
Essentials in Analysis and
Probability
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Basic Notions and Notation

Example 1.1.
Simplest σ-algebra:

• {∅,Ω}, contained in every σ-algebra on
Ω,

• Family of all subsets of Ω, containing
every σ-algebraon Ω.

Exercise 1.1.
Let F be a σ-algebra. Then An ∈ F for every
integer n > 1 ⇒

⋂∞
n=1 An ∈ F .

Proposition 1.2.
Let P be a probability measure on σ-algebra F .
Then the following statements hold:

(i) A,B ∈ F s.t. A ⊆ B ⇒ P (A) 6 P (B);

(ii) For increasing sequence (An)∞n=1 we have

lim
n→∞

P (An) = P

( ∞⋃
n=1

An

)
;

(iii) For decreasing sequence (An)∞n=1 we have

lim
n→∞

P (An) = P

( ∞⋂
n=1

An

)
.

Proposition 1.2 (General).
Let µ be a measure on σ-algebra F . Then the
following statements hold:

(i) A,B ∈ F s.t. A ⊆ B ⇒ µ(A) 6 µ(B);

(ii) For increasing sequence (An)∞n=1 we have

lim
n→∞

µ(An) = µ

( ∞⋃
n=1

An

)
;

(iii) For decreasing sequence (An)∞n=1 we have

lim
n→∞

µ(An) = µ

( ∞⋂
n=1

An

)
.

Proposition (Bounding Intersections).
Let A,B ∈ F . Then µ(A ∩B) 6 µ(A).
Hint: σ-additivity and A = (A ∩B) ∪ (A \B).

Proposition (Measure of Set Difference, I).
Let A,B ∈ F , then µ(A \B) = µ(A)−µ(A∩B).

Proposition (Measure of Set Difference, II).
Let A,B ∈ F and B ⊆ A, then
µ(A \B) = µ(A)− µ(B).

Proposition (Complement of Limit
Inferior/Superior).
Let (An)∞n=1 be a sequence of sets in F , then:

(i) (
lim inf
n→∞

An
)C

= lim sup
n→∞

ACn

(ii) (
lim sup
n→∞

An

)C
= lim inf

n→∞
ACn

Exercise Ws 2, 1 (Limit Inferior/Superior
Properties).
Let (An)∞n=1 be a sequence of sets in F , then:

(i)

lim inf
n→∞

An :=

∞⋃
n=1

∞⋂
k=n

Ak

is the set of those ω that are in all but
finitely many An, i.e. that uphold the
property An captures for all except a
finite amount of values of n.

(ii)

lim sup
n→∞

An :=

∞⋂
n=1

∞⋃
k=n

Ak

is the set of those ω that are in infinitely
many An, i.e. that uphold the property
An captures for an infinite amount of
values of n.

Proposition (Continuous Implies
Borel-Measurability).

Let f : R→ R be a continuous function. Then
f is Borel-measurable.

Proposition (Countable Sets).

Every countable subset of R is
Borel-measurable.

Expectation Integrals

Proposition (Unknown).

Let A,B ⊆ Ω. Then the following equalities
hold:

• 1AC = 1− 1A,

• 1A∩B = 1A1B .

• 1A∪B = 1A + 1B − 1A∩B .

Lemma 3.3.

Let X be a non-negative random variable.
Then there exists a sequence of non-negative,
simple random variables Xn converging to X
for every ω ∈ Ω.

Hint: hn(x) = min{b2nxc/2n, n} is
non-negative, simple and increasing,
approaching x. Consider Xn := h(X)→ X.

Lemma (Simple Function Integral Properties).

Let f, g : Ω→ R be a non-negative, simple
functions and a, b > 0. Then the following
holds:

•
∫
Ω f dµ > 0,

•
∫
Ω(af + bg) dµ = a

∫
Ω f + b

∫
Ω g dµ.

Corollary (Positive Integral over Set).

Let A ⊆ Ω and f : Ω→ R a non-negative
measurable function. Then

∫
A f dµ > 0.

Lemma 3.3 (General).

Let f : Ω→ R be a non-negative, measurable
function. The there exists a sequence fn of
non-negative, simple functions such that:

lim
n→∞

fn = f

Hint: Use hn from Lemma 3.3’s hint.

Exercise 3.5.

Let A ∈ F s.t. µ(A) = 0. Then for any
measurable function f : Ω→ R:∫

A
f dµ = 0.

Exercise 3.6.

Let f : Ω→ R be a measurable function, then:

(i) For any c ∈ R and A ∈ F :∫
A
cf dµ = c

∫
A
f dµ,

provided the integral exists.

(ii) For any A,B ∈ F , such that A ∩B = ∅:∫
A∪B

f dµ =

∫
A
f dµ+

∫
B
f dµ,

provided the left-hand or right-hand side
is well-defined.

Theorem 3.8 (Monotone Convergence).
Let (fn)∞n=1 be increasing sequence of

non-negative, measurable functions fn : Ω→ R,
converging to some f . Then:∫

Ω
lim
n→∞

fn dµ = lim
n→∞

∫
Ω
fn dµ

Theorem 3.14 (Lebesgue Integral as Riemann
Integral).
Let f : R→ R be a Borel-function such that:

(i) the Riemann integral
∫∞
−∞ f(x) dx exists

and

(ii) the Riemann integral
∫∞
−∞ |f(x)| dx <∞,

i.e. is finite,

then the Lebesgue integral
∫
R f(x)λ(dx) exists

and ∫
R
f(x)λ(dx) =

∫ ∞
−∞

f(x) dx,

i.e. the Lebesgue integral is equal to the
Riemann integral.

Exercise 3.15.
Let ν be a measure that is absolutely continuous
with respect to measure µ and density g, then
µ(g < 0) = 0. Moreover, ν is a probability
measure ⇔ g > 0 µ-a.e. and

∫
Ω g dµ = 1.

Proposition 3.16.
Let ν and µ be measures on σ-algebra F such
that ν is absolutely continuous with respect to
µ and density g. Then for every F-measurable
function f the following holds:∫

Ω
f dν =

∫
Ω
fg dµ,

whenever one of the integrals exists.

Remark 3.3.
Let (Ω,F , µ) be measure space, f : Ω→ R
non-negative F-measurable, then

µ(f > λ) 6 λ−α
∫

Ω
fα dµ ∀λ > 0, α > 0.

Lemma 3.10 (Fatou’s Lemma).
Let (fn)∞n=1 be a sequence of non-negative,

measurable functions f : Ω→ R, then∫
Ω

lim inf
n→∞

fn dµ 6 lim inf
n→∞

∫
Ω
fn dµ.

Corollary 3.11 (Fatou’s Lemma Extension).
Let (fn)∞n=1 be a sequence of measurable

functions f : Ω→ R. Then

(i) if there exists a g ∈ L1(Ω,F , µ), i.e.∫
Ω |g| dµ <∞ such that g 6 fn for all n,

then:∫
Ω

lim inf
n→∞

fn dµ 6 lim inf
n→∞

∫
Ω
fn dµ.

(ii) if there exists a g ∈ L1(Ω,F , µ), i.e.∫
Ω |g| dµ <∞ such that g > fn, then:∫

Ω
lim sup
n→∞

fn dµ > lim sup
n→∞

∫
Ω
fn dµ.

Theorem 3.12 (Lebegue’s Theorem on
Dominated Convergence).
Let (fn)∞n=1 be a sequence of Borel functions

fn : Ω→ R converging to some f : Ω→ R.
Assume there exists a (non-negative) Borel
functions g such that |fn| 6 g for any n > 1 and∫
Ω g dµ <∞. Then the following two

statements hold:

(i) ∫
Ω
|f | dµ <∞,

(ii) ∫
Ω
f dµ = lim

n→∞

∫
Ω
f dµ.



Proposition (Restricted Expectation).

Let X be a random variable and A ∈ F , then:

E(X1A) =

∫
A
X dP.

Theorem 3.17 (Integration Over The Sample
Space).

Let f : R→ R be a Borel function and X a
finite random variable, then:

Ef(X) =

∫
R
fQX(dx).

Proposition 3.18 (Markov-Chebyshev’s
Inequality).

Let X be a non-negative R.V., then

P (X > λ) 6 λ−αE(Xα) ∀λ > 0, α > 0.

Hint: E(Xα) > E(1X>λX
α) > E(1X>λλ

α) =
λαE(1X>λ) = λαP (X > λ).

Proposition 3.18 (Markov-Chebyshev’s
Inequality (General)).

Let f : Ω→ R be a non-negative, measurable
function, then

µ(f > λ) 6 λ−α
∫

Ω
fα dµ ∀λ > 0, α > 0.

Lp Spaces

Theorem (Hölder’s Inequality).

Let f, g : Ω→ R be measurable functions, then∫
Ω
|fg| dµ 6 ‖f‖p ‖g‖q for p > 1,

where

q :=

{
p
p−1

p > 1,

∞ p = 1
.

Theorem (Hölder’s Inequality for
Expectations).

Let X,Y be random variables, then

E|XY | 6 (E|X|p)
1
p (E|Y |q)

1
q

where

q :=

{
p
p−1

p > 1,

∞ p = 1
.

Proposition (Finite Second Momenta
Implication).

Let X,Y be random variables with finite second
momenta. Then E|XY | <∞.

Hint: Use Hölder’s Inequality with p = 2 on
E|XY | =

∫
Ω |XY | dP .

Lemma 4.4 (Borel-Cantelli Lemma).

Let (A)∞n=1 be a sequence of sets An ∈ F such
that

∑∞
n=1 µ(An) <∞, i.e. the series of

measures of An converges. Then for:

A := lim sup
n→∞

An :=
∞⋂
n=1

∞⋃
k=n

Ak,

we have µ(A) = 0.

Hint: Define Bn :=
⋃∞
k=n Ak, then (Bn)∞n=1 is

decreasing and so
⋂∞
n=1 Bn = limn→∞Bn and

realize that
∑∞
n=1 µ(An) <∞ ⇒ tail sums∑∞

k=n µ(Ak)→ 0 as n→∞.

Convergence of Measurable
Functions

Exercise 5.1.

Let (fn)∞n=1 be a sequence of F-measurable
functions fn : Ω→ R. Then the set A of those
ω ∈ Ω such that limn→∞ fn(ω) converges to
some (finite) number belongs to F .

Exercise 5.2 (Almost Finite, Converging
Sequence is Bounded).

Assume that µ(Ω) <∞. Let (fn)∞n=1 be µ-a.e.
finite, converging in measure to µ to some
f : Ω→ R. Then the sequence of fn is bounded
in measure µ, uniformly in n, i.e.:

lim
K→∞

sup
n>1

µ(|fn| > K) = 0.

Hint: fn µ-a.e. finite and µ(Ω) <∞ ⇒ fn
bounded in measure (not necessarily
uniformly), so

lim
K→∞

sup
n>1

µ(|fn| > K) =

lim
K→∞

lim sup
n→∞

µ(|fn| > K).

Then use observation of splitting measures of
inequalities.

Exercise 5.3 (Product of Bounded & Zero
Convergent is Zero Convergent).

Let (fn)∞n=1 and (gn)∞n=1 be sequences of µ-a.e.
finite measurable functions such that the fn are
bounded in measure µ, uniformly in n and
gn → 0 in measure µ, as n→∞. Then
fngn → 0 in measure µ, as n→∞.

Exercise Ws 3, 1.

Let µ− lim fn = f , then there exists a
subsequence (fnk )∞k=1 such that (nk)∞k=1 is
increasing and fnk → f (µ-a.e.).

Hint: Borel-Cantelli with
Ak = {|fnk − f | > 1/k} s.t. µ(Ak) 6 1/k2.

Theorem 5.4 (Measure Convergence Has
Almost Everywhere Converging Subsequence).

Let (fn)∞n=1 be a sequence of functions
converging in measure µ to some µ-a.e. finite
function f . Then there exists a (strictly)
increasing sequence (nk)∞k=1 of positive integers
such that limk→∞ fnk = f µ-almost
everywhere.

Exercise 5.5.

Convergence in measure µ does not imple
convergence µ-almost everywhere.

Hint: (R,B(R), λ) with fn = 1[k/2m,(k+1)/2m]

where k = 0, 1, . . . , 2m − 1 and m = 0, 1, . . .
such that n = 2m + k.

Exercise Ws 3, 2 (Convergence Implication).

Let µ(Ω) <∞. Then limn→∞ fn = f (µ-a.e.)
⇒ µ− limn→∞ fn = f .

Exercise Ws 3, 3 (Relaxed Domnitated
Convergence).

Lebegue’s Theorem on Dominated convergence
holds under the following, relaxed conditions:

(i) limn→∞ fn = f µ-a.e., |fn| 6 g| µ-a.e.
and g ∈ L1(Ω,F , µ), i.e.

∫
Ω |g| dµ <∞;

and

(ii) µ− limn→∞ fn = f , |fn| 6 g| µ-a.e. and
g ∈ L1(Ω,F , µ), i.e.

∫
Ω |g| dµ <∞.

Independence of Events and
Random Variables

Theorem 6.3 (Monotone Class Theorem).
Let Π be a π-system contained in a λ-system Λ.
Then σ(Π) is contained in Λ.

Proposition 6.4 (Extending π-System
Independence).
Let C1 and C2 be two independent π-systems,
i.e.

P (A ∩B) = P (A)P (B) ∀A ∈ C1, B ∈ C2,

then the σ-algebras σ(C1) and σ(C2) are also
independent.

Theorem 6.7 (Fubini-Tonelli Theorem).
Let (Ωi,Fi, µi), for i = 1, 2, be measure spaces
and (Ω,F , µ) be the product measure space of
the two, i.e. Ω = Ω1 × Ω2, F = Fi ⊗F2 and
µ = µ1 ⊗ µ2. Let f : Ω→ R be a non-negative
F-measurable function. If µi, for i = 1, 2, are
finite measures on Ωi, for i = 1, 2,
respectively, then the following iterated
integrals are well-defined and:∫

Ω1×Ω2

f dµ1 ⊗ µ2 =

∫
Ω1

∫
Ω2

f dµ2dµ1 =

=

∫
Ω2

∫
Ω1

f dµ1dµ2.

Furthermore, this statement holds for
F-measurable functions if:∫

Ω1×Ω2

|f | dµ1 ⊗ µ2 <∞.

Lemma 6.9 (Borel-Cantelli (Full)).
Let (An)∞n=1 be a sequence of sets and set

A := lim sup
n→∞

An :=
∞⋂
n=1

∞⋃
k=n

Ak,

then the following statements holds:

(i) If
∑∞
n=1 µ(An) <∞, then µ(A) = 0.

(ii) If all An are jointly independent and∑∞
n=1 P (An) =∞, then P (A) = 1.

Hint: (i) provided in general case. (ii) Prove
P ((lim supn→∞ An)C) = 1, define
Bn =

⋂∞
k=n A

C
k and show that for a given

P (Bn) = P (limm→∞
⋂m
k=n Ak) = 0 using

independence and observation that
1− P (A) 6 e−P (A). Finally, use
sub-σ-additivity for P (

⋃∞
n=1 Bn). Do not

attempt to argue through increasing sequences.

Exercise (Pulling Sum Through Variance).
Let (Xi)

∞
i=1 be a sequence of pairwise

independent random variables. Assume that
EX2

i <∞ for i = 1, 2, . . . , n, then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var (Xi) .

Conditional Expectation

Exercise 8.1.
Let G := {∅,Ω}, i.e. the trivial σ-algebra. Then
if random variable Y is G-measurable, then Y is
constant.

Lemma 8.2.
Let Z be a G-measurable random variable such
that: ∫

A
Z dP > 0 ⇐⇒ E(1AZ) > 0,

for any A ∈ G, then Z > 0 (a.s.).

Theorem 8.6 (Properties of Conditional
Expectations).



Let X be a random variable and G ⊂ F be a
σ-algebra. Then the following properties hold
(under the given conditions):

(i) “Adding/Dropping Conditional
Expectation”:

EX = E(E(X|G));

(ii) “Tower Rule”: Let H ⊂ F be a σ-algebra,
such that H contains G, then:

E(E(X|H)|G) = E(X|G);

(iii) “Pulling/Pushing Random Variables
Through”: Let Y be a random variable,
such that Y is G-measurable and
E|XY | <∞, then:

E(XY |G) = Y E(X|G);

(iv) “Independence of Conditional”: Let X
and G be independent, i.e. σ(X) and G
are independent, then:

E(X|G) = EX.

Definitions

Basic Notions and Notation

In the following, Ω is a set, F a σ-algebra on
Ω. If used, then µ is a measure. Otherwise, the
measure is the probability measure P .

Definition 1.1.

Let F be a family of subsets of set Ω. F is
called a σ-algebra if:

• Closed Under Complement :
A ∈ F ⇒ Ac ∈ F ,

• Closed Under Arbitrary Union :
An ∈ F for integer n > 1
⇒
⋃∞
n=1 An ∈ F ,

• Contains Entire Set : Ω ∈ F

Definition 1.2. Let C be a family of subsets of
Ω. There exists a σ-algebra which contains C
and which is contained in every σ-algebra that
contains C (take intersection of all σ-algebras.
Such σ-algebra is unique and called smallest
σ-algebra containing C or σ-algebra
generated by C, denoted by σ(C). Simplest
example, let A ⊆ Ω:

σ(A) = {∅, A,Ac,Ω}.

Definition (Finite Measure Space).

Let (Ω,F , µ) be a measure space. If µ(Ω) <∞,
then we call the measure space finite.

Random Variables

Definition 2.1.1.

Let A ⊆ Ω and 1A be defined as follows:

1A(ω) =

{
1, ω ∈ A
0, ω 6∈ A

.

Then 1A is a R.V. and called the indicator
(function) of (events) A.

Definition 2.3 (Distribution Function).

Let X be a random variable. Then the function

FX(x) = P (X 6 x) =

= P (X ∈ (−∞, x]) = QX((−∞, x]),

for x ∈ R is called the distribution function of
X.

Expectation Integrals

Definition (Indicator Integral).
Let A ⊆ Ω, then:∫

Ω
1A dµ = µ(A).

Definition (Simple Function).
Let f : Ω→ R be a simple function, then f
takes finitely many values. Formally, if I is a
finite index set, (Ai)i∈I a famility of disjoint
subsets of Ω and (ci)i∈I a family of real
numbers, then:

f(ω) =
∑
i∈I

ci1Ai
(ω).

Definition (Lebesgue Integral for
Expectation).
Let X be a random variable. Then we write:

EX =

∫
Ω
X dP.

Definition (Non-negative, Measurable
Lebesgue Integral).
Let f : Ω→ R be a non-negative, measurable
function and (fn)∞n=1 a sequence of
non-negative, simple functions sucht that
limn→∞ fn = f . Then∫

Ω
f dµ = lim

n→∞
fn dµ.

Definition (Lebesgue Integral).
Let f : Ω→ R be a measurable function. The
Lebesgue Integral of f is defined as:∫

Ω
f dµ =

∫
Ω
f+ dµ−

∫
Ω
f− dµ,

where f+ = max{f, 0} and f− = max{−f, 0}, if
at least one of the integrals on the right-hand
side is finite. If both are infinite, then we say
that the Lebesgue Integral of f does not exist.

Definition (Restricted Integration).
Let A ∈ F and f : Ω→ R is a measurable
function, then we define:∫

A
f dµ =

∫
Ω

1Af dµ,

when the integral of 1Af w.r.t µ exists.

Definition 3.7 (Absolute Continuity).
Let µ and ν be measures on σ-algebra F such
that for some F-measureable g : Ω→ R:

ν(A) =

∫
Ω

1Ag dµ =

∫
A
gµ(dx),

for all A ∈ F . Then ν is called absolutely
continuous with respect to µ and g is called
the density or Radon-Nikodym derivative
(Notation: g = dν

dµ
).

Convergence of Measurable
Functions

Definition (µ-Almost Everywhere Finite).
Let f : Ω→ R be F-measurable, then f is said
to be µ-almost everywhere (µ-a.e.) finite if
µ(|f | =∞) = 0.

Definition (Almost Surely Finite).
Let f : Ω→ R be F-measurable, then f is said
to be almost surely (a.s.) finite if
P (|f | =∞) = 0 ⇔ P (|f | <∞) = 1.

Definition 5.1 (µ-Almost Everywhere
Convergence).
Let (fn)∞n=1 be F-measurable functions. The
fn are said to converge µ-almost everywhere
to a µ-a.e. finite f : Ω→ R as n→∞ if there
exists an A ∈ F s.t. µ(A) = 0 and

lim
n→∞

fn(ω) = f(ω) ∈ R, ∀ω ∈ AC .

Notation: limn→∞ fn = f (µ-a.e.) or fn → f
(µ-a.e.).

Definition 5.1 (Almost Sure Convergence).

Let (fn)∞n=1 be F-measurable functions. The
fn are said to converge almost surely to a a.s.
finite f : Ω→ R as n→∞ if there exists an
A ∈ F s.t. P (A) = 0 and

lim
n→∞

fn(ω) = f(ω) ∈ R, ∀ω ∈ AC .

Notation: limn→∞ fn = f (a.s.) or fn → f
(a.s.).

Definition 5.2 (Convergence in Measure).

Let (fn)∞n=1 be F-measurable functions. The
fn are said to converge in measure µ to a
µ-a.e. finite f : Ω→ R as n→∞ if

lim
n→∞

µ(|fn − f | > ε) = 0, ∀ε > 0.

Notation: µ− limn→∞ fn = f .

Definition 5.2 (Convergence in Probability).

Let (fn)∞n=1 be F-measurable functions. The
fn are said to converge in probability to a a.s.
finite f : Ω→ R as n→∞ if

lim
n→∞

P (|fn − f | > ε) = 0, ∀ε > 0.

Definition (Bounded in Measure).

Let (fn)∞n=1 be a sequence of measurable
functions, then it is bounded in measure µ if

lim
K→∞

µ(|fn| > K) = 0,

for any n > 1.

Definition (Bounded Uniformly in Measure).

Let (fn)∞n=1 be a sequence of measurable
functions, then it is bounded in measure µ,
uniformly in n if

lim
K→∞

sup
n>1

µ(|fn| > K) = 0.

Definition (Finite Second Moment).

Let X be a random variable. Then X has finite
second moment if EX2 <∞.

Independence of Events and
Random Variables

Definition 6.5 (λ-system).

Let Λ be a family o subsets of Ω. Then Λ is a
λ-system, if it satisfies all of the following
properties:

(i) (Contains whole set) Ω ∈ Λ;

(ii) (Closed under Subset Set Subtraction) if
A,B ∈ Λ, such that B ⊂ A, then
A \B ∈ Λ;

(iii) (Closed under Disjoint Union) if (An)∞n=1
is a pairwise disjoint sequence, i.e.
Ai ∩Aj = ∅ for i 6= j, of subsets, such that
Ai ∈ Λ for i = 1, 2, . . ., then

⋃∞
n=1 ∈ Λ.

Definition (π-system).

Let Π be a family of subsets of Ω. Then Π is a
π-system, if it is closed under finite
intersections, i.e. A,B ∈ Π ⇒ A ∩B ∈ Π.

Definition Ws 5, 1 (σ-Finite Measure).

Let µ be a measure, then µ is called σ-finite if
there exists an increasing sequence (Ωn)∞n=1 in
F , such that µ(Ωn) <∞ for all n > 1 and⋂∞
n=1 Ωn = Ω.



Conditional Expectation

Definition 8.1 (Sub-σ-Algebra Measurable).
Let Y be a random variable and G ⊂ F be a
σ-algebra. Then Y is G-measurable if
Y −1(F ) ∈ G for any F ∈ B(R).

Definition 8.2 (Conditional Expectation).
Let X,Y be random variables such that
E|X| <∞ and G ⊂ F be a σ-algebra. Let Y
satisfy the following properties:

(i) Y is G-measurable and

(ii) for any A ∈ G:∫
A
Y dP =

∫
A
X dP ⇐⇒ E(1AY ) = E(1AX),

then Y is called the conditional expectation
with respect of G of X and we write
Y = E(X|G).

Useful Observations

Observation (Bounding Measures).
The following inequalities to bound measures
are always applicable, for any sets
A,B,C ∈ F :

1. “Dropping a set in an intersection gives
an upper bound” ⇔ “Relaxing
constraints”:

µ(A ∩B) 6 µ(A).

2. “Dropping a set in a union gives an lower
bound”:

µ(A ∪B) > µ(A).

3. “Adding a set in a union gives an upper
bound” ⇔ “Adding constraints”:

µ(A ∪B) 6 µ(A ∪B ∪ C).

4. “Intersections are less than a set and a
set is less than a union”:

µ(A ∩B) 6 µ(A) 6 µ(A ∪B).

Observation (Adding Ω by Intersection).
If you would like to introduce a property to an
existing set A to make it easier to work with,
for instance easier to bound, you can add an
intersection with Ω:

µ(A) = µ(Ω ∩A).

Then Ω can be split into the set B that
represents the property and BC that does not
have the property, where Ω = B ∪BC . Then:

µ(A) = µ(Ω ∩A) = µ((B ∪BC) ∩A) =

µ((B ∪BC) ∩A) = µ((B ∩A) ∪ (BC ∩A)).

Using σ-additivity, we get:

µ(A) = µ(B ∩A) + µ(BC ∩A).

Then by the observation on bounding measures,
this can be made into an inequality:

µ(A) = µ(B ∩A) + µ(BC ∩A)

6 µ(B ∩A) + µ(BC).

Observation (Increasing Sequence of Sets).
For an increasing sequence of sets (An)∞n=1 we
can define:

lim
n→∞

An :=

∞⋃
n=1

An

Observation (Decreasing Sequence of Sets).
For an decreasing sequence of sets (An)∞n=1 we
can define:

lim
n→∞

An :=
∞⋂
n=1

An

Observation (µ-Almost Everywhere Finite, I).
If f : Ω→ R is µ-a. e. finite, then note that if
An := {|f | > n}, then (An)∞n=1 is a decreasing
sequence and so:

µ

( ∞⋂
n=1

An

)
= µ

(
lim
n→∞

An
)

= µ(|f | =∞)

= 0.

Observation (µ-Almost Everywhere Finite,
II).
If f : Ω→ R is µ-a. e. finite, then observe

µ(|f | =∞) = lim
R→∞

µ(|f | > R) = 0.

Observation (Almost Surely Finite, II).
If f : Ω→ R is a.s. finite, then observe

P (|f | =∞) = lim
R→∞

P (|f | > R) = 0.

⇐⇒ P (|f | <∞) = lim
R→∞

P (|f | < R) = 1.

Observation (Almost Surely Finite).
If f : Ω→ R is a. s. finite, then note that if
An := {|f | > n}, then (An)∞n=1 is a decreasing
sequence and so:

P

( ∞⋂
n=1

An

)
= P

(
lim
n→∞

An
)

= P (|f | =∞)

= 0.

Observation (µ-Almost Everywhere
Convergence I).
If fn → f µ-a.e., then µ(fn 6→ f) = 0.

Observation (µ-Almost Everywhere
Convergence II).
If A ∈ F is a set such that µ(A) = 0 and

lim
n→∞

|fn(ω)− f(ω)| = 0 ∀ω ∈ AC ,

then fn → f µ-almost everywhere.

Observation (Almost Sure Convergence).
If fn → f a.s., then P (fn 6→ f) = 0 or
equivalently P (fn → f) = 1.

Observation (Splitting Measures of
Inequalities).
Let f, g be measurable functions and a ∈ R,
then observe that:

µ(|f | > a) 6 µ
(
|f − g| >

a

2

)
+ µ

(
|g| >

a

2

)
Observation (Using Borel-Cantelli).
If you can define sets (Ak)∞k=1 such that
µ(Ak) 6 1/k2, then you can use Borel-Cantelli
as:

∞∑
k=1

µ(Ak) 6
∞∑
k=1

1

k2
<∞.

In fact, the choice of 1/k2 is more or less
arbitrary. This technique would work with any
rk s.t.

∑∞
k=1 rk <∞ and µ(Ak) 6 rk. Caution:

rk = 1/k does not work.

Observation (Function As Integral).
Let f : Ω→ R be a non-negative measurable
function, the obvserve that

f(ω) =

f(ω)∫
0

dx =

∞∫
0

1x6f(ω) dx

Observation (Bounding Complement
Probabilities).
Note that 1− x 6 e−x. Therefore, we can
bound probabilities of a product of complement
events, for instance:

∞∏
n=1

P (ACn ) =

∞∏
n=1

[1− P (An)] 6

∞∏
n=1

e−P (An) = e
∑∞

n=1 −P (An)

Observation (Interchanging Expectation &
Infinite Sum).

Observe that if f is non-negative, then:

E

( ∞∑
n=1

f(Xn)

)
= E

(
lim
N→∞

N∑
n=1

f(Xn)

)
=

= lim
N→∞

N∑
n=1

Ef(Xn) =

∞∑
n=1

Ef(Xn),

where pulling the expectation through the sum
can be done due to the Monotone Convergence
Theorem, as

∑N
n=1 f(Xn) is an increasing

sequence of non-negative random variables.

Observation (Markov-Chebyshev’s Inequality
& Norm).

The following is the general Markov-Chebyshev
Inequality rewritten using the norm instead of
an integral. Let f : Ω→ R be a non-negative,
measurable function in Lα(Ω,F , µ), then

µ(f > λ) 6 λ−α ‖f‖αα dµ ∀λ > 0, α > 0.

Observation (Distribution Function as
Expectation).

Let X be a random variable and FX its
distribution function. Then:

FX(a) = P (X 6 a) =

∫
Ω

1X6a dP = E1X6a.

Observation (Distribution Function as
Expectation, II).

Let X be a random variable and FX its
distribution function. Then:

FX(x+ a)− FX(x) = E1x<X6x+a.

Observation (Tightening/Relaxing
Expectations).

Let X be a random variable and λ ∈ R. Then
the following holds:

EX > E(1X>λX) > E(1X>λλ).

Left-to-right can be thought of as “tightening”
the constraints and thus (potentially)
decreasing the area that is integrated over,
right-to-left as “loosening” and thus
(potentially) increasing the area that is
integrated over.

Observation (Identical Distribution Giving
Equal Probability).

Let (Xn)∞n=1 be a sequence of independent,
identically distributed random variables. Let
An be an event depending on Xn, for instance
An := {Xn > K} for some K ∈ R, then all
P (An) are equal due to Xn being identically
distributed, i.e.

P (An) = p for n > 1, p ∈ [0, 1].

Observation (Identical Distribution &
Infinite Sum).

Let (Xn)∞n=1 be a sequence of independent,
identically distributed random variables. Let
An be an event depending on Xn, for instance
An := {Xn > K} for some K ∈ R, then

∞∑
n=1

P (An) <∞⇒ P (An) = 0 for n > 1.
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