
Group Theory

William Bevington — s1610318

Contents

Isomorphism Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Sylow Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Finitely Generated Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Linear Algebra Over the Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Symmetric and Alternating Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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Isomorphism Theorems

Theorem 1

Let G be a group and N ≤ G. Then N/G if and only if N is the kernel of some group homomorphism
ϕ : G→ H.

Theorem 2: First Isomorphism Theorem

Let θ : G→ H be a group homomorphism, then N = ker θ is a normal subgroup of G, imθ is a subgroup
of H and there is an isomorphism

θ̃ : G/ ker θ
∼−→ imθ, θ̃(gN) := θ(g).

Theorem 3: Universal Property of Factor Groups

Let G be a group with normal subgroup N/G. For any homomorphism ψ : G→ H with N ⊆ kerψ there
is a unique homomorphism ψ̃ : G/N → H so that ψ̃ ◦ can = ψ where can : G → G/N is the canonical
homomorphism can(g) = g +N , making the following commute

G G/N

H

can

ψ
∃!ψ̃

Corollary 4

If φ : G → K is a surjective group homomorphism and ψ : G → H is a group homomorphism with
kerφ ⊆ kerψ then there exists a unique group homomorphism ψ̃ : K → H so that ψ̃φ = ψ.

Theorem 5

Let G be a group with normal subgroup N/G and K ≤ G/N , then:

1. can−1(K) ≤ G with N ⊆ can−1(K), and

2. can−1(K)/G if and only if K/G/N .

Theorem 6

Let G be a group with normal subgroup N/G, if N ≤ H ≤ G then H = can−1(can(H)).

Theorem 7: Correspondence Theorem

Let G be a group with normal subgroup N/G. The map H 7→ can(H) is a bijection between the set of
subgroups of G containing N and subgroups of G/N :

{H : N ≤ H ≤ G} ∼←→ {J : J ≤ G/N}.
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Theorem 8: Third Isomorphism Theorem

If N ≤ H ≤ G with N,H/G then
G/N

H/N
∼=
G

H
,

as seen by the diagram

G G/N

G/H

canN

canH
π

Theorem 9: Second Isomorphism Theorem

Let N/G and H ≤ G, then

1. HN is a subgroup of G,

2. N/HN ,

3. H ∩N/H, and

4. there is an isomorphism
HN

N
∼=

H

H ∩N
.
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Sylow Theorems

Theorem 1: Cauchy's Theorem

If p is a prime that divides the order of G then G has a subgroup of order p.

Definition 1: Sylow p-Subgroup

Let G be a finite group and p a prime. A subgroup H ≤ G is a Sylow p-subgroup of G if its order is
the highest power of p that divides G; #H = pk where pk|#G but pk+1 6 |#G.

Theorem 2: Sylow I

Let #G = n = pmr for some prime p and r ∈ N with p 6 |r, then there exists at least one Sylow p-subgroup
(of order pm).

Theorem 3: Sylow II

Let #G = n = pmr for some prime p and r ∈ N with p 6 |r, and suppose that P is a Sylow p-subgroup
and that H ≤ G is any p-subgroup of G, then there exists some g ∈ G with H ⊆ gPg−1; any two Sylow
p-subgroups are conjugate.

Theorem 4: Sylow III

Let #G = n = pmr for some prime p and r ∈ N with p 6 |r, Let np be the number of distinct Sylow
p-subgroups of G, then np|r and np = 1 mod p.

Definition 2: Simple Group

A group G is simple if it has no non-trivial normal subgroups, i.e. if N/G given that N = {eG} or
N = G.

Theorem 5

If a group G has a unique Sylow p-subgroup P then P/G.

Definition 3: Group Action

Let G be a group and X a set, an action of G on X is a map

G×X → X, (g, x) 7→ g · x

so that for all x ∈ X and g, h ∈ G we have that eG · x = x and g · (h · x) = (gh) · x. The orbit of x ∈ X is

G · x = {g · x : g ∈ G},

and the stabiliser is
StabG(x) = {g ∈ G : g · x = x}.
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Theorem 6

Let G act on some set X:

1. the action of G induces an equivalence relation x ∼ y ⇔ ∃g ∈ G : y = g · x,

2. the equivalence classes of this action are the orbits,

3. the distinct orbits in X form a partition of X,

Theorem 7

Let G be a group acting on some set X, then for all x ∈ X we have that StabG(x) ≤ G.

Theorem 8: Orbit Stabiliser

Let G be a finite group acting on a set X and x ∈ X, then

#G = #StabG(x)#(G · x).

Theorem 9

Let p be a prime and G a p-group so that each element of G has order of pn for some n ∈ N. If G acts on
a set X, then the number of fixed points of X (i.e. the x ∈ X such that ∀g ∈ G : g · x = x) is congruent
to #X mod p.

Corollary 10

Let p be a prime and G a p-group so that each element of G has order of pn for some n ∈ N. If G acts on
a set X and #G = pmr then if P is a Sylow p-subgroup of G we have that

P/G⇔ P is the unique Sylow p-subgroup of G.

Definition 4: Normalizer

Let H ≤ G for some group G, the normalizer of H in G is

NG(H) = {g ∈ G : gHg−1 = H}.

Theorem 11

Let G be a finite group,

1. for any H ≤ G we have that

[G : NG(H)] = the number of conjugates of H,

2. let p|#G and P be a Sylow p-subgroup of G, then np = [G : NG(H)].
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Finitely Generated Abelian Groups

Theorem 1

Suppose that A is a finite abelian group of order n =
∏t
i=1 p

si
i for primes pi and si ∈ N. Let Api be the

unique Sylow pi-subgroup of A, then
A ∼= Ap1 × · · · ×Apt ,

that is, A is isomorphic to the product of its Sylow p-subgroups.

Theorem 2

Let A be an abelian group with #A = pn for some prime p. Then A is isomorphic to a direct product of
cyclic subgroups of order pe1 , pe2 , . . . , pes where e1 + · · ·+ es = n and for all i > j we have ei ≥ ej . This
product is unique up to re-ordering factors.

Corollary 3: Fundamental Theorem of Finite Abelian Groups I

Let A be a finite abelian group, then A is a direct product of cyclic groups of prime power order. This
product is unique up to re-ordering factors.

Theorem 4: Chinese Remainder Theorem

Let m,n ∈ Z be coprime, then Cmn ∼= Cm × Cn.

Definition 1: Exponent

The exponent e(G) of a finite group G is the least common multiple of the orders of the elements of G.

Theorem 5

Let A be a finite abelian group, then A contains an element of order e(A).

Corollary 6

If A is a finite abelian group with e(A) = #A then A is cyclic.
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Linear Algebra Over the Integers

Theorem 7: Fundamental Theorem of Finite Abelian Groups II

Let A be a finitely generated abelian group, then

A ∼= Z/r1Z× · · · × Z/rKZ× Zl

for some k, l ∈ Z and where for i < j we have ri|rj .

Theorem 8

Let p be prime and a1 ≥ a2 ≥ · · · ≥ am and b1 ≥ · · · ≥ bn be positive integers, if

Cpa1 × · · · × Cpam
∼= Cpb1 × · · · × Cpbn ,

then m = n and ai = bi for all i = 1, . . . ,m.
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Symmetric and Alternating Groups

Theorem 1

Every permutation σ ∈ Sn can be written as a product of disjoint cycles which is unique up to re-ordering.

Theorem 2

Every permutation σ ∈ Sn can be written as a product of transposition, thus the transpositions generate
Sn.

Definition 1: Cycle Type

Suppose that σ = c1 . . . ck ∈ Sn is the product of k disjoint cycles of lengths l1, . . . , lk, then the cycle
type of σ is the k-tuple (l1, . . . , lk)

Theorem 3

Let σ = (a1 a2 . . . ak) ∈ Sn and τ ∈ Sn then

τστ−1 = (τ(a1) τ(a2) . . . τ(ak)).

Theorem 4

Two permutations of Sn are conjugate if and only if they are of the same cycle type.

Definition 2: Even Permutations

Let Sn act on {x1, . . . , xn} and P =
∏

1≤i≤j≤n(xi − xj), letting X = {P,−P} we have that this action
reduces to an action onX. If σ ∈ Sn fixes P then σ is an even permutation. The set of even permutations
is the alternating group An.

Theorem 5

The product of two even or two odd permutations is even, the product of an odd and an even permutations
is odd. A cycle in Sn is even if and only if its length l is odd.

Theorem 6

Let n ≥ 2, then An/Sn with index two so that #An = #Sn

2 .

Theorem 7

The alternating group A4 has order 12, and has a unique subgroup N/A4 of order #N = 4 so that
A4/N ∼= C3 and S4/N ∼= S3.

Theorem 8

Let G be a finite group with H/G and denote by clG(h) = {h′ ∈ G : ∃g ∈ G, h′ = ghg−1} the conjugacy

class of h ∈ H in G. Then there exists h1, . . . , hk ∈ H such that H =
⊔k
i=1 clG(hi).
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Theorem 9: Alternating Groups and Simplicity

The alternating group An is simple for n ≥ 5.

Theorem 10

If n ≥ 3 then An is generated by three-cycles.

Theorem 11

If n ≥ 6 and σ ∈ An is a non-identity element then #clAn(σ) ≥ n.
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Jordan-H�older Theorem

Definition 1: Composition Series

Let G be group, a composition series for G is a chain

{e} = G0/G1/ . . . /Gs−1/Gs = G

where for all i, Gi 6= Gi+1 and the composition factors Gi+1/Gi are simple.

WARNING: normality of subgroups is not transitive; A/B/C does not give that A/C.

Theorem 1: Jordan-H�older

Let G be a finite group, then G has a composition series. Moreover any two composition series for G have
the same length and composition factors up to isomorphism and ordering.

Theorem 2: Classification of Finite Simple Groups

Let G be a finite simple group, then G is isomorphic to one of

Cp for some prime p,

An for some n ≥ 5,

a group of ‘Lie type’ (non-examinable), of which there are 16 types, or

one of the 26 ‘sporadic’ groups (non-examinable).
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Solvable Groups

Definition 1: Sub-normal Series

Let G be a group, a subnormal series for G is a series

{e} = G0/G1/ . . . /Gs = G.

Definition 2: Solvable

A group G is solvable (or ‘soluable’) if it has a subnormal series

{e} = G0/G1/ . . . /Gs = G.

such that each Gi+1/Gi is abelian.

Theorem 1

A finite group G is solvable if and only if all of the composition facts of G are cyclic.

Theorem 2

Let G be a group and N/G, then G is solvable if and only if both N and G/N are solvable.

Theorem 3

A general degree n polynomial f(x) with rational coefficients is not solvable by radicals if n ≥ 5.

Definition 3: Derived Subgroup

Let G be a group, the commutator of a, b ∈ G is [a, b] = aba−1b−1. The derived subgroup G′ of G is
the subgroup generated by all commutators

G′ = 〈aba−1b−1 : a, b ∈ G〉.

Theorem 4

Let G be a group and N/G, then G/N is abelian if and only if the derived subgroup G′ ⊆ N , in particular
G/G′ is abelian.

Definition 4: Derived Series

Let G be a group, set G(0) = G and G(i+1) = (G(i))′ is the derived subgroup of G(i). The sequence

G = G(0)/G(1)/ . . .

is the derived series for G

Theorem 5

A group G is solvable if and only if there exists some n ∈ N in which G(n) = {e}. The smallest such n is
called the derived length of the derived series.
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Group Presentations

Definition 1: Free Group

The free group 〈x1, . . . , xn〉 on n generators x1, . . . , xn is the group whose elements are the words whose
letters are in the alphabet {x1, . . . , xn}. The group operation is concatenation (x, y) 7→ xy.

More abstractly we have the following universal property. Let X = {x1, . . . , xn}, then the free group
F (X) on X is the unique group (up to isomorphism) such that for any group G and any map f : X → G
there is a unique homomorphism ϕ : F (X)→ G such that the following commutes

X F (X)

G

ι

f
ϕ

where ι : X ↪→ F (X) is inclusion.

Definition 2: Generators and Relations

Let r1, . . . , rm ∈ 〈x1, . . . , xn〉, the group

G = 〈x1, . . . , xn : r1, . . . , rm〉

generated by x1, . . . , xn with relations r1, . . . , rm is given by the the group with generators x1, . . . , xn
such that r1 = · · · = rn = e, we call this a presentation of the group.

Explicitly we can set X = {x1, . . . , xn} and R = {r1, . . . , rm} and then G = F (X)/N where N is the
smallest normal subgroup of F (X) containing R.

Theorem 1: Novikov

There is no algorithm for deciding whether or not

〈x1, . . . , xn : r1, . . . , rm〉 = {e}.
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