GROUP THEORY

William Bevington — s1610318

CONTENTS

Isomorphism Theorems
Sylow Theorems
Finitely Generated Abelian Groups 6
Linear Algebra Over the Integers
Symmetric and Alternating Groups
Jordan-Hölder Theorem
Solvable Groups
Group Presentations

ISOMORPHISM THEOREMS

THEOREM 1

Let G be a group and $N \leq G$. Then $N \triangleleft G$ if and only if N is the kernel of some group homomorphism $\varphi: G \to H$.

THEOREM 2: FIRST ISOMORPHISM THEOREM

Let $\theta: G \to H$ be a group homomorphism, then $N = \ker \theta$ is a normal subgroup of G, $\operatorname{im} \theta$ is a subgroup of H and there is an isomorphism

 $\tilde{\theta}: G/\ker\theta \xrightarrow{\sim} \operatorname{im}\theta, \qquad \tilde{\theta}(gN):=\theta(g).$

THEOREM 3: UNIVERSAL PROPERTY OF FACTOR GROUPS

Let G be a group with normal subgroup $N \triangleleft G$. For any homomorphism $\psi : G \rightarrow H$ with $N \subseteq \ker \psi$ there is a unique homomorphism $\tilde{\psi} : G/N \rightarrow H$ so that $\tilde{\psi} \circ \operatorname{can} = \psi$ where $\operatorname{can} : G \rightarrow G/N$ is the **canonical** homomorphism $\operatorname{can}(g) = g + N$, making the following commute

COROLLARY 4

If $\phi : G \to K$ is a surjective group homomorphism and $\psi : G \to H$ is a group homomorphism with $\ker \phi \subseteq \ker \psi$ then there exists a unique group homomorphism $\tilde{\psi} : K \to H$ so that $\tilde{\psi}\phi = \psi$.

THEOREM 5

Let G be a group with normal subgroup $N \triangleleft G$ and $K \leq G/N$, then:

1. $\operatorname{can}^{-1}(K) \leq G$ with $N \subseteq \operatorname{can}^{-1}(K)$, and

2. $\operatorname{can}^{-1}(K) \triangleleft G$ if and only if $K \triangleleft G/N$.

THEOREM 6

Let G be a group with normal subgroup $N \triangleleft G$, if $N \leq H \leq G$ then $H = \operatorname{can}^{-1}(\operatorname{can}(H))$.

THEOREM 7: CORRESPONDENCE THEOREM

Let G be a group with normal subgroup $N \triangleleft G$. The map $H \mapsto \operatorname{can}(H)$ is a bijection between the set of subgroups of G containing N and subgroups of G/N:

 $\{H\,:\,N\leq H\leq G\}\stackrel{\sim}{\leftrightarrow}\{J\,:\,J\leq G/N\}.$

THEOREM 8: THIRD ISOMORPHISM THEOREM

If $N \leq H \leq G$ with $N, H \triangleleft G$ then $\frac{G/N}{H/N} \cong \frac{G}{H},$ as seen by the diagram $G \xrightarrow{\operatorname{can}_N} G/N$ $\xrightarrow{\downarrow \pi} G/H$

THEOREM 9: SECOND ISOMORPHISM THEOREM

Let $N \triangleleft G$ and $H \leq G$, then

- 1. HN is a subgroup of G,
- $2. N \triangleleft HN,$
- 3. $H \cap N \triangleleft H$, and
- 4. there is an isomorphism

$$\frac{HN}{N} \cong \frac{H}{H \cap N}.$$

SYLOW THEOREMS

THEOREM 1: CAUCHY'S THEOREM

If p is a prime that divides the order of G then G has a subgroup of order p.

DEFINITION 1: SYLOW *p*-SUBGROUP

Let G be a finite group and p a prime. A subgroup $H \leq G$ is a **Sylow** p-subgroup of G if its order is the highest power of p that divides G; $\#H = p^k$ where $p^k | \#G$ but $p^{k+1} \not| \#G$.

THEOREM 2: SYLOW I

Let $\#G = n = p^m r$ for some prime p and $r \in \mathbb{N}$ with $p \not| r$, then there exists at least one Sylow p-subgroup (of order p^m).

THEOREM 3: SYLOW II

Let $\#G = n = p^m r$ for some prime p and $r \in \mathbb{N}$ with $p \not| r$, and suppose that P is a Sylow p-subgroup and that $H \leq G$ is any p-subgroup of G, then there exists some $g \in G$ with $H \subseteq gPg^{-1}$; any two Sylow p-subgroups are conjugate.

THEOREM 4: SYLOW III

Let $\#G = n = p^m r$ for some prime p and $r \in \mathbb{N}$ with p / r, Let n_p be the number of distinct Sylow p-subgroups of G, then $n_p | r$ and $n_p = 1 \mod p$.

DEFINITION 2: SIMPLE GROUP

A group G is simple if it has no non-trivial normal subgroups, i.e. if $N \triangleleft G$ given that $N = \{e_G\}$ or N = G.

THEOREM 5

If a group G has a unique Sylow p-subgroup P then $P \triangleleft G$.

DEFINITION 3: GROUP ACTION

Let G be a group and X a set, an **action of** G **on** X is a map

 $G \times X \to X, \qquad (g, x) \mapsto g \cdot x$

so that for all $x \in X$ and $g, h \in G$ we have that $e_G \cdot x = x$ and $g \cdot (h \cdot x) = (gh) \cdot x$. The **orbit** of $x \in X$ is

 $G \cdot x = \{g \cdot x : g \in G\},\$

and the **stabiliser** is

$$\operatorname{Stab}_G(x) = \{ g \in G : g \cdot x = x \}.$$

THEOREM 6

Let G act on some set X:

- 1. the action of G induces an equivalence relation $x \sim y \Leftrightarrow \exists g \in G : y = g \cdot x$,
- 2. the equivalence classes of this action are the orbits,
- 3. the distinct orbits in X form a partition of X,

THEOREM 7

Let G be a group acting on some set X, then for all $x \in X$ we have that $\operatorname{Stab}_G(x) \leq G$.

THEOREM 8: ORBIT STABILISER

Let G be a finite group acting on a set X and $x \in X$, then

 $#G = #Stab_G(x)#(G \cdot x).$

THEOREM 9

Let p be a prime and G a p-group so that each element of G has order of p^n for some $n \in \mathbb{N}$. If G acts on a set X, then the number of fixed points of X (i.e. the $x \in X$ such that $\forall g \in G : g \cdot x = x$) is congruent to $\#X \mod p$.

COROLLARY 10

Let p be a prime and G a p-group so that each element of G has order of p^n for some $n \in \mathbb{N}$. If G acts on a set X and $\#G = p^m r$ then if P is a Sylow p-subgroup of G we have that

 $P \triangleleft G \Leftrightarrow P$ is the unique Sylow p-subgroup of G.

DEFINITION 4: NORMALIZER

Let $H \leq G$ for some group G, the **normalizer** of H in G is

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}.$$

THEOREM 11

Let G be a finite group,

1. for any $H \leq G$ we have that

 $[G: N_G(H)] = the number of conjugates of H,$

2. let p|#G and P be a Sylow p-subgroup of G, then $n_p = [G : N_G(H)]$.

FINITELY GENERATED ABELIAN GROUPS

THEOREM 1

Suppose that A is a finite abelian group of order $n = \prod_{i=1}^{t} p_i^{s_i}$ for primes p_i and $s_i \in \mathbb{N}$. Let A_{p_i} be the unique Sylow p_i -subgroup of A, then

$$A \cong A_{p_1} \times \dots \times A_{p_t},$$

that is, A is isomorphic to the product of its Sylow p-subgroups.

THEOREM 2

Let A be an abelian group with $\#A = p^n$ for some prime p. Then A is isomorphic to a direct product of cyclic subgroups of order $p^{e_1}, p^{e_2}, \ldots, p^{e_s}$ where $e_1 + \cdots + e_s = n$ and for all i > j we have $e_i \ge e_j$. This product is unique up to re-ordering factors.

COROLLARY 3: FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS I

Let A be a finite abelian group, then A is a direct product of cyclic groups of prime power order. This product is unique up to re-ordering factors.

THEOREM 4: CHINESE REMAINDER THEOREM

Let $m, n \in \mathbb{Z}$ be coprime, then $C_{mn} \cong C_m \times C_n$.

DEFINITION 1: EXPONENT

The exponent e(G) of a finite group G is the least common multiple of the orders of the elements of G.

THEOREM 5

Let A be a finite abelian group, then A contains an element of order e(A).

COROLLARY 6

If A is a finite abelian group with e(A) = #A then A is cyclic.

LINEAR ALGEBRA OVER THE INTEGERS

THEOREM 7: FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS II

Let ${\cal A}$ be a finitely generated abelian group, then

$$A \cong \mathbb{Z}/r_1\mathbb{Z} \times \cdots \times \mathbb{Z}/r_K\mathbb{Z} \times \mathbb{Z}^l$$

for some $k, l \in \mathbb{Z}$ and where for i < j we have $r_i | r_j$.

THEOREM 8

Let p be prime and $a_1 \ge a_2 \ge \cdots \ge a_m$ and $b_1 \ge \cdots \ge b_n$ be positive integers, if

 $C_{p^{a_1}} \times \cdots \times C_{p^{a_m}} \cong C_{p^{b_1}} \times \cdots \times C_{p^{b_n}},$

then m = n and $a_i = b_i$ for all $i = 1, \ldots, m$.

SYMMETRIC AND ALTERNATING GROUPS

THEOREM 1

Every permutation $\sigma \in S_n$ can be written as a product of disjoint cycles which is unique up to re-ordering.

THEOREM 2

Every permutation $\sigma \in S_n$ can be written as a product of transposition, thus the transpositions generate S_n .

DEFINITION 1: CYCLE TYPE

Suppose that $\sigma = c_1 \dots c_k \in S_n$ is the product of k disjoint cycles of lengths l_1, \dots, l_k , then the cycle type of σ is the k-tuple (l_1, \dots, l_k)

THEOREM 3

Let $\sigma = (a_1 a_2 \dots a_k) \in S_n$ and $\tau \in S_n$ then

$$\tau \sigma \tau^{-1} = (\tau(a_1) \tau(a_2) \dots \tau(a_k)).$$

THEOREM 4

Two permutations of S_n are conjugate if and only if they are of the same cycle type.

DEFINITION 2: EVEN PERMUTATIONS

Let S_n act on $\{x_1, \ldots, x_n\}$ and $P = \prod_{1 \le i \le j \le n} (x_i - x_j)$, letting $X = \{P, -P\}$ we have that this action reduces to an action on X. If $\sigma \in S_n$ fixes \overline{P} then σ is an **even permutation**. The set of even permutations is the **alternating group** A_n .

THEOREM 5

The product of two even or two odd permutations is even, the product of an odd and an even permutations is odd. A cycle in S_n is even if and only if its length l is odd.

THEOREM 6

Let $n \ge 2$, then $A_n \triangleleft S_n$ with index two so that $\#A_n = \frac{\#S_n}{2}$.

THEOREM 7

The alternating group A_4 has order 12, and has a unique subgroup $N \triangleleft A_4$ of order #N = 4 so that $A_4/N \cong C_3$ and $S_4/N \cong S_3$.

THEOREM 8

Let G be a finite group with $H \triangleleft G$ and denote by $cl_G(h) = \{h' \in G : \exists g \in G, h' = ghg^{-1}\}$ the conjugacy class of $h \in H$ in G. Then there exists $h_1, \ldots, h_k \in H$ such that $H = \bigsqcup_{i=1}^k cl_G(h_i)$.

THEOREM 9: ALTERNATING GROUPS AND SIMPLICITY

The alternating group A_n is simple for $n \ge 5$.

THEOREM 10

If $n \geq 3$ then A_n is generated by three-cycles.

THEOREM 11

If $n \ge 6$ and $\sigma \in A_n$ is a non-identity element then $\#cl_{A_n}(\sigma) \ge n$.

JORDAN-HÖLDER THEOREM

DEFINITION 1: COMPOSITION SERIES

Let G be group, a **composition series** for G is a chain

$$\{e\} = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_{s-1} \triangleleft G_s = G$$

where for all $i, G_i \neq G_{i+1}$ and the composition factors G_{i+1}/G_i are simple.

WARNING: normality of subgroups is not transitive; $A \triangleleft B \triangleleft C$ does not give that $A \triangleleft C$.

THEOREM 1: JORDAN-HÖLDER

Let G be a finite group, then G has a composition series. Moreover any two composition series for G have the same length and composition factors up to isomorphism and ordering.

THEOREM 2: CLASSIFICATION OF FINITE SIMPLE GROUPS

Let G be a finite simple group, then G is isomorphic to one of

 C_p

A_n

for some prime p, for some $n \ge 5$,

a group of 'Lie type' (non-examinable), of which there are 16 types, or one of the 26 'sporadic' groups (non-examinable).

SOLVABLE GROUPS

DEFINITION 1: SUB-NORMAL SERIES

Let G be a group, a **subnormal series** for G is a series

$$\{e\} = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_s = G.$$

DEFINITION 2: SOLVABLE

A group G is **solvable** (or 'soluable') if it has a subnormal series

 $\{e\} = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_s = G.$

such that each G_{i+1}/G_i is abelian.

THEOREM 1

A finite group G is solvable if and only if all of the composition facts of G are cyclic.

THEOREM 2

Let G be a group and $N \triangleleft G$, then G is solvable if and only if both N and G/N are solvable.

THEOREM 3

A general degree n polynomial f(x) with rational coefficients is not solvable by radicals if $n \ge 5$.

DEFINITION 3: DERIVED SUBGROUP

Let G be a group, the **commutator** of $a, b \in G$ is $[a, b] = aba^{-1}b^{-1}$. The **derived subgroup** G' of G is the subgroup generated by all commutators

$$G' = \langle aba^{-1}b^{-1} : a, b \in G \rangle.$$

THEOREM 4

Let G be a group and $N \triangleleft G$, then G/N is abelian if and only if the derived subgroup $G' \subseteq N$, in particular G/G' is abelian.

DEFINITION 4: DERIVED SERIES

Let G be a group, set $G^{(0)} = G$ and $G^{(i+1)} = (G^{(i)})'$ is the derived subgroup of $G^{(i)}$. The sequence

 $G = G^{(0)} \triangleleft G^{(1)} \triangleleft \dots$

is the **derived series** for G

THEOREM 5

A group G is solvable if and only if there exists some $n \in \mathbb{N}$ in which $G^{(n)} = \{e\}$. The smallest such n is called the **derived length** of the derived series.

GROUP PRESENTATIONS

DEFINITION 1: FREE GROUP

The free group $\langle x_1, \ldots, x_n \rangle$ on *n* generators x_1, \ldots, x_n is the group whose elements are the *words* whose letters are in the *alphabet* $\{x_1, \ldots, x_n\}$. The group operation is concatenation $(x, y) \mapsto xy$.

More abstractly we have the following universal property. Let $X = \{x_1, \ldots, x_n\}$, then the free group F(X) on X is the unique group (up to isomorphism) such that for any group G and any map $f: X \to G$ there is a unique homomorphism $\varphi: F(X) \to G$ such that the following commutes

where $\iota: X \hookrightarrow F(X)$ is inclusion.

DEFINITION 2: GENERATORS AND RELATIONS

Let $r_1, \ldots, r_m \in \langle x_1, \ldots, x_n \rangle$, the group

 $G = \langle x_1, \dots, x_n : r_1, \dots, r_m \rangle$

generated by x_1, \ldots, x_n with relations r_1, \ldots, r_m is given by the group with generators x_1, \ldots, x_n such that $r_1 = \cdots = r_n = e$, we call this a **presentation** of the group.

Explicitly we can set $X = \{x_1, \ldots, x_n\}$ and $R = \{r_1, \ldots, r_m\}$ and then G = F(X)/N where N is the smallest normal subgroup of F(X) containing R.

THEOREM 1: NOVIKOV

There is no algorithm for deciding whether or not

 $\langle x_1,\ldots,x_n:r_1,\ldots,r_m\rangle = \{e\}.$