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ISOMORPHISM THEOREMS

THEOREM 1

Let G be a group and N < . Then N<G if and only if N is the kernel of some group homomorphism
p:G— H.

THEOREM 2: FIRST ISOMORPHISM THEOREM

Let 6 : G — H be a group homomorphism, then N = ker # is a normal subgroup of G, imf is a subgroup
of H and there is an isomorphism

0:G/kerf = imb), O(gN) :=0(g).

THEOREM 3: UNIVERSAL PROPERTY OF FACTOR GROUPS

Let G be a group with normal subgroup N<G. For any homomorphism ¢ : G — H with N C ker 1 there
is a unique homomorphism ¢ : G/N — H so that ¢ o can = 1) where can : G — G/N is the canonical
homomorphism can(g) = g + N, making the following commute

G =% G/N

N

COROLLARY 4

If  : G — K is a surjective group homomorphism and ¢ : G — H is a group homomorphism with
ker ¢ C ker vy then there exists a unique group homomorphism ¢ : K — H so that ¥¢ = 1.

THEOREM 5
Let G be a group with normal subgroup N<G and K < G/N, then:
1. can™}(K) < G with N C can™!(K), and

2. can~!}(K)<G if and only if K<G/N.

THEOREM 6

Let G be a group with normal subgroup N<G, if N < H < G then H = can!(can(H)).

THEOREM 7: CORRESPONDENCE THEOREM

Let G be a group with normal subgroup N<G. The map H +— can(H) is a bijection between the set of
subgroups of G containing N and subgroups of G/N:

{H: N<H<G}<{J:J<G/N}.



THEOREM 8: THIRD ISOMORPHISM THEOREM

If N < H < G with N, HaG then
G/N G
H/N — H’

as seen by the diagram

G =, G/N

|

I
ca& |

hd

THEOREM 9: SECOND ISOMORPHISM THEOREM
Let N<G and H < G, then
1. HN is a subgroup of G,
2. N<HN,
3. HN N<H, and

4. there is an isomorphism




SYLOW THEOREMS

THEOREM 1: CAUCHY’S THEOREM

If p is a prime that divides the order of G then G has a subgroup of order p.

DEFINITION 1: SYLOW p-SUBGROUP

Let G be a finite group and p a prime. A subgroup H < G is a Sylow p-subgroup of G if its order is
the highest power of p that divides G; #H = p* where p¥|#G but p**! J#G.

THEOREM 2: SYLOW I

Let #G = n = p™r for some prime p and r € N with p fr, then there exists at least one Sylow p-subgroup
(of order p™).

THEOREM 3: SyLow II
Let #G = n = p™r for some prime p and r € N with p /fr, and suppose that P is a Sylow p-subgroup

and that H < G is any p-subgroup of G, then there exists some g € G with H C gPg~!; any two Sylow
p-subgroups are conjugate.

THEOREM 4: SyLow III

Let #G = n = p™r for some prime p and r € N with p /r, Let n, be the number of distinct Sylow
p-subgroups of G, then n,|r and n, =1 mod p.

DEFINITION 2: SIMPLE GROUP

A group G is simple if it has no non-trivial normal subgroups, i.e. if N<G given that N = {eg} or
N =G.

THEOREM 5

If a group G has a unique Sylow p-subgroup P then P<G.

DEFINITION 3: GROUP ACTION
Let G be a group and X a set, an action of G on X is a map
GxX—X, (9,2) > g-x
so that for all € X and g,h € G we have that eq -z =z and g- (h-z) = (gh) - . The orbit of z € X is
G-xz={g-z:g9€eG}

and the stabiliser is
Stabg(z) ={g€ G : g-x =x}.



THEOREM 6
Let G act on some set X:
1. the action of G induces an equivalence relation t ~y < g€ G :y =g - x,
2. the equivalence classes of this action are the orbits,

3. the distinct orbits in X form a partition of X,

THEOREM 7

Let G be a group acting on some set X, then for all x € X we have that Stabg(z) < G.

THEOREM 8: ORBIT STABILISER

Let G be a finite group acting on a set X and x € X, then

#G = #Stabg (2)#(G - x).

THEOREM 9

Let p be a prime and G a p-group so that each element of G has order of p™ for some n € N. If G acts on
a set X, then the number of fixed points of X (i.e. the z € X such that Vg € G : g - = z) is congruent
to #X mod p.

COROLLARY 10

Let p be a prime and G a p-group so that each element of G has order of p™ for some n € N. If G acts on
a set X and #G = p™r then if P is a Sylow p-subgroup of G we have that

P<G < P is the unique Sylow p-subgroup of G.

DEFINITION 4: NORMALIZER

Let H < G for some group G, the normalizer of H in G is

Ng(H)={g9€ G : gHg " = H}.

THEOREM 11
Let G be a finite group,

1. for any H < G we have that

[G : Ng(H)] = the number of conjugates of H,

2. let p|#G and P be a Sylow p-subgroup of G, then n, =[G : Ng(H)].



FINITELY GENERATED ABELIAN GROUPS

THEOREM 1

Suppose that A is a finite abelian group of order n = H§:1 p;* for primes p; and s; € N. Let A, be the
unique Sylow p;-subgroup of A, then
A=A, X XA,

that is, A is isomorphic to the product of its Sylow p-subgroups.

THEOREM 2

Let A be an abelian group with #A = p™ for some prime p. Then A is isomorphic to a direct product of
cyclic subgroups of order p®,p®,...,p% where e; 4+ ---+e; = n and for all ¢ > j we have e; > e;. This
product is unique up to re-ordering factors.

COROLLARY 3: FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS 1

Let A be a finite abelian group, then A is a direct product of cyclic groups of prime power order. This
product is unique up to re-ordering factors.

THEOREM 4: CHINESE REMAINDER THEOREM

Let m,n € Z be coprime, then C,,, = C,, x C,,.

DEFINITION 1: EXPONENT

The exponent e(G) of a finite group G is the least common multiple of the orders of the elements of G.

THEOREM 5

Let A be a finite abelian group, then A contains an element of order e(A).

COROLLARY 6

If A is a finite abelian group with e(A) = #A then A is cyclic.



LINEAR ALGEBRA OVER THE INTEGERS
THEOREM 7: FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS II
Let A be a finitely generated abelian group, then
AXZ/MZLx - X L)rgZ x L'

for some k,l € Z and where for ¢ < j we have r;|r;.

THEOREM 8
Let p be prime and a; > as > --- > a,, and by > -+ > b, be positive integers, if
Cpar X =+ X Cpam = Clpy X -+ X Cpop,

then m=n and a; =b; foralli=1,...,m.



SYMMETRIC AND ALTERNATING GROUPS

THEOREM 1

Every permutation o € S, can be written as a product of disjoint cycles which is unique up to re-ordering.

THEOREM 2

Every permutation o € S, can be written as a product of transposition, thus the transpositions generate
Sh-

DEFINITION 1: CYCLE TYPE

Suppose that ¢ = ¢;...¢p € S, is the product of k disjoint cycles of lengths [y, ... [, then the cycle
type of o is the k-tuple (I1,...,1x)

THEOREM 3

Let 0 = (a1 a2 ... a;) € S, and 7 € S;, then

ot = (1(a1) T(az) ... T(ag)).

THEOREM 4

Two permutations of S, are conjugate if and only if they are of the same cycle type.

DEFINITION 2: EVEN PERMUTATIONS
Let S, act on {z1,...,z,} and P = [ ;< <, (i — x;), letting X = {P, —P} we have that this action

reduces to an action on X. If 0 € S,, fixes P then o is an even permutation. The set of even permutations
is the alternating group A,,.

THEOREM 5

The product of two even or two odd permutations is even, the product of an odd and an even permutations
is odd. A cycle in S, is even if and only if its length [ is odd.

THEOREM 6

Let n > 2, then A,<S,, with index two so that #A,, = #25".

THEOREM 7

The alternating group A4 has order 12, and has a unique subgroup N<A,4 of order #N = 4 so that
A4/N = C3 and S4/N = 53.

THEOREM 8

Let G be a finite group with H<G and denote by clg(h) = {h' € G : 3g € G, I/ = ghg™'} the conjugacy
class of h € H in G. Then there exists hq,...,h, € H such that H = |_|f:1 clg(hi).



THEOREM 9: ALTERNATING GROUPS AND SIMPLICITY

The alternating group A,, is simple for n > 5.

THEOREM 10

If n > 3 then A,, is generated by three-cycles.

THEOREM 11

If n > 6 and o € A, is a non-identity element then #cla, (o) > n.



JORDAN-HOLDER THEOREM

DEFINITION 1: COMPOSITION SERIES

Let G be group, a composition series for G is a chain
{e} = Gp<G14...9Gs_1<4G, = G

where for all i, G; # G;11 and the composition factors G,;1/G; are simple.

(WARNING: normality of subgroups is not transitive; A<B<C does not give that A<C.

THEOREM 1: JORDAN-HOLDER

Let G be a finite group, then G has a composition series. Moreover any two composition series for G have
the same length and composition factors up to isomorphism and ordering.

THEOREM 2: CLASSIFICATION OF FINITE SIMPLE GROUPS

Let G be a finite simple group, then G is isomorphic to one of

Cp for some prime p,
A, for some n > 5,
a group of ‘Lie type’ (non-examinable), of which there are 16 types, or

one of the 26 ‘sporadic’ groups (non-examinable).

10



SOLVABLE GROUPS

DEFINITION 1: SUB-NORMAL SERIES

Let G be a group, a subnormal series for G is a series

{e} = Gp<G14...<4G4 = G.

DEFINITION 2: SOLVABLE
A group G is solvable (or ‘soluable’) if it has a subnormal series
{e} = Gp<G14...<4G5 = G.

such that each G;41/G; is abelian.

THEOREM 1

A finite group G is solvable if and only if all of the composition facts of G are cyclic.

THEOREM 2

Let G be a group and N<G, then G is solvable if and only if both N and G/N are solvable.

THEOREM 3

A general degree n polynomial f(x) with rational coefficients is not solvable by radicals if n > 5.

DEFINITION 3: DERIVED SUBGROUP

Let G be a group, the commutator of a,b € G is [a,b] = aba~'b~!. The derived subgroup G’ of G is
the subgroup generated by all commutators

G' = {aba™'b"' : a,b € G).

THEOREM 4

Let G be a group and N<G, then G/N is abelian if and only if the derived subgroup G’ C N, in particular
G /G’ is abelian.

DEFINITION 4: DERIVED SERIES
Let G be a group, set G(®) = G and G0+ = (G™)' is the derived subgroup of G*). The sequence
G=G0aWaq...

is the derived series for G
THEOREM 5

A group G is solvable if and only if there exists some n € N in which G(™ = {e}. The smallest such n is
called the derived length of the derived series.

11



GROUP PRESENTATIONS

DEFINITION 1: FREE GROUP

The free group (z1,...,2,) on n generators x1, ..., Z, is the group whose elements are the words whose
letters are in the alphabet {x1,...,2z,}. The group operation is concatenation (z,y) — zy.

More abstractly we have the following universal property. Let X = {x1,...,z,}, then the free group
F(X) on X is the unique group (up to isomorphism) such that for any group G and any map f: X — G
there is a unique homomorphism ¢ : F'(X) — G such that the following commutes

X — F(X)

G

where ¢ : X — F(X) is inclusion.

DEFINITION 2: GENERATORS AND RELATIONS

Let r1,...,7m € (x1,...,2,), the group

G=(x1,...,&n : T1y. oy Tm)
generated by zi,...,x, with relations rq,...,r,, is given by the the group with generators x1,...,x,
such that ry =--- =r, = e, we call this a presentation of the group.

Explicitly we can set X = {z1,...,z,} and R = {r1,...,r,} and then G = F(X)/N where N is the
smallest normal subgroup of F(X) containing R.

THEOREM 1: NOVIKOV

There is no algorithm for deciding whether or not

(X1, oy Tp i 71, ) = {e}
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