Differentiable Manifolds: Formula Sheet

William Bevington - s1610318

These are my notes for the "Differentiable Manifolds" course at Edinburgh University given by José FigueroaO'Farrill in 2019. There will undoubtedly be many mistakes in this formula sheet, and it is far from finished: given the time and energy I would add proofs of theorems, answers to exercises and workshops, and various insights. If you notice any mistakes please email me at william.bevington@zoho.eu.

Contents

The Definition of a Maifold 2
Maps Between Manifolds 4
The Tangent Bundle and Vector Fields 7
Vector Bundles 11
Differential Forms 14
Integration 20

The Definition of a Maifold

Definition 1.1: Coordinate Chart

A coordinate chart on a set M is a pair (U, φ) where $U \subseteq M$ and $\varphi: U \rightarrow \varphi(U)$ is a bijection onto an open subset of \mathbb{R}^{n}.

Writing $\varphi(a)=\left(x^{1}(a), \ldots, x^{n}(a)\right)$ for $a \in U$ we get local coordinate functions x^{i}, giving a local $\operatorname{chart}\left(U, x^{1}, \ldots, x^{n}\right)$.

Definition 1.2: Smooth Function

Let $V \subseteq \mathbb{R}^{n}$. A function $f: V \rightarrow \mathbb{R}^{m}$ is differentiable at $a \in V$ if there exists a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ so that

$$
\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{\|h\|}-\frac{L}{\|h\|}\right)=0
$$

We say that L is the derivative of f at a and denote it $L=(d f)_{a}$. Relative to standard bases in \mathbb{R}^{n} and \mathbb{R}^{m} we have a matrix representation of L via the Jacobian Matrix,

$$
D f_{a}=\left(\begin{array}{ccc}
\left.\frac{\partial f^{1}}{\partial x^{1}}\right|_{a} & \cdots & \left.\frac{\partial f^{1}}{\partial x^{n}}\right|_{a} \\
\vdots & \ddots & \vdots \\
\left.\frac{\partial f^{m}}{\partial x^{1}}\right|_{a} & \cdots & \left.\frac{\partial f^{m}}{\partial x^{n}}\right|_{a}
\end{array}\right)
$$

where $f\left(x^{1}, \ldots, x^{n}\right)=\left(f^{1}\left(x^{1}, \ldots, x^{n}\right), \ldots, f^{m}\left(x^{1}, \ldots, x^{n}\right)\right)$. If f is differentiable at each $a \in V$ then $D f: a \mapsto D f_{a}$ defines a continuous function. We say f is smooth if $D^{n} f$ exists for all $n \in \mathbb{N}$.

Theorem 1.3: Chain Rule

If g and f are smooth composable functions then

$$
d(g \circ f)_{a}=(d g)_{f(a)} \circ(d f)_{a} .
$$

Definition 1.4: Atlas

Let Λ be some indexing set. An n-dimensional coordinate atlas on a set M is a collection $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ of coordinate charts such that

1. $X=\bigcup_{\alpha \in \Lambda} U_{\alpha}$ so that $\left\{U_{\alpha}\right\}$ covers M,
2. $\varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is open in \mathbb{R}^{n} for all $\alpha, \beta \in \Lambda$, and
3. for all $\alpha, \beta \in \Lambda$, the transition functions $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\left(U_{\alpha} \cap U_{\beta}\right)$ is a smooth function between two open subsets of \mathbb{R}^{n}.

Definition 1.8: Compatible Atlases

Two atlases $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ and $\left\{\left(V_{\beta}, \psi_{\beta}\right)\right\}_{\beta \in \Phi}$ are compatible if their union is an atlas.

Definition 1.10: Differentiable Structure

A differentiable structure on a set M is an equivalence class of compatible atlases.

Definition 1.11: Manifold

A differentiable manifold is a set M together with a differentiable structure.

Definition 1.17

Let M be a manifold with atlas $\mathcal{A}=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$. A subset $V \subseteq X$ is open if for all $\alpha \in \Lambda$ then $\varphi_{\alpha}\left(V \cap U_{\alpha}\right)$ is open in \mathbb{R}^{n}.

Theorem 1.18: Manifold Topology

The open subsets of a manifold M define a topology on M

Definition 1.19

A manifold M is second-countable if it admits a countable atlas; i.e. an atlas with at most countably many charts.

Definition 1.25: Compact/Connected Manifold

Let M be a manifold with atlas $\mathcal{A}=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$. Then M is compact if every atlas has a finite sub-atlas, and M is compact if given any two $a, b \in M$ there is a finite set of charts $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{i=1, \ldots, N}$ such that $a \in U_{1}, b \in U_{N}$ and $U_{i} \cap U_{i+1} \neq \emptyset$ for $i=1,2, \ldots, N-1$.

Theorem 1.26: Inverse Function Theorem

Let $U \subseteq \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}^{n}$ be a smooth function with $(d f)_{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ invertible at $a \in U$. Then there exist neighbourhoods $a \in V$ and $f(a) \in W$ such that $f(V)=W$ and f has a smooth inverse on W.

Definition 1.27

Let $U \subseteq \mathbb{R}^{m+n}$ be open, $F: U \rightarrow \mathbb{R}^{m}$ be smooth, and $c \in \mathbb{R}^{m}$. We say that c is a regular value of F if for all $\bar{a} \in F^{-1}(c)$ the derivative $(d F)_{a}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{m}$ is surjective.

Theorem 1.27: Level Set

Let $U \subseteq \mathbb{R}^{m+n}$ be open and $F: U \rightarrow \mathbb{R}^{m}$ be smooth with $c \in \mathbb{R}^{m}$ as a regular value. Then $F^{-1}(c)$ is a smooth n-dimensional Hausdorff second-countable manifold.

Remark: definition 1.29 gives that $F^{-1}(c)$ has dimension m.

Definition 1.29: Regular Sub-Manifold

A subset $S \subseteq M$ of an n-dimensional manifold M is a regular sub-manifold ${ }^{a}$ of M with dimension $k \leq n$ if for every $p \in S$ there is a chart (U, φ) of M with $p \in U$ and $U \cap S$ is defined by the vanishing of $n-k$ of the coordinate functions.

[^0]
Maps Between Manifolds

Definition 2.1: Smooth Map

A map $F: M \rightarrow N$ between an m-dimensional manifold M and an n-dimensional manifold N is smooth if for each $a \in M$ and chart (U, φ) in M and chart (V, ψ) in N with $a \in U$ and $F(a) \in V$ the composite

$$
\psi \circ F \circ \varphi^{-1}: \varphi\left(F^{-1}(V) \cap U\right) \rightarrow \mathbb{R}^{n}
$$

is smooth as a map from \mathbb{R}^{m} to \mathbb{R}^{n}.

Definition 2.5: Diffeomorphism

A diffeomorphism $F: M \rightarrow N$ is a smooth bijection with smooth inverse.

Definition 2.8: Lie Group

A Lie Group is a smooth manifold G together with

- an element $e \in G$,
- a map $\mu: G \times G \rightarrow G$,
- a map $\iota: G \rightarrow G$,
such that
- (Identity) : $\mu(e, a)=\mu(a, e)=a$ for all $a \in G$,
- (Inverse) : $\mu(a, \iota(a))=\mu(\iota(a), a)=e$ for all $a \in G$,
- (Associativity) : $\mu(\mu(a, b), c)=\mu(a, \mu(b, c))$ for all $a, b, c \in G$.

We will often write $a^{-1}=\iota(a)$ and $a b=\mu(a, b)$.

Definition 2.10

Let G be a Lie group. For all $a, b \in G$ we have diffeomorphisms $\lambda_{a}: G \rightarrow G$ and $\rho_{a}: G \rightarrow G$ given by $\lambda_{a}(b)=\mu(a, b)=\rho_{b}(a)$.

Definition 2.11: Smooth Functions

A special case of smooth maps are smooth functions, which are smooth maps $f: M \rightarrow \mathbb{R}$. We denote the commutative, associative \mathbb{R}-algebra (hence an \mathbb{R}-module) of smooth functions on a manifold M as $C^{\infty}(M)$.

Definition 2.17: Cotangent Space

Let M be a smooth manifold. Denote by $Z_{a}(M) \subset C^{\infty}(M)$ the set of smooth functions whose derivative ${ }^{a}$ vanish at $a \in M$. The cotangent space of M at a is the quotient vector-space

$$
T_{a}^{*} M:=C^{\infty}(M) / Z_{a} .
$$

The derivative $(d f)_{a}$ of $f \in C^{\infty}(M)$ at a is the image of f is the image under the canonical quotient map.

[^1]Let M be an n-dimensional manifold, then:

- for all $a \in M$ the cotangent space $T_{a}^{*} M$ is an n-dimensional real vector space,
- if (U, φ) is a coordinate chart around a with local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ then $\left(d x^{1}\right)_{a}, \ldots,\left(d x^{n}\right)_{a}$ is a basis for $T_{a}^{*} M$, and
- if $f \in C^{\infty}(M)$ then

$$
(d f)_{a}=\left.\sum_{i=1}^{n} \partial_{i}\left(f \circ \varphi^{-1}\right)\right|_{\varphi(a)}\left(d x^{i}\right)_{a}
$$

where ∂_{i} is the i-th derivative with respect to the i-th coordinate on \mathbb{R}^{n}.

Definition 2.22: Tangent Space

Let M be an n-dimensional manifold with $a \in M$. The tangent space $T_{a} M$ to M at a is the dual vector space to $T_{a}^{*} M$, i.e. the linear functions $C^{\infty}(M) \rightarrow \mathbb{R}$ sending Z_{a} to zero.

Definition 2.23: Directional Derivative

A directional derivative at $a \in M$ is a linear map $X_{a}: C^{\infty}(M) \rightarrow \mathbb{R}$ satisfying the Liebniz rule:

$$
X_{a}(f g)=f(a) X_{a}(g)+g(a) X_{a}(f)
$$

Theorem 2.24

Let X_{a} be a directional derivative at $a \in M$ and $f \in Z_{a}$ then $X_{a} f=0$. Hence $X_{a} \in T_{a} M$, and

$$
\left(\left.\frac{\partial}{\partial x^{1}}\right|_{a}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{a}\right)
$$

is the canonical dual basis to $\left(\left(d x^{1}\right)_{a}, \ldots,\left(d x^{n}\right)_{a}\right)$.

Theorem 2.25

If c is a smooth curve in M passing through $a \in M$, i.e. a smooth map $c:(-\varepsilon, \varepsilon) \rightarrow M$ with $c(0)=a$.
We define the velocity of c at a to be the function

$$
c^{\prime}(0): C^{\infty}(M) \rightarrow \mathbb{R}, \quad c^{\prime}(0) f=\left.\frac{d}{d t}(f \circ c)(t)\right|_{t=0}
$$

Then $c^{\prime}(0) \in T_{a} M$. In fact every $X_{a} \in T_{a} M$ is of the form $c^{\prime}(0)$ for some curve c through a.

Definition 2.27: Push Forward/Derivative

The derivative (or 'push-forward') at $a \in M$ of a smooth map $F: M \rightarrow N$ is the linear map

$$
\left(F_{*}\right)_{a}: T_{a} M \rightarrow T_{F(a)} N, \quad\left(F_{*}\right)_{a}\left(X_{a}\right)(f)=X_{a}(f \circ F) .
$$

If $X_{a}=c^{\prime}(0)$ then $\left(F_{*}\right)_{a}\left(X_{a}\right)(f)=(F \circ c)^{\prime}(0)(f)$, and

$$
\left(F_{*}\right)_{a}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{a}\right)=\left.\left.\sum_{j=1}^{n} \frac{\partial F}{\partial x^{i}}\right|_{a} \frac{\partial}{\partial y^{j}}\right|_{F(a)} .
$$

Definition 2.28: Submersion, Immersion, Embedding

Let $F: M \rightarrow N$ be a smooth map between an m-dimensional manifold M and an n-dimensional manifold N, then

- F is a submersion if $\left(F_{*}\right)_{a}$ is surjective for all $a \in M$
- F is a immersion if $\left(F_{*}\right)_{a}$ is injective for all $a \in M$
- F is an embedding if F is a homeomorphism onto its image, and is an immersion.

Warning: injectivity/surjectivity of F says nothing about injectivity/surjectivity of $\left(F_{*}\right) a$

Definition 2.29: Embedded Sub-Manifold

A manifold M is an embedded sub-manifold of a manifold N if there is an embedding $\iota: M \rightarrow N$.

Definition 2.30: Regular Value

Let $F: M \rightarrow N$ be a smooth map between manifolds. We say $c \in N$ is a regular value of F if for all $a \in M$ with $F(a)=c$ the derivative $\left(F_{*}\right)_{a}: T_{a} M \rightarrow T_{c} N$ is surjective.

Theorem 2.31: Regular Sub-Manifold

Let $F: M^{m+n} \rightarrow N^{m}$ be a smooth map between manifolds and $c \in N$ be a regular value of F. Then $F^{-1}(c)$ is an n-dimensional embedded sub-manifold of M and for all $a \in F^{-1}(c)$

$$
T_{a} F^{-1}(c)=\operatorname{ker}\left(F_{*}\right)_{a}
$$

The Tangent Bundle and Vector Fields

Theorem 3.1: Tangent Bundle

Let M be a manifold, we define the tangent bundle as

$$
T M:=\bigsqcup_{a \in M} T_{a} M
$$

with projection map $p: T M \rightarrow M$ sending $v \in T_{a} M$ to $a \in M$. Suppose that $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ is an atlas for M, then we have seen that $\left(\left.\frac{\partial}{\partial x^{1}}\right|_{a}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{a},\right)$ is a basis for $T_{a} M$, so we have a bijection

$$
\psi: U \times \mathbb{R}^{n} \rightarrow T U:=\bigsqcup_{a \in U} T_{a} M, \quad \psi\left(a, v^{1}, \ldots, v^{n}\right)=\left.\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}}\right|_{a} .
$$

Then $\left\{\left(T U_{\alpha}, \Psi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ with

$$
\Phi=(\varphi \times \mathrm{id}) \circ \psi^{-1}: T U \rightarrow \varphi(U) \times \mathbb{R}^{n}, \quad \Psi\left(\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}}\right)=\left(x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}\right)
$$

is an atlas for $T M$.

THEOREM 3.2

The tangent bundle $T M$ of a manifold M is Hausdorff and second-countable (provided M is).

Definition 3.4: Vector Field

A vector field on a manifold M is a smooth map $\mathfrak{X}: M \rightarrow T M$ such that $p \circ X=\operatorname{id}_{M}$, in other words $X(a) \in T_{a} M$. The set of all vector fields is denoted $\mathfrak{X}(M)$, and we use the abuse of notation $X^{\prime \prime}={ }^{\prime \prime}\left(\Psi \circ X \circ \varphi^{-1}\right)\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}, X^{1}(x), \ldots, X^{n}(x)\right)$.

Any vector field $X: M \rightarrow T M$ is an embedding so that $X(M)$ is an embedded sub-manifold of $T M$ diffeomorphic to M (exercise 4.6).

Definition 3.5

The zero section of $T M$ is the map $s: M \rightarrow T M$ given by the vector field $X=0$. All sections of $T M$ are vector fields ${ }^{a}$.
${ }^{a}$ Though we will only define what a section is later

THEOREM 3.7

Given a smooth map $F: M \rightarrow N$ from an m-dimensional manifold M to an n-dimensional manifold N the push-forwards $\left(F_{*}\right)_{a}: T_{a} M \rightarrow T_{F(a)} N$ assemble to a smooth map $F_{*}: T M \rightarrow T N$. In other words, there is a functor F_{*} from the category of manifolds and smooth maps to its self.

We can do a similar trick for the cotangent bundle $T^{*} M$, with a couple of differences. There is no functor $T^{*} F: T^{*} M \rightarrow T^{*} N$, but we can pull back sections of $T^{*} N$ to sections of $T^{*} M$ (see workshop 3).

Any \mathbb{R}-linear transformation X of $C^{\infty}(M)$ obeying the Leibniz rule

$$
X(f g)=f X(g)+g X(f)
$$

is called a derivation of $C^{\infty}(M)$.

Theorem 3.10

A transformation $X: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a vector field if and only if it is a derivation.

Definition 3.11

The lie bracket of two vector fields X and Y is defined by

$$
[X, Y](f)=X(Y(f))-Y(X(f))
$$

and is its self a vector field satisfying (exercise 4.13)

- $[-,-]$ is \mathbb{R}-bilinear,
- $[X, Y]=-[Y, X]$ ('skew-symmetry'),
- $[X,[Y, Z]]=[[X, Y], Z]+[Y,[X, Z]]$ ('Jacobi identity'), and
- $[X, f Y]=f[X, Y]+X(f) Y$.

Definition 3.14

Let $F: M \rightarrow N$ be a smooth map between differentiable manifolds. We say that a vector field $X \in \mathfrak{X}(M)$ is F-related to $Y \in \mathfrak{X}(N)$ if for all $a \in M$ the identity $\left(F_{*}\right)_{a}\left(X_{a}\right)=Y_{F(a)}$ holds.

Theorem 3.15

A vector field $X \in \mathfrak{X}(M)$ is F-related to $Y \in \mathfrak{X}(M)$ if and only if $X(f \circ F)=(Y f) \circ F$ for all $f \in C^{\infty}(M)$.

A one parameter group of diffeomorphisms of a manifold M is a smooth map $\psi: \mathbb{R} \times M \rightarrow M$ with $\psi(t, a)=\psi_{t}(a)$ such that for all $s, t \in \mathbb{R}$:

- $\psi_{t}: M \rightarrow M$ is a diffeomorphism,
- $\psi_{0}=\mathrm{id}_{M}$, and
- $\psi_{s+t}=\psi_{s} \circ \psi_{t}$.

Suppose that ψ_{t} is a one parameter group of diffeomorphisms of M and $f \in C^{\infty}(M)$ then for all $a \in M$ the function $\mathbb{R} \rightarrow \mathbb{R}$ given by $t \mapsto f\left(\psi_{t}(a)\right)$ is smooth and hence ψ_{t} defines a vector field

$$
X_{a}(f)=\left.\frac{d}{d t} f\left(\psi_{t}(a)\right)\right|_{t=0}
$$

In local coordinates $\psi_{t}\left(x^{1}, \ldots, x^{n}\right)=\left(y^{1}(t, x), \ldots, y^{n}(t, x)\right)$ we have

$$
X_{a}(f)=\sum_{i=1}^{n}\left(\left.\frac{\partial y^{i}}{\partial t}\right|_{t=0}\right) \frac{\partial f}{\partial x^{i}} .
$$

Definition 3.19

An integral curve of a vector field $X \in \mathfrak{X}(M)$ is a smooth map $\psi:(\alpha, \beta) \rightarrow M$ such that for all $t \in(\alpha, \beta)$

$$
\left(\psi_{*}\right)_{t}\left(\frac{d}{d t}\right)=X_{\psi(t)} .
$$

In fact, if (U, φ) is a chart of M with local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ and $X=\sum_{i=1}^{n} X^{i}(x) \frac{\partial}{\partial x^{i}} \in \mathfrak{X}(U)$ then ψ is a smooth curve satisfying

$$
\psi_{*}\left(\frac{d}{d t}\right)=\sum_{i=1}^{n} X^{i}(x(t)) \frac{\partial}{\partial x^{i}},
$$

giving a first-order system of ODEs $\frac{d x^{i}}{d t}=X^{i}(x(t))$. Thus a vector field is an ODE on that manifold and solving that ODE is equivalent to finding its integral curves.

Theorem 3.21

Let $V \subset \mathbb{R}^{n}$ be open with $p_{0} \in V$ and $f: V \rightarrow \mathbb{R}^{n}$ smooth. Then the initial value problem

$$
\frac{d y}{d t}=f(y), \quad y(0)=p_{0}
$$

has a unique smooth solution $y:(\alpha, \beta) \rightarrow V$ where α, β depend on p_{0} and (α, β) is the maximal interval containing 0 on which y is defined.

Theorem 3.22

Let $V \subseteq \mathbb{R}^{n}$ be open and $f: V \rightarrow \mathbb{R}^{n}$ be smooth. For each $p_{0} \in V$ there exists $W \subset V$ open with $p_{0} \in W$, $\varepsilon>0$ and smooth

$$
y:(-\varepsilon, \varepsilon) \times W \rightarrow V
$$

such that

$$
\frac{\partial y}{\partial t}(t, q)=f(y(t, q)), \quad y(0, q)=q \quad \forall(t, q) \in(-\varepsilon, \varepsilon) \times W
$$

Theorem 3.22 gives that if $X \in \mathfrak{X}(U)$ then for every $a \in U$ there is a $W \subset U$ open with $a \in W, \varepsilon>0$ and smooth $\psi:(-\varepsilon, \varepsilon) \times W \rightarrow U$ such that for all $p \in W$ we have that $\psi_{t}(p)=\psi(t, p)$ is an integral curve. We call ψ the local flow generated by X. If ψ is defined on $\mathbb{R} \times M$ then we call it global flow.

Definition 3.24: Lie Derivative

If ψ_{t} is the local flow generated by $X \in \mathfrak{X}(M)$ then for all $f \in C^{\infty}(M)$ we saw previously that

$$
X(f)=\left.\frac{d}{d t}\left(f \circ \psi_{t}\right)\right|_{t=0} \in C^{\infty}(M)
$$

We call this the Lie derivative \mathcal{L}_{X} along X. Equivalently:

$$
\left(\mathcal{L}_{X} Y\right)(f)=[X, Y](f)
$$

Vector Bundles

Definition 4.1: Tensor Product

Let V, W be two finite-dimensional real vector spaces. Their tensor product $V \otimes W$ is the vector space defined by the set of linear maps $\otimes: V \times W \rightarrow V \otimes W$ sending $(v, w) \mapsto v \otimes w$ satisfying the following universal property:

Given a bilinear map $B: V \times W \rightarrow U$ into a vector space U there is a unique linear map $\beta: V \otimes W \rightarrow U$ such that the following commutes:

It turns out that $V \otimes W$ is just the dual to the vector space $\operatorname{Bil}(V, W)$ of bilinear maps, and there is a natural isomorphism $\operatorname{Hom}(V \otimes W, U) \cong \operatorname{Hom}(V, \operatorname{Hom}(W, U))$.

Definition 4.2

Denote by $V^{\otimes k}=\underbrace{V \otimes \cdots \otimes V}_{k \text { times }}$. Then the tensor algebra of V has underlying space

$$
T(V)=\bigotimes_{k=0}^{\infty} V^{\otimes k}
$$

whose elements are finite sums $\lambda+v+\sum v_{i} \otimes v_{j}+\cdots+\sum v_{i_{1}} \otimes \cdots v_{i_{p}}$ and if $u, v \in T(V)$ then their product is just $u \otimes v$. This algebra is associative.

Vectors in $T_{s}^{r}(V)=V^{\otimes r} \otimes\left(V^{*}\right)^{\otimes s}$ are called (r, s)-tensors, we can understand (r, s)-tensors as linear maps $V^{\otimes s} \rightarrow V^{\otimes r}$ by the isomorphism $V \otimes V^{*} \cong \operatorname{End}(V)$. That is, $T_{s}^{r}(V) \cong \operatorname{Hom}\left(V^{\otimes s}, V^{\otimes r}\right)$.

Definition 4.5: Vector Bundle

A real vector bundle or rank m consists of

1. a manifold M, called the base space,
2. a manifold E, called the total space,
3. a smooth surjection $\pi: E \rightarrow M$ called the projection
such that
4. for all $a \in M$ the fibre $\pi^{-1}(a)$ is isomorphic as a vector space to \mathbb{R}^{m}
5. for all $a \in M$ there is an open neighbourhood U of a and a diffeomorphism $\varphi_{U}: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{m}$ (called the local trivialisation) such that φ_{U} maps the vector space $\pi^{-1}(a)$ isomorphically to the vector space $\{a\} \times \mathbb{R}^{m}$, and
6. If $\left(U, \varphi_{U}\right)$ and $\left(V, \varphi_{V}\right)$ are two local trivialisations with $U \cap V \neq \emptyset$ then

$$
\varphi_{U} \circ \varphi_{V}^{-1}:(U \cap V) \times \mathbb{R}^{m} \rightarrow(U \cap V) \times \mathbb{R}^{m}
$$

takes the form $(a, v) \mapsto\left(a, g_{U V}(a) v\right)$ where the transition function $g_{U V}: U \cap V \rightarrow \mathrm{GL}(m, \mathbb{R})$ is smooth.

A vector bundle is trivial if the neighbourhood in (4) can be taken to be all of M. If the rank of the vector bundle is one, we call it a line bundle.

Let $\pi: E \rightarrow M$ be a real rank m vector bundle, then $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ is a trivialising cover if $M=$ $\bigcup_{\alpha \in \Lambda} U_{\alpha}$ and $\left(U_{\alpha}, \varphi_{\alpha}\right)$ is a local trivialisation for every $\alpha \in \Lambda$.

Theorem 4.8

Let $\mathbb{I} \in \mathrm{GL}(m, \mathbb{R})$ denote the identity matrix. Let M be a manifold with open cover $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ and family $\left\{g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(m, \mathbb{R})\right\}$ of smooth maps satisfying ${ }^{a}$

1. $g_{\alpha \alpha}=\mathbb{I}$ for all $a \in U_{\alpha}$,
2. $g_{\alpha \beta}(a) g_{\beta \alpha}(a)=\mathbb{I}$ for all $a \in U_{\alpha} \cap U_{\beta}$,
3. $g_{\alpha \beta}(a) g_{\beta \gamma}(a) g_{\gamma \alpha}(a)=\mathbb{I}$ for all $a \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

Then there exists a real rank m vector bundle $\pi: E \rightarrow M$ with transition functions $g_{\alpha \beta}$.
${ }^{a}$ these are called the Cech cocycle conditions.

Definition 4.9

For a vector bundle $E \rightarrow M$ we briefly denote the transition functions by $g_{\alpha \beta}^{E}$. Using the Cech-cocycle conditions we can define new vector bundles from old:

- Let $E \rightarrow M$ and $F \rightarrow M$ be two real vector bundles of rank k and l, respectively, over the same base space. We define the Whitney sum $E \oplus F \rightarrow M$ to be the vector bundle with fibres $(E \oplus F)_{a}=$ $E_{a} \oplus F_{a}$ with transition functions

$$
g_{\alpha \beta}^{E \oplus F}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(k+l, \mathbb{R}), \quad a \mapsto\left(\begin{array}{cc}
g_{\alpha \beta}^{E} & 0 \\
0 & g_{\alpha \beta}^{F}
\end{array}\right) .
$$

- The dual bundle $E^{*} \rightarrow M$ to $E \rightarrow M$ has fibres $\left(E^{*}\right)_{a}=\operatorname{Hom}\left(E_{a}, \mathbb{R}\right)=\left(E_{a}\right)^{*}$ and transition functions $g_{\alpha \beta}^{E^{*}}=\left(\left(g_{\alpha \beta}^{E}\right)^{T}\right)^{-1}$ given by the inverse-transpose of the transition functions of $E \rightarrow M$.
- The tensor bundle $E \otimes F \rightarrow M$ of $E \rightarrow M$ and $F \rightarrow M$ has fibres $(E \otimes F)_{a}=E_{a} \otimes F_{a}$ and transition functions

$$
g_{\alpha \beta}^{E \otimes F}(a)=g_{\alpha \beta}^{E}(a) \otimes g_{\alpha \beta}^{F}(a), \quad(A, B) \mapsto A \otimes B
$$

Definition 4.17

Let $p: E \rightarrow M$ and $q: F \rightarrow N$ be two vector bundles. A pair of smooth maps (Ψ, φ) with $\Phi: E \rightarrow F$ and $\varphi: M \rightarrow N$ is a bundle map if for all $a \in M$ the map $\Phi_{a}: E_{a} \rightarrow F_{\varphi(a)}$ is linear with the following commutative diagram

We say that Ψ covers φ.

Definition 4.20: Sections

Let $p: E \rightarrow M$ be a vector bundle, then a map $s: M \rightarrow E$ is a section if $p \circ s=\operatorname{id}_{M}$, that is, if for all $a \in M, s(a) \in E_{a}$. The set of all sections of E is denoted $\Gamma(E)$.

Theorem 4.22

Let $p: E \rightarrow M$ be a vector bundle, then $\Gamma(E)$ is a $C^{\infty}(M)$-module.

Theorem 4.23

If $p: E \rightarrow M$ and $q: F \rightarrow M$ are vector bundles and $\Psi: E \rightarrow F$ is a bundle map (covering the identity) then Ψ defines a $C^{\infty}(M)$-linear map $\Psi_{!}: \Gamma(E) \rightarrow \Gamma(F)$ by $\Psi!(s)=\Psi \circ s$.

Theorem 4.24

Let $E \rightarrow M$ and $F \rightarrow M$ be vector bundles with $C^{\infty}(M)$-linear map $\psi: \Gamma(E) \rightarrow \Gamma(F)$, then ψ is local so that if $\left.s\right|_{U}=0$ for $U \subseteq M$ open then $\left.\psi(s)\right|_{U}=0$. In particular if $s \in \Gamma(E)$ with $s(a)=0$ then $\psi(s)(a)=0$ as well.

Theorem 4.25

Let $E \rightarrow M$ be a vector bundle and $e \in E_{a}$ for some $a \in M$ then there exists a section $s \in \Gamma(E)$ such that $s(a)=e . \mathrm{c}$

Theorem 4.26

Let $p: E \rightarrow M$ and $q: F \rightarrow M$ be vector bundles of rank k and l respectively, and let $\psi: \Gamma(E) \rightarrow \Gamma(F)$ be $C^{\infty}(M)$-linear. Then $\psi=\Psi_{!}$for a unique bundle map $\Psi: E \rightarrow F$.

Differential Forms

Definition: Alternating Forms

A k-linear alternating form (or ' k-form') on an n-dimensional real vector space V is a k-linear map $\varphi: V^{k} \rightarrow \mathbb{R}$ which vanishes if any two of its arguments coincide: $\varphi(\ldots, v, \ldots, v, \ldots)=0$ for all $v \in V$. We will use $\bigwedge^{k} V^{*}$ to denote the set of k-linear alternating forms on V.

Theorem

Let $\varphi \in \bigwedge^{k} V^{*}$ be an alternating k-form, then:

- If φ is alternating then $\varphi(\ldots, v, w, \ldots)=-\varphi(\ldots, w, v, \ldots)$ for all $v, w \in V$ - hence the name 'alternating', and
- $\operatorname{dim}\left(\Lambda^{k} V^{*}\right)=\binom{n}{k}$.

Theorem

if $A \in \operatorname{GL}(V)$ then $(A \cdot \varphi)\left(v_{1}, \ldots, v_{k}\right)=\varphi\left(A^{-1} v_{1}, \ldots, A^{-1} v_{k}\right)$. This defines a Lie-Group homomorphism

which defines the transition functions $g_{\alpha \beta}^{\wedge^{k} E^{*}}=\Psi\left(g_{\alpha \beta}^{E}\right)$.

Definition

Taking $T M$ and constructing $\bigwedge^{k} T^{*} M$ with transition functions $g_{\alpha \beta}^{\wedge^{k} T^{*} M}=\Psi\left(g_{\alpha \beta}^{T M}\right)$ we get a vector bundle with the $C^{\infty}(M)$-module of smooth sections $\Omega^{k}(M)$: the differential k-forms on M. A typical element of $\Omega^{k}(M)$ is a $C^{\infty}(M)$-multilinear alternating map

$$
\alpha: \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{k-\text { times }} \rightarrow C^{\infty}(M), \quad \alpha\left(X_{1}, \ldots, X_{k}\right)(a)=\alpha_{a}\left(\left(X_{1}\right)_{a}, \ldots,\left(X_{k}\right)_{a}\right),
$$

for all $a \in M$.

Definition

Let $F: M \rightarrow N$ be a smooth map and $\alpha \in \Omega^{k}(N)$, then its pull-back $F^{*} \alpha \in \Omega(M)$ by F is

$$
\left(F^{*} \alpha\right)\left(X_{1}, \ldots, X_{k}\right)(a)=\alpha_{F(a)}\left(\left(F_{*}\right)_{a}\left(X_{1}\right)_{a}, \ldots,\left(F_{*}\right)_{a}\left(X_{k}\right)_{a}\right) .
$$

Definition

Let $\alpha, \beta \in \Omega^{1}(M)$ then their wedge product (or 'exterior product') $\alpha \wedge \beta \in \Omega^{2}(M)$ is

$$
(\alpha \wedge \beta)(X, Y)=\operatorname{det}\left(\begin{array}{ll}
\alpha(X) & \alpha(Y) \\
\beta(X) & \beta(Y)
\end{array}\right)=\alpha(X) \beta(Y)-\alpha(Y) \beta(X)
$$

for all $X, Y \in \mathfrak{X}(M)$.
More generally, if $\alpha_{1}, \ldots, \alpha_{k} \in \Omega^{1}(M)$ then $\alpha_{1} \wedge \cdots \wedge \alpha_{k} \in \Omega^{k}(M)$ is given by

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}\left(X_{1}, \ldots, X_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}
\alpha_{1}\left(X_{1}\right) & \ldots & \alpha_{1}\left(X_{k}\right) \\
\vdots & \ddots & \vdots \\
\alpha_{k}\left(X_{1}\right) & \ldots & \alpha_{k}\left(X_{k}\right)
\end{array}\right)
$$

for all $X_{1}, \ldots, X_{k} \in \mathfrak{X}(M)$.

THEOREM 5.3

Let $\alpha, \beta \in \Omega^{1}(M)$ and $F: N \rightarrow M$ be a smooth map, then

$$
F^{*}(\alpha \wedge \beta)=\left(F^{*} \alpha\right) \wedge\left(F^{*} \beta\right)
$$

Definition

$$
\Omega^{\bullet}(M)=\bigoplus_{k=0}^{n} \Omega^{k}(M)=\Omega^{0}(M) \oplus \cdots \oplus \Omega^{n}(M)
$$

Theorem

Recall that if $\left(U, x^{1}, \ldots, x^{n}\right)$ is a local coordinate chart on M then $d x^{i} \in \Omega^{1}(U)$ and every $\alpha \in \Omega^{1}(U)$ can be written in the form

$$
\alpha=\sum_{i=1}^{n} \alpha_{i} X^{i} \in C^{\infty}(M), \quad X=\sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}
$$

Definition

We say that $I=\left(i_{1}, \ldots, i_{k}\right)$ is a multi-index of length $|I|=k$ if $1 \leq i_{1}<\cdots<i_{k} \leq n$. We define $d x^{I} \in \Omega^{|I|}(U)=\Omega^{k}(U)$ by $d x^{I}=d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}$, so that every k-form can be written as

$$
\sum_{|I|=k} \alpha_{I} d x^{I}, \quad \alpha_{I}=\alpha\left(\frac{\partial}{\partial x^{i_{1}}}, \ldots, \frac{\partial}{\partial x^{i_{k}}}\right) .
$$

Theorem 5.5

For all $\alpha \in \Omega^{k}(M)$ and $\beta \in \Omega^{l}(M)$ we have

$$
\alpha \wedge \beta=(-1)^{k l} \beta \wedge \alpha \quad \in \Omega^{k+1}(M)
$$

Theorem 5.6

Let $F: \mathbb{R}^{m} \rightarrow U$ be a smooth map, then for all $\alpha \in \Omega^{k}(U)$ and $\beta \in \Omega^{l}(U)$ we have

$$
F^{*}(\alpha \wedge \beta)=F^{*} \alpha \wedge F^{*} \beta \quad \in \Omega^{k+1}\left(\mathbb{R}^{m}\right) .
$$

Definition 5.7

The exterior derivative $d: \Omega^{k}(U) \rightarrow \Omega^{k+1}(U)$ is defined by

$$
d \alpha=\sum_{|I|=k} d \alpha_{I} \wedge d x^{I} \quad \text { where } \quad \alpha=\sum_{|I|=k} \alpha_{I} d x^{I}
$$

Theorem 5.8

Let $\alpha \in \Omega^{k}(U)$ and $\beta \in \Omega^{l}(U)$ then

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta
$$

Theorem 5.9

Let $f \in C^{\infty}(U)$ and $d f \in \Omega^{1}(U)$ then $d(d f)=d^{2} f=0$. In general, if $\alpha \in \Omega^{k}(U)$ then $d^{2} \alpha=0$.

Theorem 5.11: Differential Graded Algebra

Let $F: \mathbb{R}^{m} \rightarrow U$ be smooth, then for all $\alpha \in \Omega^{k}(U)$

$$
d F^{*} \alpha=F^{*} d \alpha
$$

This makes $\left(\Omega^{\bullet}(M), \wedge, d\right)$ into what we call a differential graded algebra.

Theorem 5.12: Gluing Lemma

Let $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ be an open cover for M and let $F_{\alpha}: U_{\alpha} \rightarrow N$ be smooth maps with $F_{\alpha}(a)=F_{\beta}(a)$ for all $a \in U_{\alpha} \cap U_{\beta}$. Then there exists a unique ${ }^{a}$ smooth map $F: M \rightarrow N$ such that $F(a)=F_{\alpha}(a)$ for all $a \in U_{\alpha}$.
${ }^{a}$ This uniqueness allows us to 'glue' maps together, for instance if sections $s_{\alpha}(a)=s_{\beta}(a)$ for all $a \in U_{\alpha} \cap U_{\beta}$ then there is a unique global section s with $\left.s\right|_{U_{\alpha}}=s_{\alpha}$.

Theorem 5.13

Let M be an m-dimensional manifold, and N be an n-dimensional manifold. Then $\left(\Omega^{\bullet}, \wedge, d\right)$ is a differential graded algebra and if $F: N \rightarrow M$ is a smooth map then $F^{*}: \Omega^{\bullet}(M) \rightarrow \Omega^{\bullet}(N)$ is a dga-morphism.

Definition

We defined the Lie derivative for tangent bundles, now for the more general definition. Let $X \in \mathfrak{X}(M)$ have local flow ψ_{t} so that for all $f \in C^{\infty}(M)$ we have the smooth function $X(f)=\left.\frac{d}{d t}\left(f \circ \psi_{t}\right)\right|_{t=0}=\left.\frac{d}{d t}\left(\psi_{t}^{*} f\right)\right|_{t=0}$. If $\alpha \in \Omega^{k}(M)$ then its Lie derivative along X is

$$
\mathcal{L}_{X} \alpha=\left.\frac{d}{d t}\left(\psi_{t}^{*} \alpha\right)\right|_{t=0} \in \Omega^{k}(M)
$$

Definition 5.15

An \mathbb{R}-linear map $D: \Omega^{\bullet}(M) \rightarrow \Omega^{\bullet}(M)$ is a degree- k derivation if $D: \Omega^{p}(M) \rightarrow \Omega^{p+k}(M)$ and D obeys the Leibniz rule

$$
D(\alpha \wedge \beta)=D \alpha \wedge \beta+(-1)^{k p} \alpha \wedge D \beta
$$

We denote the set of degree k derivations by $\operatorname{Der}_{k}(M)$.

Theorem 5.16

The degree k derivations form a $C^{\infty}(M)$-module.

Theorem 5.18

For all $X \in \mathfrak{X}(M)$ we have $\mathcal{L}_{X} \in \operatorname{Der}_{0}(M)$ and $\mathcal{L}_{X} \circ d=d \circ \mathcal{L}_{X}$.

Theorem 5.19

Let $D_{1} \in \operatorname{Der}_{k}(M)$ and $D_{2} \in \operatorname{Der}_{l}(M)$, then

$$
\left[D_{1}, D_{2}\right]=D_{1} \circ D_{2}-(-1)^{k l} D_{2} \circ D_{1} \quad \in \operatorname{Der}_{k+1}(M)
$$

Theorem 5.20

Let D be a derivation and $\alpha \in \Omega^{p}(M)$ and $\left.\alpha\right|_{U}=0$ for some open subset $U \subseteq M$. Then $\left.D \alpha\right|_{U}=0$.

Theorem 5.21

Let $D \in \operatorname{Der}_{k}(M)$ be such that $D f=0$ and $D \alpha=0$ for all $f \in \Omega^{0}(M)$ and $\alpha \in \Omega^{1}(M)$. Then $D=0$.

Theorem 5.22

Let $D \in \operatorname{Der}_{k}(M)$ and $D \circ d=(-1)^{k} d \circ D$. If $D f=0$ for all $f \in \Omega^{0}(M)$ then $D=0$.

The contraction with $X \in \mathfrak{X}(M)$ is the $C^{\infty}(M)$-linear map

$$
\left(\iota_{X} \alpha\right)\left(X_{2}, \ldots, X_{k}\right)=\alpha\left(X, X_{2}, \ldots, X_{k}\right)
$$

Theorem 5.24

For $X \in \mathfrak{X}(M)$ we have $\iota_{X} \in \operatorname{Der}_{-1}(M)$ and

- $\iota_{x} \circ \iota_{X}=0$, and
- $\iota_{f X}=f \iota_{X}$ for all $f \in C^{\infty}(M)$.

Theorem 5.25

For all $X, Y \in \mathfrak{X}(M)$ and $\alpha \in \Omega^{\bullet}(M)$ the following hold:

- $\mathcal{L}_{X}=\left[d, \iota_{X}\right] \in \operatorname{Der}_{0}(M)$, i.e. $\mathcal{L}_{X} \alpha=\iota_{X} d \alpha+d \iota_{X} \alpha$
- $\left[\mathcal{L}_{X}, \iota_{Y}\right]=\iota_{[X, Y]} \in \operatorname{Der}_{-1}(M)$, i.e. $\mathcal{L}_{X} \iota_{Y} \alpha=\iota_{Y} \mathcal{L}_{X} \alpha+\iota_{[X, Y]} \alpha$ and
- $\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right]=\mathcal{L}_{[X, Y]} \in \operatorname{Der}_{0}(M)$, i.e. $\mathcal{L}_{X} \mathcal{L}_{Y} \alpha=\mathcal{L}_{Y} \mathcal{L}_{X} \alpha+\mathcal{L}_{[X, Y]} \alpha$.

Definition 5.27: Closed and Exact Forms

Let $\alpha \in \Omega^{k}(M)$. We say that α is closed of $d \alpha=0$ and we say that it is exact if $\alpha=d \beta$ for some $\beta \in \Omega^{k-1}(M)$.

We denote the vector subspace of closed forms by $Z^{k}(M) \subseteq \Omega^{k}(M)$ and the subspace of exact forms by $B^{k}(M) \subseteq Z^{k}(M) \subseteq \Omega^{k}(M)$. We have the identites

$$
Z^{k}(M)=\operatorname{ker}(d) \quad \text { and } \quad B^{k}(M)=\operatorname{im}(d)
$$

Definition 5.28

The k-th de-Rahm cohomology of M is the quotient vector space

$$
\left.H_{d R}^{k}(M)\right] \frac{Z^{k}(M)}{B^{k}(M)}
$$

a typical element being the equivalence of a closed form $[\alpha]=[\alpha+d \beta]$.

Theorem 5.29

- If α, β are closed then so is $\alpha \wedge \beta$,
- If α is closed and β is exact then $\alpha \wedge \beta$ is exact.
and hence the cup/wedge product $[\alpha] \wedge[\beta]=[\alpha \wedge \beta]$ is well-defined.

THEOREM 5.30

If M is a connected manifold then $H_{d R}^{0}(M) \cong \mathbb{R}$.

Theorem 5.31

A smooth map $F: N \rightarrow M$ defines a ring homomorphism $F^{*}: H_{d R}^{\bullet}(M) \rightarrow H_{d R}^{\bullet}(N)$ by $F^{*}[\alpha]=\left[F^{*} \alpha\right]$.
Hence $F^{*}([\alpha] \wedge[\beta])=F^{*}[\alpha] \wedge F^{*}[\beta]$.

Theorem 5.32: Номоtopy Invariance

Let $F: M \times[0,1] \rightarrow N$ be smooth and let $F_{t}(a)=F(a, t)$. Then $F_{t}^{*}: H_{d R}^{k}(N) \rightarrow H_{d R}^{k}(M)$ gives that $F_{0}^{*}=F_{1}^{*}$ for all k.

Theorem 5.33: Poincaré Lemma

Let $n>0$ be an integer, then

$$
H_{d R}^{k}\left(\mathbb{R}^{n}\right) \cong \begin{cases}\mathbb{R} & \text { if } k=0 \\ 0 & \text { if } k>0\end{cases}
$$

Hence $H_{d R}^{k}(M \times R) \cong H_{d R}^{k}(M)$ for any manifold M.

Integration

Definition 6.1: Partitions of Unity

A partition of unity on a manifold M is a collection of smooth functions $\left\{\rho_{i}\right\}_{i \in I}$ such that

- $\rho_{i}(a) \geq 0$ for all $a \in M$ and $i \in I$,
- The set of supports $\left\{\operatorname{supp} \rho_{i}\right\}_{i \in I}$ is locally finite: each $a \in M$ has a neighbourhood U which intersects only finitely many of the $\left\{\operatorname{supp} \rho_{i}\right\}$, i.e. $\#\left\{i \in I: U \cap \operatorname{supp} \rho_{i} \neq \emptyset\right\}<\infty$.
- for all $a \in M$ we have $\sum_{i \in I} \rho_{i}(a)=1$.

We know that the sum in (3) converges since (2) gives that it is a finite sum.

Theorem 6.2: Existence of Partitions of Unity

Given an open covering $\mathcal{U}=\left\{V_{\alpha}\right\}_{\alpha \in \Lambda}$ of a manifold M, there exists a partition of unity $\left\{\rho_{i}\right\}_{i \in I}$ subordinate to \mathcal{U}, that is: each $\operatorname{supp} \rho_{i} \subset V_{\alpha}$ for some $\alpha(i)$.

Definition 6.5: Orientability

We say that a manifold M is orientable if any of the equivalent criteria hold

- $\bigwedge^{n} T^{*} M \rightarrow M$ is a trivial bundle,
- there exists a nowhere vanishing $\mu \in \Omega^{n}(M)$,
- M has an atlas $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ with $\left.\operatorname{det} D\left(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}\right)>\right)$ for all $\alpha, \beta \in \Lambda$.

Definition 6.9: Orientation

An orientation on an orientable manifold M is an equivalence class of nowhere vanishing n-forms, where $\mu_{1} \sim \mu_{2}$ if and only if $\mu_{1}=f \mu_{2}$ for some nowhere zero $f \in C^{\infty}(M)$.

Theorem 6.10

Let $U, V \subset \mathbb{R}^{n}$ and $F: U \rightarrow V$ be orientation-preserving diffeomorphism with $\mu \in \Omega_{c}^{n}(V)$ a compactlysupported n-form on V. Then

$$
\int_{U} F^{*} \mu=\int_{V=F(U)} \mu
$$

Theorem 6.11: Integration

Let M be an n-dimensional oriented manifold, then there exists a unique linear map (called the integral)

$$
\int_{M}: \Omega_{c}^{n}(M) \rightarrow \mathbb{R}
$$

so that if (U, φ) is an oriented chart and $\omega \in \Omega_{c}^{n}(U)$ then

$$
\int_{M} \omega=\int_{\varphi(U)}\left(\varphi^{-1}\right)^{*} \omega .
$$

Theorem 6.14: Stokes' Theorem (version 1)

Let M be an oriented n-dimensional manifold and let $\omega \in \Omega_{c}^{n-1}(M)$ then

$$
\int_{M} d \omega=0
$$

Theorem 6.15

Let M be a compact, orientable, n-dimensional manifold. Then $H_{d R}^{n}(M) \neq 0$.

Definition 6.16: Manifold with Boundary

A set M is an n-dimensional manifold with boundary if it has a collection $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ of subsets and maps $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{+}^{n}$ such that

- $\bigcup_{\alpha \in \Lambda} U_{\alpha}=M$
- $\varphi_{\alpha}: U_{\alpha} \rightarrow \varphi_{\alpha}\left(U_{\alpha}\right)$ is a bijection and $\varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is open for all $\alpha, \beta \in \Lambda$, and
- $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ is the restriction of a smooth map from a neighbourhood $\varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \subseteq \mathbb{R}_{+}^{n} \subset \mathbb{R}^{n}$ to \mathbb{R}^{n}.

The boundary ∂M of M is the $(n-1)$-dimensional sub manifold

$$
\partial M=\bigcup_{\alpha \in \Lambda} \varphi_{\alpha}\left(\partial \mathbb{R}_{+}^{n}\right)
$$

Theorem 6.18: Boundary Orientation

If M is an oriented manifold with boundary then there is an induced orientation on ∂M.

Theorem 6.19: Stokes' Theorem (Version 2)

Let M be an n-dimensional oriented manifold with boundary ∂M and let $\omega \in \Omega_{c}^{n-1}(M)$ have compact support. Then, with the induced orientation

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

[^0]: ${ }^{a}$ Equally a regular sub-manifold is one with atlas $\left\{\left(U_{\alpha} \cap S, \varphi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$.

[^1]: ${ }^{a}$ We haven't actually defined what a derivative is yet, but $f \in Z_{a}$ if and only if the derivative $f \circ \varphi^{-1}$ vanishes at $\varphi(a)$, by the chain rule. Here $f \circ \varphi^{-1}$ is a real-valued function, so we have a definition of (vanishing) derivatives.

