Essentials in Analysis and Probability

Sebastian Müksch, v1, 2019/20

Basic Notions and Notation

Example 1.1.

Simplest σ -algebra:

- $\{\emptyset, \Omega\}$, contained in every σ -algebra on Ω ,
- Family of all subsets of Ω, containing every σ-algebraon Ω.

Exercise 1.1.

Let \mathcal{F} be a σ -algebra. Then $A_n \in \mathcal{F}$ for every integer $n \ge 1 \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.

Proposition 1.2.

Let P be a probability measure on σ -algebra \mathcal{F} . Then the following statements hold:

(i)
$$A, B \in \mathcal{F}$$
 s.t. $A \subseteq B \Rightarrow P(A) \leqslant P(B);$

(ii) For *increasing* sequence $(A_n)_{n=1}^{\infty}$ we have

$$\lim_{n \to \infty} P(A_n) = P\left(\bigcup_{n=1}^{\infty} A_n\right);$$

(iii) For *decreasing* sequence $(A_n)_{n=1}^{\infty}$ we have

$$\lim_{n \to \infty} P(A_n) = P\left(\bigcap_{n=1}^{\infty} A_n\right).$$

Proposition 1.2 (General).

Let μ be a measure on σ -algebra \mathcal{F} . Then the following statements hold:

(i)
$$A, B \in \mathcal{F}$$
 s.t. $A \subseteq B \Rightarrow \mu(A) \leqslant \mu(B);$

(ii) For *increasing* sequence
$$(A_n)_{n=1}^{\infty}$$
 we have

$$\lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right);$$
(iii) For *decreasing* sequence $(A_n)_{n=1}^{\infty}$ we have

 $\lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcap_{n=1}^{\infty} A_n\right).$

Proposition (Bounding Intersections). Let $A, B \in \mathcal{F}$. Then $\mu(A \cap B) \leq \mu(A)$. *Hint:* σ -additivity and $A = (A \cap B) \cup (A \setminus B)$.

Proposition (Measure of Set Difference, I). Let $A, B \in \mathcal{F}$, then $\mu(A \setminus B) = \mu(A) - \mu(A \cap B)$.

 $\begin{array}{l} \textbf{Proposition} \quad (\text{Measure of Set Difference, II}).\\ \text{Let } A,B\in\mathcal{F} \text{ and } B\subseteq A, \text{ then}\\ \mu(A\setminus B)=\mu(A)-\mu(B). \end{array}$

Proposition (Complement of Limit Inferior/Superior).

Let $(A_n)_{n=1}^{\infty}$ be a sequence of sets in \mathcal{F} , then:

(i)

$$\left(\liminf_{n \to \infty} A_n \right)^C = \limsup_{n \to \infty} A_n^C$$
(ii)

$$\left(\limsup_{n \to \infty} A_n \right)^C = \liminf_{n \to \infty} A_n^C$$

Exercise Ws 2, 1 (Limit Inferior/Superior Properties).

$$\liminf_{n \to \infty} A_n \coloneqq \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$
is the set of those ω that are *in all* b

is the set of those ω that are *in all but finitely many* A_n , i.e. that uphold the property A_n captures for all except a finite amount of values of n.

$$\limsup_{n \to \infty} A_n \coloneqq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

is the set of those ω that are *in infinitely* many A_n , i.e. that uphold the property A_n captures for an infinite amount of values of n.

Proposition (Continuous Implies Borel-Measurability). Let $f : \mathbb{R} \to \overline{\mathbb{R}}$ be a *continuous* function. Then f is Borel-measurable.

Proposition (Countable Sets). Every countable subset of \mathbb{R} is Borel-measurable.

Expectation Integrals

Proposition (Unknown).

Let $A,B\subseteq \Omega.$ Then the following equalities hold:

- $\mathbf{1}_{A^C} = 1 \mathbf{1}_A$,
- $\mathbf{1}_{A\cap B} = \mathbf{1}_A \mathbf{1}_B$.
- $\mathbf{1}_{A\cup B} = \mathbf{1}_A + \mathbf{1}_B \mathbf{1}_{A\cap B}$.

Lemma 3.3.

(ii)

Let X be a **non-negative** random variable. Then there exists a sequence of **non-negative**, simple random variables X_n converging to X for every $\omega \in \Omega$.

Hint: $h_n(x) = \min\{\lfloor 2^n x \rfloor/2^n, n\}$ is non-negative, simple and increasing, approaching x. Consider $X_n \coloneqq h(X) \to X$.

Lemma (Simple Function Integral Properties). Let $f, g: \Omega \to \overline{\mathbb{R}}$ be a *non-negative*, simple functions and $a, b \ge 0$. Then the following holds:

• $\int_{\Omega} f \, d\mu \ge 0$,

•
$$\int_{\Omega} (af + bg) d\mu = a \int_{\Omega} f + b \int_{\Omega} g d\mu.$$

Corollary (Positive Integral over Set). Let $A \subseteq \Omega$ and $f: \Omega \to \overline{\mathbb{R}}$ a **non-negative** measurable function. Then $\int_A f \, d\mu \ge 0$.

Lemma 3.3 (General).

Let $f: \Omega \to \overline{\mathbb{R}}$ be a **non-negative**, measurable function. The there exists a sequence f_n of **non-negative**, simple functions such that:

$$\lim_{n\to\infty}f_n=f$$

Hint: Use h_n from Lemma 3.3's hint.

Exercise 3.5.

Let $A \in \mathcal{F}$ s.t. $\mu(A) = 0$. Then for **any** measurable function $f : \Omega \to \overline{\mathbb{R}}$:

$$\int_A f \, d\mu = 0.$$

Exercise 3.6.

(i)

Let $f: \Omega \to \mathbb{R}$ be a measurable function, then:

For any
$$c \in \mathbb{R}$$
 and $A \in \mathcal{F}$:

$$\int_{A} cf \, d\mu = c \int_{A} f \, d\mu,$$
 provided the integral exists.

(ii) For any
$$A, B \in \mathcal{F}$$
, such that $A \cap B = \emptyset$

$$\int_{A\cup B} f\,d\mu = \int_A f\,d\mu + \int_B f\,d\mu$$

provided the left-hand or right-hand side is well-defined.

Theorem 3.8 (Monotone Convergence). Let $(f_n)_{n=1}^{\infty}$ be increasing sequence of non-negative, measurable functions $f_n : \Omega \to \overline{\mathbb{R}}$, converging to some f. Then:

$$\int_{\Omega} \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$$

Theorem 3.14 (Lebesgue Integral as Riemann Integral).

Let $f:\mathbb{R}\to\mathbb{R}$ be a Borel-function such that:

- (i) the Riemann integral $\int_{-\infty}^{\infty} f(x) \, dx$ exists and
- (ii) the Riemann integral $\int_{-\infty}^{\infty} |f(x)| \, dx < \infty$, i.e. is finite,

then the Lebesgue integral $\int_{\mathbb{R}} f(x) \lambda(dx)$ exists and

$$\int_{\mathbb{R}} f(x)\lambda(dx) = \int_{-\infty}^{\infty} f(x) \, dx$$

i.e. the Lebesgue integral is equal to the Riemann integral.

Exercise 3.15.

Let ν be a measure that is absolutely continuous with respect to measure μ and density g, then $\mu(g < 0) = 0$. Moreover, ν is a probability measure $\Leftrightarrow g \ge 0$ μ -a.e. and $\int_{\Omega} g \, d\mu = 1$.

Proposition 3.16.

Let ν and μ be measures on σ -algebra \mathcal{F} such that ν is absolutely continuous with respect to μ and density g. Then for every \mathcal{F} -measurable function f the following holds:

$$\int_{\Omega} f \, d\nu = \int_{\Omega} f g \, d\mu,$$

whenever one of the integrals exists.

Remark 3.3.

Let $(\Omega, \mathcal{F}, \mu)$ be measure space, $f : \Omega \to \overline{\mathbb{R}}$ non-negative \mathcal{F} -measurable, then

$$\mu(f \ge \lambda) \leqslant \lambda^{-\alpha} \int_{\Omega} f^{\alpha} d\mu \quad \forall \lambda > 0, \alpha > 0.$$

Lemma 3.10 (Fatou's Lemma).

Let $(f_n)_{n=1}^{\infty}$ be a sequence of **non-negative**, measurable functions $f: \Omega \to \overline{\mathbb{R}}$, then

$$\int_{\Omega} \liminf_{n \to \infty} f_n \, d\mu \leqslant \liminf_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

Corollary 3.11 (Fatou's Lemma Extension). Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions $f: \Omega \to \overline{\mathbb{R}}$. Then

(i) if there exists a $g \in L_1(\Omega, \mathcal{F}, \mu)$, i.e. $\int_{\Omega} |g| \, d\mu < \infty$ such that $g \leq f_n$ for all n, then:

$$\int_{\Omega} \liminf_{n \to \infty} f_n \, d\mu \leqslant \liminf_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

(ii) if there exists a $g \in L_1(\Omega, \mathcal{F}, \mu)$, i.e. $\int_{\Omega} |g| \, d\mu < \infty$ such that $g \ge f_n$, then:

$$\int_{\Omega} \limsup_{n \to \infty} f_n \, d\mu \ge \limsup_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

Theorem 3.12 (Lebegue's Theorem on Dominated Convergence).

Let $(f_n)_{n=1}^{\infty}$ be a sequence of Borel functions $f_n: \Omega \to \overline{\mathbb{R}}$ converging to some $f: \Omega \to \overline{\mathbb{R}}$. Assume there exists a (non-negative) Borel functions g such that $|f_n| \leq g$ for any $n \geq 1$ and $\int_{\Omega} g \, d\mu < \infty$. Then the following two statements hold:

$$\begin{split} &\int_{\Omega} |f| \, d\mu < \infty, \\ &\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f \, d\mu. \end{split}$$

(i)

(ii)

Proposition (Restricted Expectation).

Let X be a random variable and $A \in \mathcal{F}$, then:

$$E(X\mathbf{1}_A) = \int_A X \, dP$$

Theorem 3.17 (Integration Over The Sample Space).

Let $f : \mathbb{R} \to \mathbb{R}$ be a Borel function and X a *finite* random variable, then:

$$Ef(X) = \int_{\mathbb{R}} fQ_X(dx)$$

Proposition 3.18 (Markov-Chebyshev's Inequality).

Let X be a *non-negative* R.V., then

$$P(X \ge \lambda) \le \lambda^{-\alpha} E(X^{\alpha}) \quad \forall \lambda > 0, \alpha > 0.$$

 $\begin{array}{l} \text{Hint:} \ E(X^{\alpha}) \geqslant E(\mathbf{1}_{X \geqslant \lambda} X^{\alpha}) \geqslant E(\mathbf{1}_{X \geqslant \lambda} \lambda^{\alpha}) = \\ \lambda^{\alpha} E(\mathbf{1}_{X \geqslant \lambda}) = \lambda^{\alpha} P(X \geqslant \lambda). \end{array}$

Proposition 3.18 (Markov-Chebyshev's Inequality (General)).

Let $f: \Omega \to \overline{\mathbb{R}}$ be a **non-negative**, measurable function, then

$$\mu(f \geqslant \lambda) \leqslant \lambda^{-\alpha} \int_{\Omega} f^{\alpha} \, d\mu \quad \forall \lambda > 0, \alpha > 0.$$

 L_p Spaces

Theorem (Hölder's Inequality).

Let $f, g: \Omega \to \overline{\mathbb{R}}$ be measurable functions, then

$$\int_{\Omega} \left\| fg \right\| d\mu \leqslant \left\| f \right\|_{p} \left\| g \right\|_{q} \quad \text{for } p \ge 1,$$

where

$$q \coloneqq \begin{cases} \frac{p}{p-1} & p > 1, \\ \infty & p = 1 \end{cases}.$$

Theorem (Hölder's Inequality for Expectations).

Let X, Y be random variables, then

$$E|XY| \leq (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

where

$$q \coloneqq \begin{cases} \frac{p}{p-1} & p > 1, \\ \infty & p = 1 \end{cases}$$

Proposition (Finite Second Momenta Implication).

Let X, Y be random variables with finite second momenta. Then $E|XY| < \infty$. *Hint:* Use Hölder's Inequality with p = 2 on

 $E|XY| = \int_{\Omega} |XY| dP.$

${\bf Lemma \ 4.4} \ ({\rm Borel-Cantelli \ Lemma}).$

Let $(A)_{n=1}^{\infty}$ be a sequence of sets $A_n \in \mathcal{F}$ such that $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, i.e. the series of measures of A_n converges. Then for:

$$A \coloneqq \limsup_{n \to \infty} A_n \coloneqq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k,$$

we have $\mu(A) = 0$.

Hint: Define $B_n := \bigcup_{k=n}^{\infty} A_k$, then $(B_n)_{n=1}^{\infty}$ is decreasing and so $\bigcap_{n=1}^{\infty} B_n = \lim_{n \to \infty} B_n$ and realize that $\sum_{n=1}^{\infty} \mu(A_n) < \infty \Rightarrow$ tail sums $\sum_{k=n}^{\infty} \mu(A_k) \to 0$ as $n \to \infty$.

Convergence of Measurable Functions

Exercise 5.1.

Let $(f_n)_{n=1}^{\infty}$ be a sequence of \mathcal{F} -measurable functions $f_n : \Omega \to \mathbb{R}$. Then the set A of those $\omega \in \Omega$ such that $\lim_{n\to\infty} f_n(\omega)$ converges to some (finite) number belongs to \mathcal{F} .

Exercise 5.2 (Almost Finite, Converging Sequence is Bounded).

Assume that $\mu(\Omega) < \infty$. Let $(f_n)_{n=1}^{\infty}$ be μ -a.e. finite, converging in measure to μ to some $f: \Omega \to \mathbb{R}$. Then the sequence of f_n is bounded in measure μ , uniformly in n, i.e.:

$$\lim_{K \to \infty} \sup_{n \ge 1} \mu(|f_n| \ge K) = 0.$$

Hint: $f_n \mu$ -a.e. finite and $\mu(\Omega) < \infty \Rightarrow f_n$ bounded in measure (not necessarily uniformly), so

$$\begin{split} &\lim_{K\to\infty}\sup_{n\geqslant 1}\mu(|f_n|\geqslant K)=\\ &\lim_{K\to\infty}\limsup_{n\to\infty}\mu(|f_n|\geqslant K). \end{split}$$

Then use observation of splitting measures of inequalities.

Exercise 5.3 (Product of Bounded & Zero Convergent is Zero Convergent).

Let $(f_n)_{n=1}^{\infty}$ and $(g_n)_{n=1}^{\infty}$ be sequences of μ -a.e. finite measurable functions such that the f_n are bounded in measure μ , uniformly in n and $g_n \to 0$ in measure μ , as $n \to \infty$. Then $f_n g_n \to 0$ in measure μ , as $n \to \infty$.

Exercise Ws 3, 1.

Let $\mu - \lim f_n = f$, then there exists a subsequence $(f_{n_k})_{k=1}^{\infty}$ such that $(n_k)_{k=1}^{\infty}$ is increasing and $f_{n_k} \to f$ (μ -a.e.). *Hint:* Borel-Cantelli with $A_k = \{|f_{n_k} - f| \ge 1/k\}$ s.t. $\mu(A_k) \le 1/k^2$.

Theorem 5.4 (Measure Convergence Has Almost Everywhere Converging Subsequence). Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions converging in measure μ to some μ -a.e. finite function f. Then there exists a (strictly) increasing sequence $(n_k)_{k=1}^{\infty}$ of positive integers such that $\lim_{k\to\infty} f_{n_k} = f \mu$ -almost everywhere.

Exercise 5.5.

Convergence in measure μ does not imple convergence μ -almost everywhere.

 $\begin{array}{l} \text{Hint:} \ (\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda) \ \text{with} \ f_n = \mathbf{1}_{[k/2^m,(k+1)/2^m]} \\ \text{where} \ k = 0,1,\ldots,2^m-1 \ \text{and} \ m = 0,1,\ldots \\ \text{such that} \ n = 2^m+k. \end{array}$

Exercise Ws 3, 2 (Convergence Implication). Let $\mu(\Omega) < \infty$. Then $\lim_{n\to\infty} f_n = f$ (μ -a.e.) $\Rightarrow \mu - \lim_{n\to\infty} f_n = f$.

Exercise Ws 3, 3 (Relaxed Domnitated Convergence).

Lebegue's Theorem on Dominated convergence holds under the following, relaxed conditions:

- (i) $\lim_{n\to\infty} f_n = f \ \mu$ -a.e., $|f_n| \leq g| \ \mu$ -a.e. and $g \in L_1(\Omega, \mathcal{F}, \mu)$, i.e. $\int_{\Omega} |g| \ d\mu < \infty$; and
- $\begin{array}{ll} \text{(ii)} & \mu-\lim_{n\to\infty}f_n=f, \, |f_n|\leqslant g| \; \mu\text{-a.e. and} \\ & g\in L_1(\Omega,\mathcal{F},\mu), \; \text{i.e. } \int_\Omega |g|\,d\mu<\infty. \end{array}$

Independence of Events and Random Variables

Theorem 6.3 (Monotone Class Theorem). Let Π be a π -system contained in a λ -system Λ . Then $\sigma(\Pi)$ is contained in Λ .

Proposition 6.4 (Extending π -System Independence). Let C_1 and C_2 be two *independent* π -systems,

i.e. $P(A \cap B) = P(A)P(B) \quad \forall A \in C_1, B \in C_2,$

then the σ -algebras $\sigma(C_1)$ and $\sigma(C_2)$ are also independent.

Theorem 6.7 (Fubini-Tonelli Theorem). Let $(\Omega_i, \mathcal{F}_i, \mu_i)$, for i = 1, 2, be measure spaces and $(\Omega, \mathcal{F}, \mu)$ be the product measure space of the two, i.e. $\Omega = \Omega_1 \times \Omega_2$, $\mathcal{F} = \mathcal{F}_i \otimes \mathcal{F}_2$ and $\mu = \mu_1 \otimes \mu_2$. Let $f : \Omega \to \mathbb{R}$ be a **non-negative** \mathcal{F} -measurable function. If μ_i , for i = 1, 2, are **finite measures** on Ω_i , for i = 1, 2, respectively, then the following iterated integrals are well-defined and:

$$\int_{\Omega_1 \times \Omega_2} f \, d\mu_1 \otimes \mu_2 = \int_{\Omega_1} \int_{\Omega_2} f \, d\mu_2 d\mu_1 =$$
$$= \int_{\Omega_2} \int_{\Omega_1} f \, d\mu_1 d\mu_2.$$

Furthermore, this statement holds for $\mathcal F\text{-measurable functions if:}$

$$\int_{\Omega_1 \times \Omega_2} |f| \, d\mu_1 \otimes \mu_2 < \infty.$$

Lemma 6.9 (Borel-Cantelli (Full)). Let $(A_n)_{n=1}^{\infty}$ be a sequence of sets and set

$$A \coloneqq \limsup_{n \to \infty} A_n \coloneqq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k,$$

then the following statements holds:

- (i) If $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then $\mu(A) = 0$.
- (ii) If all A_n are *jointly independent* and $\sum_{n=1}^{\infty} P(A_n) = \infty$, then P(A) = 1.

Hint: (i) provided in general case. (ii) Prove $P((\limsup_{n\to\infty} A_n)^C) = 1$, define $B_n = \bigcap_{k=n}^{\infty} A_k^C$ and show that for a given $P(B_n) = P(\limsup_{m\to\infty} \bigcap_{k=n}^m A_k) = 0$ using independence and observation that $1 - P(A) \leq e^{-P(A)}$. Finally, use *sub-* σ -additivity for $P(\bigcup_{n=1}^{\infty} B_n)$. *Do not* attempt to argue through increasing sequences.

Exercise (Pulling Sum Through Variance). Let $(X_i)_{i=1}^{\infty}$ be a sequence of *pairwise independent* random variables. Assume that $EX_i^2 < \infty$ for i = 1, 2, ..., n, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$$

Conditional Expectation

Exercise 8.1.

Let $\mathcal{G} := \{\emptyset, \Omega\}$, i.e. the trivial σ -algebra. Then if random variable Y is \mathcal{G} -measurable, then Y is constant.

Lemma 8.2.

Let Z be a $\mathcal G\text{-measurable}$ random variable such that:

$$\int_{A} Z \, dP \geqslant 0 \iff E(\mathbf{1}_{A}Z) \geqslant 0,$$
 for any $A \in \mathcal{G}$, then $Z \geqslant 0$ (a.s.).

Theorem 8.6 (Properties of Conditional Expectations).

Let X be a random variable and $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. Then the following properties hold (under the given conditions):

(i) "Adding/Dropping Conditional Expectation":

$$EX = E(E(X|\mathcal{G}));$$

(ii) "Tower Rule": Let $\mathcal{H} \subset \mathcal{F}$ be a σ -algebra, such that \mathcal{H} contains \mathcal{G} , then:

$$E(E(X|\mathcal{H})|\mathcal{G}) = E(X|\mathcal{G});$$

 (iii) "Pulling/Pushing Random Variables Through": Let Y be a random variable, such that Y is G-measurable and E|XY| < ∞, then:

$$E(XY|\mathcal{G}) = YE(X|\mathcal{G});$$

(iv) "Independence of Conditional": Let Xand \mathcal{G} be independent, i.e. $\sigma(X)$ and \mathcal{G} are independent, then:

$$E(X|\mathcal{G}) = EX$$

Definitions

Basic Notions and Notation

In the following, Ω is a set, \mathcal{F} a σ -algebra on Ω . If used, then μ is a measure. Otherwise, the measure is the probability measure P.

Definition 1.1.

Let \mathcal{F} be a family of subsets of set Ω . \mathcal{F} is called a σ -algebra if:

- Closed Under Complement: $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F},$
- Closed Under Arbitrary Union: $A_n \in \mathcal{F}$ for integer $n \ge 1$ $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$,
- Contains Entire Set: $\Omega \in \mathcal{F}$

Definition 1.2. Let C be a family of subsets of Ω . There exists a σ -algebra which contains Cand which is contained in every σ -algebra that contains C (take intersection of all σ -algebras. Such σ -algebra is unique and called smallest σ -algebra containing C or σ -algebra generated by C, denoted by $\sigma(C)$. Simplest example, let $A \subseteq \Omega$:

$$\sigma(A) = \{\emptyset, A, A^c, \Omega\}.$$

Definition (Finite Measure Space).

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. If $\mu(\Omega) < \infty$, then we call the measure space *finite*.

Random Variables

Definition 2.1.1.

Let $A \subseteq \Omega$ and $\mathbf{1}_A$ be defined as follows:

$$\mathbf{1}_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}.$$

Then $\mathbf{1}_A$ is a R.V. and called the *indicator* (function) of (events) A.

Definition 2.3 (Distribution Function). Let X be a random variable. Then the function

$$F_X(x) = P(X \le x) =$$

= $P(X \in (-\infty, x]) = Q_X((-\infty, x]),$

for $x \in \mathbb{R}$ is called the *distribution function* of X.

Expectation Integrals

Definition (Indicator Integral). Let $A \subseteq \Omega$, then:

$$\int_{\Omega} \mathbf{1}_A \, d\mu = \mu(A)$$

Definition (Simple Function). Let $f: \Omega \to \mathbb{R}$ be a *simple function*, then f takes finitely many values. Formally, if I is a finite index set, $(A_i)_{i \in I}$ a famility of *disjoint* subsets of Ω and $(c_i)_{i \in I}$ a family of real numbers, then:

$$f(\omega) = \sum_{i \in I} c_i \mathbf{1}_{A_i}(\omega).$$

Definition (Lebesgue Integral for Expectation).

Let X be a random variable. Then we write: \int

$$EX = \int_{\Omega} X \, dP.$$

Definition (Non-negative, Measurable Lebesgue Integral). Let $f: \Omega \to \overline{\mathbb{R}}$ be a **non-negative**, measurable function and $(f_n)_{n=1}^{\infty}$ a sequence of **non-negative**, simple functions such that

 $\lim_{n\to\infty} f_n = f$. Then

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} f_n \, d\mu.$$

Definition (Lebesgue Integral). Let $f: \Omega \to \mathbb{R}$ be a measurable function. The *Lebesgue Integral* of f is defined as:

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f^+ \, d\mu - \int_{\Omega} f^- \, d\mu$$

where $f^+ = \max\{f, 0\}$ and $f^- = \max\{-f, 0\}$, if at least one of the integrals on the right-hand side is finite. If both are infinite, then we say that the Lebesgue Integral of f does not exist.

Definition (Restricted Integration). Let $A \in \mathcal{F}$ and $f : \Omega \to \overline{\mathbb{R}}$ is a measurable function, then we define:

$$\int_A f \, d\mu = \int_\Omega \mathbf{1}_A f \, d\mu,$$

when the integral of $\mathbf{1}_A f$ w.r.t μ exists.

Definition 3.7 (Absolute Continuity). Let μ and ν be measures on σ -algebra \mathcal{F} such that for some \mathcal{F} -measureable $g : \Omega \to \mathbb{R}$:

$$\nu(A) = \int_{\Omega} \mathbf{1}_A g \, d\mu = \int_A g \mu(dx),$$

for all $A \in \mathcal{F}$. Then ν is called **absolutely** continuous with respect to μ and g is called the **density** or **Radon-Nikodym derivative** (Notation: $g = \frac{d\nu}{d\mu}$).

Convergence of Measurable Functions

Definition (μ -Almost Everywhere Finite). Let $f: \Omega \to \mathbb{R}$ be \mathcal{F} -measurable, then f is said to be μ -almost everywhere (μ -a.e.) finite if $\mu(|f| = \infty) = 0$.

Definition (Almost Surely Finite). Let $f: \Omega \to \mathbb{R}$ be \mathcal{F} -measurable, then f is said to be *almost surely* (a.s.) finite if $P(|f| = \infty) = 0 \Leftrightarrow P(|f| < \infty) = 1.$

Definition 5.1 (μ -Almost Everywhere Convergence).

Let $(f_n)_{n=1}^{\infty}$ be \mathcal{F} -measurable functions. The f_n are said to converge μ -almost everywhere to a μ -a.e. finite $f: \Omega \to \mathbb{R}$ as $n \to \infty$ if there exists an $A \in \mathcal{F}$ s.t. $\mu(A) = 0$ and

$$\lim_{n \to \infty} f_n(\omega) = f(\omega) \in \mathbb{R}, \quad \forall \omega \in A^C$$

Notation: $\lim_{n\to\infty} f_n = f \ (\mu\text{-a.e.}) \text{ or } f_n \to f \ (\mu\text{-a.e.}).$

Definition 5.1 (Almost Sure Convergence). Let $(f_n)_{n=1}^{\infty}$ be \mathcal{F} -measurable functions. The f_n are said to **converge almost surely** to a **a.s.** finite $f: \Omega \to \overline{\mathbb{R}}$ as $n \to \infty$ if there exists an $A \in \mathcal{F}$ s.t. P(A) = 0 and

$$\lim_{n \to \infty} f_n(\omega) = f(\omega) \in \mathbb{R}, \quad \forall \omega \in A^C$$

Notation: $\lim_{n\to\infty} f_n = f$ (a.s.) or $f_n \to f$ (a.s.).

Definition 5.2 (Convergence in Measure). Let $(f_n)_{n=1}^{\infty}$ be \mathcal{F} -measurable functions. The f_n are said to converge in measure μ to a μ -a.e. finite $f: \Omega \to \mathbb{R}$ as $n \to \infty$ if

$$\lim_{n \to \infty} \mu(|f_n - f| \ge \varepsilon) = 0, \quad \forall \varepsilon > 0$$

Notation: $\mu - \lim_{n \to \infty} f_n = f.$

Definition 5.2 (Convergence in Probability). Let $(f_n)_{n=1}^{\infty}$ be \mathcal{F} -measurable functions. The f_n are said to **converge in probability** to a **a.s.** finite $f: \Omega \to \overline{\mathbb{R}}$ as $n \to \infty$ if

$$\lim_{n \to \infty} P(|f_n - f| \ge \varepsilon) = 0, \quad \forall \varepsilon > 0$$

Definition (Bounded in Measure). Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions, then it is **bounded in measure** μ if

$$\lim_{K \to \infty} \mu(|f_n| \ge K) = 0,$$

for any $n \ge 1$.

Definition (Bounded Uniformly in Measure). Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions, then it is **bounded in measure** μ , **uniformly in** n if

$$\lim_{K\to\infty}\sup_{n\geqslant 1}\mu(|f_n|\geqslant K)=0.$$

Definition (Finite Second Moment). Let X be a random variable. Then X has *finite* second moment if $EX^2 < \infty$.

Independence of Events and Random Variables

Definition 6.5 (λ -system).

Let Λ be a family o subsets of Ω . Then Λ is a λ -system, if it satisfies all of the following properties:

- (i) (Contains whole set) $\Omega \in \Lambda$;
- (ii) (Closed under Subset Set Subtraction) if A, B ∈ Λ, such that B ⊂ A, then A \ B ∈ Λ;
- (iii) (Closed under Disjoint Union) if $(A_n)_{n=1}^{\infty}$ is a *pairwise disjoint* sequence, i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$, of subsets, such that $A_i \in \Lambda$ for i = 1, 2, ..., then $\bigcup_{n=1}^{\infty} \in \Lambda$.

Definition (π -system). Let Π be a family of subsets of Ω . Then Π is a π -system, if it is closed under finite intersections, i.e. $A, B \in \Pi \Rightarrow A \cap B \in \Pi$.

Definition Ws 5, 1 (σ -Finite Measure). Let μ be a measure, then μ is called σ -finite if there exists an increasing sequence $(\Omega_n)_{n=1}^{\infty}$ in \mathcal{F} , such that $\mu(\Omega_n) < \infty$ for all $n \ge 1$ and $\bigcap_{n=1}^{\infty} \Omega_n = \Omega$.

Conditional Expectation

Definition 8.1 (Sub- σ -Algebra Measurable). Let Y be a random variable and $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. Then Y is \mathcal{G} -measurable if $Y^{-1}(F) \in \mathcal{G}$ for any $F \in \mathcal{B}(\mathbb{R})$.

Definition 8.2 (Conditional Expectation). Let X, Y be random variables such that $E|X| < \infty$ and $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. Let Ysatisfy the following properties:

- (i) Y is \mathcal{G} -measurable and
- (ii) for any $A \in \mathcal{G}$:

$$\int_{A} Y \, dP = \int_{A} X \, dP \iff E(\mathbf{1}_{A}Y) = E(\mathbf{1}_{A}X),$$
OI

then Y is called the *conditional expectation* with respect of \mathcal{G} of X and we write $Y = E(X|\mathcal{G}).$

Useful Observations

Observation (Bounding Measures). The following inequalities to bound measures are *always* applicable, for *any* sets $A, B, C \in \mathcal{F}$:

1. "Dropping a set in an intersection gives an upper bound" \Leftrightarrow "Relaxing constraints":

$$\mu(A \cap B) \leqslant \mu(A).$$

2. "Dropping a set in a union gives an lower bound":

$$\mu(A \cup B) \ge \mu(A).$$

3. "Adding a set in a union gives an upper bound" \Leftrightarrow "Adding constraints":

$$\mu(A \cup B) \leqslant \mu(A \cup B \cup C).$$

4. "Intersections are less than a set and a set is less than a union":

$$\mu(A \cap B) \leqslant \mu(A) \leqslant \mu(A \cup B).$$

Observation (Adding Ω by Intersection). If you would like to introduce a property to an existing set A to make it easier to work with, for instance easier to bound, you can add an intersection with Ω :

$$\mu(A) = \mu(\Omega \cap A)$$

Then Ω can be split into the set B that represents the property and B^C that does not have the property, where $\Omega = B \cup B^C$. Then:

$$\mu(A) = \mu(\Omega \cap A) = \mu((B \cup B^C) \cap A) =$$

 $\mu((B \cup B^C) \cap A) = \mu((B \cap A) \cup (B^C \cap A)).$ Using σ -additivity, we get:

$$\mu(A) = \mu(B \cap A) + \mu(B^C \cap A)$$

Then by the observation on bounding measures, this can be made into an inequality:

$$\mu(A) = \mu(B \cap A) + \mu(B^{\mathbb{C}} \cap A)$$
$$\leq \mu(B \cap A) + \mu(B^{\mathbb{C}}).$$

Observation (Increasing Sequence of Sets). For an *increasing* sequence of sets $(A_n)_{n=1}^{\infty}$ we can define:

$$\lim_{n \to \infty} A_n \coloneqq \bigcup_{n=1}^{\infty} A_n$$

Observation (Decreasing Sequence of Sets). For an *decreasing* sequence of sets $(A_n)_{n=1}^{\infty}$ we can define:

$$\lim_{n \to \infty} A_n \coloneqq \bigcap_{n=1}^{\infty} A_n$$

Observation (μ -Almost Everywhere Finite, I). If $f: \Omega \to \mathbb{R}$ is μ -a. e. finite, then note that if $A_n := \{|f| \ge n\}$, then $(A_n)_{n=1}^{\infty}$ is a decreasing sequence and so:

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \mu\left(\lim_{n \to \infty} A_n\right) = \mu(|f| = \infty)$$
$$= 0.$$

Observation (μ -Almost Everywhere Finite, II).

$$f: \Omega \to \mathbb{R}$$
 is μ -a. e. finite, then observe
 $\mu(|f| = \infty) = \lim_{R \to \infty} \mu(|f| \ge R) = 0.$

If

Observation (Almost Surely Finite, II). If $f: \Omega \to \mathbb{R}$ is a.s. finite, then observe

$$\begin{split} P(|f|=\infty) &= \lim_{R \to \infty} P(|f| \geqslant R) = 0. \\ \Longleftrightarrow \ P(|f| < \infty) &= \lim_{R \to \infty} P(|f| < R) = 1. \end{split}$$

Observation (Almost Surely Finite). If $f: \Omega \to \mathbb{R}$ is a. s. finite, then note that if $A_n := \{|f| \ge n\}$, then $(A_n)_{n=1}^{\infty}$ is a decreasing sequence and so:

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = P\left(\lim_{n \to \infty} A_n\right) = P(|f| = \infty)$$
$$= 0.$$

Observation (μ -Almost Everywhere Convergence I). If $f_n \to f \mu$ -a.e., then $\mu(f_n \not\to f) = 0$.

Observation (*µ*-Almost Everywhere Convergence II).

If $A \in \mathcal{F}$ is a set such that $\mu(A) = 0$ and

 $\lim_{n \to \infty} |f_n(\omega) - f(\omega)| = 0 \quad \forall \omega \in A^C,$

then $f_n \to f \mu$ -almost everywhere.

Observation (Almost Sure Convergence). If $f_n \to f$ a.s., then $P(f_n \neq f) = 0$ or equivalently $P(f_n \to f) = 1$.

Observation (Splitting Measures of Inequalities).

Let f, g be measurable functions and $a \in \mathbb{R}$, then observe that:

$$\mu(|f| \ge a) \le \mu\left(|f-g| \ge \frac{a}{2}\right) + \mu\left(|g| \ge \frac{a}{2}\right)$$

Observation (Using Borel-Cantelli). If you can define sets $(A_k)_{k=1}^{\infty}$ such that $\mu(A_k) \leq 1/k^2$, then you can use Borel-Cantelli as:

$$\sum_{k=1}^{\infty} \mu(A_k) \leqslant \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.$$

In fact, the choice of $1/k^2$ is more or less arbitrary. This technique would work with any r_k s.t. $\sum_{k=1}^{\infty} r_k < \infty$ and $\mu(A_k) \leq r_k$. Caution: $r_k = 1/k$ does **not** work.

Observation (Function As Integral). Let $f: \Omega \to \overline{\mathbb{R}}$ be a *non-negative* measurable function, the obvserve that

$$f(\omega) = \int_{0}^{f(\omega)} dx = \int_{0}^{\infty} \mathbf{1}_{x \leq f(\omega)} \, dx$$

Observation (Bounding Complement Probabilities).

Note that $1-x \leq e^{-x}$. Therefore, we can bound probabilities of a product of complement events, for instance:

$$\prod_{n=1}^{\infty} P(A_n^C) = \prod_{n=1}^{\infty} [1 - P(A_n)] \leqslant$$
$$\prod_{n=1}^{\infty} e^{-P(A_n)} = e^{\sum_{n=1}^{\infty} -P(A_n)}$$

Observation (Interchanging Expectation & Infinite Sum).

Observe that if f is **non-negative**, then:

$$E\left(\sum_{n=1}^{\infty} f(X_n)\right) = E\left(\lim_{N \to \infty} \sum_{n=1}^{N} f(X_n)\right) =$$
$$= \lim_{N \to \infty} \sum_{n=1}^{N} Ef(X_n) = \sum_{n=1}^{\infty} Ef(X_n),$$

where pulling the expectation through the sum can be done due to the Monotone Convergence Theorem, as $\sum_{n=1}^{N} f(X_n)$ is an increasing sequence of **non-negative** random variables.

Observation (Markov-Chebyshev's Inequality & Norm).

The following is the general Markov-Chebyshev Inequality rewritten using the norm instead of an integral. Let $f: \Omega \to \mathbb{R}$ be a **non-negative**, measurable function in $L_{\alpha}(\Omega, \mathcal{F}, \mu)$, then

$$\mu(f \ge \lambda) \le \lambda^{-\alpha} \|f\|_{\alpha}^{\alpha} d\mu \quad \forall \lambda > 0, \alpha > 0.$$

Observation (Distribution Function as Expectation).

Let X be a random variable and F_X its distribution function. Then:

$$F_X(a) = P(X \leqslant a) = \int_{\Omega} \mathbf{1}_{X \leqslant a} \, dP = E \mathbf{1}_{X \leqslant a}.$$

Observation (Distribution Function as Expectation, II).

Let X be a random variable and F_X its distribution function. Then:

$$F_X(x+a) - F_X(x) = E\mathbf{1}_{x < X \le x+a}.$$

Observation (Tightening/Relaxing Expectations).

Let X be a random variable and $\lambda \in \mathbb{R}$. Then the following holds:

$$EX \ge E(\mathbf{1}_{X \ge \lambda} X) \ge E(\mathbf{1}_{X \ge \lambda} \lambda).$$

Left-to-right can be thought of as "tightening" the constraints and thus (potentially) decreasing the area that is integrated over, right-to-left as "loosening" and thus (potentially) increasing the area that is integrated over.

Observation (Identical Distribution Giving Equal Probability).

Let $(X_n)_{n=1}^{\infty}$ be a sequence of *independent*, *identically distributed* random variables. Let A_n be an event depending on X_n , for instance $A_n \coloneqq \{X_n \ge K\}$ for some $K \in \mathbb{R}$, then all $P(A_n)$ are equal due to X_n being identically distributed, i.e.

$$P(A_n) = p \quad \text{for } n \ge 1, p \in [0, 1].$$

Observation (Identical Distribution & Infinite Sum).

Let $(X_n)_{n=1}^{\infty}$ be a sequence of *independent*, *identically distributed* random variables. Let A_n be an event depending on X_n , for instance $A_n := \{X_n \ge K\}$ for some $K \in \mathbb{R}$, then

$$\sum_{n=1}^{\infty} P(A_n) < \infty \Rightarrow P(A_n) = 0 \text{ for } n \ge 1.$$