]$ is well-defined.

THEOREM 5.30

If M is a connected manifold then $H^0_{dR}(M) \cong \mathbb{R}$.

THEOREM 5.31

A smooth map $F: N \to M$ defines a ring homomorphism $F^*: H^{\bullet}_{dR}(M) \to H^{\bullet}_{dR}(N)$ by $F^*[\alpha] = [F^*\alpha]$. Hence $F^*([\alpha] \wedge [\beta]) = F^*[\alpha] \wedge F^*[\beta]$.

THEOREM 5.32: HOMOTOPY INVARIANCE

Let $F: M \times [0,1] \to N$ be smooth and let $F_t(a) = F(a,t)$. Then $F_t^*: H_{dR}^k(N) \to H_{dR}^k(M)$ gives that $F_0^* = F_1^*$ for all k.

THEOREM 5.33: POINCARÉ LEMMA

Let n > 0 be an integer, then

$$H_{dR}^k(\mathbb{R}^n) \cong \begin{cases} \mathbb{R} & \text{if } k = 0\\ 0 & \text{if } k > 0. \end{cases}$$

Hence $H^k_{dR}(M \times R) \cong H^k_{dR}(M)$ for any manifold M.

INTEGRATION

DEFINITION 6.1: PARTITIONS OF UNITY

A partition of unity on a manifold M is a collection of smooth functions $\{\rho_i\}_{i\in I}$ such that

- $\rho_i(a) \ge 0$ for all $a \in M$ and $i \in I$,
- The set of supports $\{\operatorname{supp}\rho_i\}_{i\in I}$ is locally finite: each $a \in M$ has a neighbourhood U which intersects only finitely many of the $\{\operatorname{supp}\rho_i\}$, i.e. $\#\{i \in I : U \cap \operatorname{supp}\rho_i \neq \emptyset\} < \infty$.
- for all $a \in M$ we have $\sum_{i \in I} \rho_i(a) = 1$.

We know that the sum in (3) converges since (2) gives that it is a finite sum.

THEOREM 6.2: EXISTENCE OF PARTITIONS OF UNITY

Given an open covering $\mathcal{U} = \{V_{\alpha}\}_{\alpha \in \Lambda}$ of a manifold M, there exists a partition of unity $\{\rho_i\}_{i \in I}$ subordinate to \mathcal{U} , that is: each supp $\rho_i \subset V_{\alpha}$ for some $\alpha(i)$.

DEFINITION 6.5: ORIENTABILITY

We say that a manifold M is orientable if any of the equivalent criteria hold

- $\bigwedge^n T^*M \to M$ is a trivial bundle,
- there exists a nowhere vanishing $\mu \in \Omega^n(M)$,
- *M* has an atlas $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$ with det $D(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}) >)$ for all $\alpha, \beta \in \Lambda$.

DEFINITION 6.9: ORIENTATION

An orientation on an orientable manifold M is an equivalence class of nowhere vanishing *n*-forms, where $\mu_1 \sim \mu_2$ if and only if $\mu_1 = f\mu_2$ for some nowhere zero $f \in C^{\infty}(M)$.

THEOREM 6.10

Let $U, V \subset \mathbb{R}^n$ and $F : U \to V$ be orientation-preserving diffeomorphism with $\mu \in \Omega_c^n(V)$ a compactlysupported *n*-form on *V*. Then

$$\int_U F^* \mu = \int_{V=F(U)} \mu.$$

THEOREM 6.11: INTEGRATION

Let M be an n-dimensional oriented manifold, then there exists a unique linear map (called the **integral**)

$$\int_M:\Omega^n_c(M)\to\mathbb{R}$$

so that if (U, φ) is an oriented chart and $\omega \in \Omega^n_c(U)$ then

$$\int_M \omega = \int_{\varphi(U)} (\varphi^{-1})^* \omega.$$

THEOREM 6.14: STOKES' THEOREM (VERSION 1)

Let M be an oriented $n\text{-dimensional manifold and let }\omega\in\Omega^{n-1}_c(M)$ then

$$\int_M d\omega = 0.$$

THEOREM 6.15

Let M be a compact, orientable, n-dimensional manifold. Then $H^n_{dR}(M) \neq 0$.

DEFINITION 6.16: MANIFOLD WITH BOUNDARY

A set M is an *n*-dimensional **manifold with boundary** if it has a collection $\{U_{\alpha}\}_{\alpha \in \Lambda}$ of subsets and maps $\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}_{+}$ such that

- $\bigcup_{\alpha \in \Lambda} U_{\alpha} = M$
- $\varphi_{\alpha}: U_{\alpha} \to \varphi_{\alpha}(U_{\alpha})$ is a bijection and $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is open for all $\alpha, \beta \in \Lambda$, and
- $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is the restriction of a smooth map from a neighbourhood $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \subseteq \mathbb{R}^{n}_{+} \subset \mathbb{R}^{n}$ to \mathbb{R}^{n} .

The **boundary** ∂M of M is the (n-1)-dimensional sub manifold

$$\partial M = \bigcup_{\alpha \in \Lambda} \varphi_{\alpha}(\partial \mathbb{R}^n_+).$$

THEOREM 6.18: BOUNDARY ORIENTATION

If M is an oriented manifold with boundary then there is an induced orientation on ∂M .

THEOREM 6.19: STOKES' THEOREM (VERSION 2)

Let M be an *n*-dimensional oriented manifold with boundary ∂M and let $\omega \in \Omega_c^{n-1}(M)$ have compact support. Then, with the induced orientation

$$\int_M d\omega = \int_{\partial M} \omega.$$