## Group Theory

> William Bevington — s1610318

## Contents

Isomorphism Theorems. ..... 2
Sylow Theorems ..... 4
Finitely Generated Abelian Groups ..... 6
Linear Algebra Over the Integers ..... 7
Symmetric and Alternating Groups ..... 8
Jordan-Hölder Theorem ..... 10
Solvable Groups ..... 11
Group Presentations ..... 12

## Isomorphism Theorems

## Theorem 1

Let $G$ be a group and $N \leq G$. Then $N \triangleleft G$ if and only if $N$ is the kernel of some group homomorphism $\varphi: G \rightarrow H$.

## Theorem 2: First Isomorphism Theorem

Let $\theta: G \rightarrow H$ be a group homomorphism, then $N=\operatorname{ker} \theta$ is a normal subgroup of $G, \operatorname{im} \theta$ is a subgroup of $H$ and there is an isomorphism

$$
\tilde{\theta}: G / \operatorname{ker} \theta \xrightarrow{\sim} \operatorname{im} \theta, \quad \tilde{\theta}(g N):=\theta(g) .
$$

## Theorem 3: Universal Property of Factor Groups

Let $G$ be a group with normal subgroup $N \triangleleft G$. For any homomorphism $\psi: G \rightarrow H$ with $N \subseteq \operatorname{ker} \psi$ there is a unique homomorphism $\tilde{\psi}: G / N \rightarrow H$ so that $\tilde{\psi} \circ$ can $=\psi$ where can $: G \rightarrow G / N$ is the canonical homomorphism $\operatorname{can}(g)=g+N$, making the following commute


## Corollary 4

If $\phi: G \rightarrow K$ is a surjective group homomorphism and $\psi: \underset{\sim}{G} \rightarrow H$ is a group homomorphism with $\operatorname{ker} \phi \subseteq \operatorname{ker} \psi$ then there exists a unique group homomorphism $\tilde{\psi}: K \rightarrow H$ so that $\tilde{\psi} \phi=\psi$.

## Theorem 5

Let $G$ be a group with normal subgroup $N \triangleleft G$ and $K \leq G / N$, then:

1. $\operatorname{can}^{-1}(K) \leq G$ with $N \subseteq \operatorname{can}^{-1}(K)$, and
2. can $^{-1}(K) \triangleleft G$ if and only if $K \triangleleft G / N$.

## Theorem 6

Let $G$ be a group with normal subgroup $N \triangleleft G$, if $N \leq H \leq G$ then $H=\operatorname{can}^{-1}(\operatorname{can}(H))$.

## Theorem 7: Correspondence Theorem

Let $G$ be a group with normal subgroup $N \triangleleft G$. The map $H \mapsto \operatorname{can}(H)$ is a bijection between the set of subgroups of $G$ containing $N$ and subgroups of $G / N$ :

$$
\{H: N \leq H \leq G\} \stackrel{\sim}{\leftrightarrows}\{J: J \leq G / N\} .
$$

## Theorem 8: Third Isomorphism Theorem

If $N \leq H \leq G$ with $N, H \triangleleft G$ then

$$
\frac{G / N}{H / N} \cong \frac{G}{H}
$$

as seen by the diagram


## Theorem 9: Second Isomorphism Theorem

Let $N \triangleleft G$ and $H \leq G$, then

1. $H N$ is a subgroup of $G$,
2. $N \triangleleft H N$,
3. $H \cap N \triangleleft H$, and
4. there is an isomorphism

$$
\frac{H N}{N} \cong \frac{H}{H \cap N}
$$

## Sylow Theorems

## Theorem 1: Cauchy's Theorem

If $p$ is a prime that divides the order of $G$ then $G$ has a subgroup of order $p$.

## Definition 1: Sylow p-Subgroup

Let $G$ be a finite group and $p$ a prime. A subgroup $H \leq G$ is a Sylow $p$-subgroup of $G$ if its order is the highest power of $p$ that divides $G ; \# H=p^{k}$ where $p^{k} \mid \# G$ but $p^{k+1} \chi \# G$.

## Theorem 2: Sylow I

Let $\# G=n=p^{m} r$ for some prime $p$ and $r \in \mathbb{N}$ with $p \nmid r$, then there exists at least one Sylow $p$-subgroup (of order $p^{m}$ ).

## Theorem 3: Sylow II

Let $\# G=n=p^{m} r$ for some prime $p$ and $r \in \mathbb{N}$ with $p \nmid r$, and suppose that $P$ is a Sylow $p$-subgroup and that $H \leq G$ is any $p$-subgroup of $G$, then there exists some $g \in G$ with $H \subseteq g P g^{-1}$; any two Sylow p-subgroups are conjugate.

## Theorem 4: Sylow III

Let $\# G=n=p^{m} r$ for some prime $p$ and $r \in \mathbb{N}$ with $p \nmid r$, Let $n_{p}$ be the number of distinct Sylow $p$-subgroups of $G$, then $n_{p} \mid r$ and $n_{p}=1 \bmod p$.

## Definition 2: Simple Group

A group $G$ is simple if it has no non-trivial normal subgroups, i.e. if $N \triangleleft G$ given that $N=\left\{e_{G}\right\}$ or $N=G$.

## Theorem 5

If a group $G$ has a unique Sylow $p$-subgroup $P$ then $P \triangleleft G$.

## Definition 3: Group Action

Let $G$ be a group and $X$ a set, an action of $G$ on $X$ is a map

$$
G \times X \rightarrow X, \quad(g, x) \mapsto g \cdot x
$$

so that for all $x \in X$ and $g, h \in G$ we have that $e_{G} \cdot x=x$ and $g \cdot(h \cdot x)=(g h) \cdot x$. The orbit of $x \in X$ is

$$
G \cdot x=\{g \cdot x: g \in G\}
$$

and the stabiliser is

$$
\operatorname{Stab}_{G}(x)=\{g \in G: g \cdot x=x\} .
$$

## Theorem 6

Let $G$ act on some set $X$ :

1. the action of $G$ induces an equivalence relation $x \sim y \Leftrightarrow \exists g \in G: y=g \cdot x$,
2. the equivalence classes of this action are the orbits,
3. the distinct orbits in $X$ form a partition of $X$,

## Theorem 7

Let $G$ be a group acting on some set $X$, then for all $x \in X$ we have that $\operatorname{Stab}_{G}(x) \leq G$.

## Theorem 8: Orbit Stabiliser

Let $G$ be a finite group acting on a set $X$ and $x \in X$, then

$$
\# G=\# \operatorname{Stab}_{G}(x) \#(G \cdot x) .
$$

## Theorem 9

Let $p$ be a prime and $G$ a $p$-group so that each element of $G$ has order of $p^{n}$ for some $n \in \mathbb{N}$. If $G$ acts on a set $X$, then the number of fixed points of $X$ (i.e. the $x \in X$ such that $\forall g \in G: g \cdot x=x$ ) is congruent to $\# X \bmod p$.

## Corollary 10

Let $p$ be a prime and $G$ a $p$-group so that each element of $G$ has order of $p^{n}$ for some $n \in \mathbb{N}$. If $G$ acts on a set $X$ and $\# G=p^{m} r$ then if $P$ is a Sylow $p$-subgroup of $G$ we have that
$P \triangleleft G \Leftrightarrow P$ is the unique Sylow $p$-subgroup of $G$.

## Definition 4: Normalizer

Let $H \leq G$ for some group $G$, the normalizer of $H$ in $G$ is

$$
N_{G}(H)=\left\{g \in G: g H g^{-1}=H\right\}
$$

## Theorem 11

Let $G$ be a finite group,

1. for any $H \leq G$ we have that

$$
\left[G: N_{G}(H)\right]=\text { the number of conjugates of } H,
$$

2. let $p \mid \# G$ and $P$ be a Sylow $p$-subgroup of $G$, then $n_{p}=\left[G: N_{G}(H)\right]$.

## Finitely Generated Abelian Groups

## Theorem 1

Suppose that $A$ is a finite abelian group of order $n=\prod_{i=1}^{t} p_{i}^{s_{i}}$ for primes $p_{i}$ and $s_{i} \in \mathbb{N}$. Let $A_{p_{i}}$ be the unique Sylow $p_{i}$-subgroup of $A$, then

$$
A \cong A_{p_{1}} \times \cdots \times A_{p_{t}}
$$

that is, $A$ is isomorphic to the product of its Sylow $p$-subgroups.

## Theorem 2

Let $A$ be an abelian group with $\# A=p^{n}$ for some prime $p$. Then $A$ is isomorphic to a direct product of cyclic subgroups of order $p^{e_{1}}, p^{e_{2}}, \ldots, p^{e_{s}}$ where $e_{1}+\cdots+e_{s}=n$ and for all $i>j$ we have $e_{i} \geq e_{j}$. This product is unique up to re-ordering factors.

## Corollary 3: Fundamental Theorem of Finite Abelian Groups I

Let $A$ be a finite abelian group, then $A$ is a direct product of cyclic groups of prime power order. This product is unique up to re-ordering factors.

## Theorem 4: Chinese Remainder Theorem

Let $m, n \in \mathbb{Z}$ be coprime, then $C_{m n} \cong C_{m} \times C_{n}$.

## Definition 1: Exponent

The exponent $e(G)$ of a finite group $G$ is the least common multiple of the orders of the elements of $G$.

## THEOREM 5

Let $A$ be a finite abelian group, then $A$ contains an element of order $e(A)$.

## Corollary 6

If $A$ is a finite abelian group with $e(A)=\# A$ then $A$ is cyclic.

## Linear Algebra Over the Integers

## Theorem 7: Fundamental Theorem of Finite Abelian Groups II

Let $A$ be a finitely generated abelian group, then

$$
A \cong \mathbb{Z} / r_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / r_{K} \mathbb{Z} \times \mathbb{Z}^{l}
$$

for some $k, l \in \mathbb{Z}$ and where for $i<j$ we have $r_{i} \mid r_{j}$.

## Theorem 8

Let $p$ be prime and $a_{1} \geq a_{2} \geq \cdots \geq a_{m}$ and $b_{1} \geq \cdots \geq b_{n}$ be positive integers, if

$$
C_{p^{a_{1}}} \times \cdots \times C_{p^{a_{m}}} \cong C_{p^{b_{1}}} \times \cdots \times C_{p^{b_{n}}},
$$

then $m=n$ and $a_{i}=b_{i}$ for all $i=1, \ldots, m$.

## Symmetric and Alternating Groups

## Theorem 1

Every permutation $\sigma \in S_{n}$ can be written as a product of disjoint cycles which is unique up to re-ordering.

## Theorem 2

Every permutation $\sigma \in S_{n}$ can be written as a product of transposition, thus the transpositions generate $S_{n}$.

## Definition 1: Cycle Type

Suppose that $\sigma=c_{1} \ldots c_{k} \in S_{n}$ is the product of $k$ disjoint cycles of lengths $l_{1}, \ldots, l_{k}$, then the cycle type of $\sigma$ is the $k$-tuple $\left(l_{1}, \ldots, l_{k}\right)$

## THEOREM 3

Let $\sigma=\left(a_{1} a_{2} \ldots a_{k}\right) \in S_{n}$ and $\tau \in S_{n}$ then

$$
\tau \sigma \tau^{-1}=\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \ldots \tau\left(a_{k}\right)\right)
$$

## Theorem 4

Two permutations of $S_{n}$ are conjugate if and only if they are of the same cycle type.

## Definition 2: Even Permutations

Let $S_{n}$ act on $\left\{x_{1}, \ldots, x_{n}\right\}$ and $P=\prod_{1 \leq i \leq j \leq n}\left(x_{i}-x_{j}\right)$, letting $X=\{P,-P\}$ we have that this action reduces to an action on $X$. If $\sigma \in S_{n}$ fixes $\bar{P}$ then $\sigma$ is an even permutation. The set of even permutations is the alternating group $A_{n}$.

## Theorem 5

The product of two even or two odd permutations is even, the product of an odd and an even permutations is odd. A cycle in $S_{n}$ is even if and only if its length $l$ is odd.

## Theorem 6

Let $n \geq 2$, then $A_{n} \triangleleft S_{n}$ with index two so that $\# A_{n}=\frac{\# S_{n}}{2}$.

## Theorem 7

The alternating group $A_{4}$ has order 12, and has a unique subgroup $N \triangleleft A_{4}$ of order $\# N=4$ so that $A_{4} / N \cong C_{3}$ and $S_{4} / N \cong S_{3}$.

## Theorem 8

Let $G$ be a finite group with $H \triangleleft G$ and denote by $c l_{G}(h)=\left\{h^{\prime} \in G: \exists g \in G, h^{\prime}=g h g^{-1}\right\}$ the conjugacy class of $h \in H$ in $G$. Then there exists $h_{1}, \ldots, h_{k} \in H$ such that $H=\bigsqcup_{i=1}^{k} c l_{G}\left(h_{i}\right)$.

## Theorem 9: Alternating Groups and Simplicity

The alternating group $A_{n}$ is simple for $n \geq 5$.

## Theorem 10

If $n \geq 3$ then $A_{n}$ is generated by three-cycles.

## Theorem 11

If $n \geq 6$ and $\sigma \in A_{n}$ is a non-identity element then $\# c l_{A_{n}}(\sigma) \geq n$.

## Jordan-Hölder Theorem

## Definition 1: Composition Series

Let $G$ be group, a composition series for $G$ is a chain

$$
\{e\}=G_{0} \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{s-1} \triangleleft G_{s}=G
$$

where for all $i, G_{i} \neq G_{i+1}$ and the composition factors $G_{i+1} / G_{i}$ are simple.

## WARNING: normality of subgroups is not transitive; $A \triangleleft B \triangleleft C$ does not give that $A \triangleleft C$.

## Theorem 1: Jordan-Hölder

Let $G$ be a finite group, then $G$ has a composition series. Moreover any two composition series for $G$ have the same length and composition factors up to isomorphism and ordering.

## Theorem 2: Classification of Finite Simple Groups

Let $G$ be a finite simple group, then $G$ is isomorphic to one of

| $C_{p}$ | for some prime $p$, |
| :--- | :--- |
| $A_{n}$ | for some $n \geq 5$, |

a group of 'Lie type' (non-examinable), of which there are 16 types, or one of the 26 'sporadic' groups (non-examinable).

## Solvable Groups

## Definition 1: Sub-normal Series

Let $G$ be a group, a subnormal series for $G$ is a series

$$
\{e\}=G_{0} \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{s}=G .
$$

## Definition 2: Solvable

A group $G$ is solvable (or 'soluable') if it has a subnormal series

$$
\{e\}=G_{0} \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{s}=G .
$$

such that each $G_{i+1} / G_{i}$ is abelian.

## Theorem 1

A finite group $G$ is solvable if and only if all of the composition facts of $G$ are cyclic.

## Theorem 2

Let $G$ be a group and $N \triangleleft G$, then $G$ is solvable if and only if both $N$ and $G / N$ are solvable.

## Theorem 3

A general degree $n$ polynomial $f(x)$ with rational coefficients is not solvable by radicals if $n \geq 5$.

## Definition 3: Derived Subgroup

Let $G$ be a group, the commutator of $a, b \in G$ is $[a, b]=a b a^{-1} b^{-1}$. The derived subgroup $G^{\prime}$ of $G$ is the subgroup generated by all commutators

$$
G^{\prime}=\left\langle a b a^{-1} b^{-1}: a, b \in G\right\rangle .
$$

## Theorem 4

Let $G$ be a group and $N \triangleleft G$, then $G / N$ is abelian if and only if the derived subgroup $G^{\prime} \subseteq N$, in particular $G / G^{\prime}$ is abelian.

## Definition 4: Derived Series

Let $G$ be a group, set $G^{(0)}=G$ and $G^{(i+1)}=\left(G^{(i)}\right)^{\prime}$ is the derived subgroup of $G^{(i)}$. The sequence

$$
G=G^{(0)} \triangleleft G^{(1)} \triangleleft \ldots
$$

is the derived series for $G$

## Theorem 5

A group $G$ is solvable if and only if there exists some $n \in \mathbb{N}$ in which $G^{(n)}=\{e\}$. The smallest such $n$ is called the derived length of the derived series.

## Group Presentations

## Definition 1: Free Group

The free group $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ on $n$ generators $x_{1}, \ldots, x_{n}$ is the group whose elements are the words whose letters are in the alphabet $\left\{x_{1}, \ldots, x_{n}\right\}$. The group operation is concatenation $(x, y) \mapsto x y$.

More abstractly we have the following universal property. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$, then the free group $F(X)$ on $X$ is the unique group (up to isomorphism) such that for any group $G$ and any map $f: X \rightarrow G$ there is a unique homomorphism $\varphi: F(X) \rightarrow G$ such that the following commutes

where $\iota: X \hookrightarrow F(X)$ is inclusion.

## Definition 2: Generators and Relations

Let $r_{1}, \ldots, r_{m} \in\left\langle x_{1}, \ldots, x_{n}\right\rangle$, the group

$$
G=\left\langle x_{1}, \ldots, x_{n}: r_{1}, \ldots, r_{m}\right\rangle
$$

generated by $x_{1}, \ldots, x_{n}$ with relations $r_{1}, \ldots, r_{m}$ is given by the the group with generators $x_{1}, \ldots, x_{n}$ such that $r_{1}=\cdots=r_{n}=e$, we call this a presentation of the group.

Explicitly we can set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $R=\left\{r_{1}, \ldots, r_{m}\right\}$ and then $G=F(X) / N$ where $N$ is the smallest normal subgroup of $F(X)$ containing $R$.

## THEOREM 1: Novikov

There is no algorithm for deciding whether or not

$$
\left\langle x_{1}, \ldots, x_{n}: r_{1}, \ldots, r_{m}\right\rangle=\{e\} .
$$

